The community pharmacists in this study displayed a fair ability to detect and resolve DTRPs, vis-à-vis identification of DTRPs, investigation of the causes and recommendations for resolution. The DTRPs mostly identified were dosage too high and unnecessary drug therapy. Others were the need for additional drug therapy and adverse drug reactions. Interestingly, most of the pharmacists did not check for drug interactions. However, a greater number of the pharmacists asked the SPs for further clarifications on medication-related issues and between 47 and 67% of the pharmacists contacted “the physicians” of the SPs on suspected DTRPs and suggested recommendations on how to resolve identified DTRPs. As high as 89% of the pharmacists made appropriate recommendations which bordered on dosage adjustment, drug discontinuation, and drug substitution.
The fair ability to detect and resolve DTRPs (41%) displayed by the community pharmacists differs from two other similar studies where independent quality assessment teams were also used to evaluate pharmacists’ DTRP activities. In Ewan and Greene [15] and Gisev et al. [14], the expert review panels deemed 91 and 76% of the DTRP interventions made by the pharmacists appropriate, respectively. In these two studies, the findings of the pharmacists were retrospectively assessed by experts while the DTRPs in this study was predetermined by the panel of experts and compared with the pharmacist’s findings. Interstudy comparison may be difficult as studies use different scoring criteria [6, 11, 27,28,29,30,31,32,33], such as the use of an independent assessment team or panel, to assess the quality of pharmacists DTRPs interventions. The composition of such panel, which vary across studies, may impact on the judgment or final evaluation of the performance of the pharmacists, since members of the panel may have different concept of clinical relevance of DTRP interventions [8, 12, 14]. Nevertheless, the ability of community pharmacist in this study to detect and resolve DTRPs was low compared with the two studies. The differences may be due in part to the study settings, study populations, definition of DTRPs, and the methods of identifying the DTRPs [5, 34] but mostly as a result of the study design. To the best of our knowledge, this is the first time a SP model along with an independent quality assessment panel of experts who determined the DTRPs and possible resolutions in a given scenario prospectively was used to assess pharmacist’s ability to identify and resolve DTRPs. Several other studies used the independent quality assessment panel of experts to determine the quality of identified and resolved DTRPs by pharmacists retrospectively [8, 12, 14].
The DTRPs, dosage too high and unnecessary drugs, were identified by most of the pharmacists compared with a study in Ethiopia reporting a low level (4%) of identification of the DTRP - dosage too high [7]. In two other related studies conducted in Minnesota, U.S.A and Jos Nigeria, the lowest-rated DTRP was unnecessary drug therapy [32, 35]. But in other studies, DTRPs such as drug interactions, unnecessary drugs therapy, and adverse drug reaction, identified by few community pharmacists in this study, were commonly reported among patients [7, 32, 36]. The reason why few of the pharmacists did not identify some of these frequently reported DTRPs could be because the DTRPs were infrequently seen in the pharmacy (Table 7).
The fair ability displayed by the pharmacists to detect and resolve DTRPs may also be due to some of the perceived barriers mentioned by the pharmacists. These included inadequate training and lack of documentation skill among others. This is corroborated by Williams et al. [37] study which reported a strong correlation between pharmacists clinical knowledge and level of additional training, and the ability of pharmacists to detect, obtain relevant information and proffer resolution for DTRPs. The finding in this study agrees with Williams et al. [37] report because community pharmacists with Pharm. D degree seem to perform better in detecting and resolving DTRPs.
In Nigeria, Pharm. D may be acquired after an intensive one-year clinically oriented program for Bachelor of Pharmacy degree holders [38]. The National University Commission approved the Pharm. D degree program as undergraduate National degree in 2016 [39, 40]. Currently the Bachelor of Pharmacy degree is the minimum requirement to practise as pharmacist in Nigeria but soon the Pharmacists Council of Nigeria may set the Pharm. D degree as the minimum requirement [41]. Presently 11 Universities have been approved to run the Pharm. D degree programme [42].
It should be taken into consideration the diversity of therapeutic areas covered in the vignettes and the number of issues within a prescription that might have impacted the results not under-estimating the need for pharmacists to have identified the DTRPs. Variations in pharmacy staff and pharmacist’s behaviour, when presented with different scenarios, have been reported in pharmacy practice [43,44,45,46,47]. Inconsistencies in pharmacist’s behaviour between or within vignettes could be a pointer to the underlying process that drives pharmacy practice. Such factors include lack of time, patient’s attitude, difficulty in contacting physicians, lack of remuneration or motivation among other perceived barriers to identify and resolve DTRPs as reported here and highlighted in the literature [23,24,25, 48,49,50]. The common conclusion when the pharmacist’s performance is substandard is the need for additional training. However, this may not automatically improve the quality of performance. Though, the variability in the performance of the community pharmacists reported here may be reflective of deficiencies in tailored clinical training programs. From the foregoing, there is a need for the inclusion of courses on the detection and resolution of DTRPs in Continuing Education Program for pharmacists, especially those in this study, to improve performance. However, these courses should be extended beyond the clinical perspective to include communication skills for effective interaction with patients or pharmacy clients [47]..
The inability of pharmacists to detect and resolve drug interactions may lead to the development of ADRs and subsequent hospitalization. Yet few of the pharmacists were able to spot a significant drug interaction such as the use of omeprazole with Ferrous gluconate. None of the pharmacists used Medscape, Epocrates or any drug interaction textbook. The lack of software for DTRP detection, lack of stable internet facility, and difficulty in accessing drug information were barriers perceived by the community pharmacists that could have limited the pharmacist’s ability to investigate suspected DTRPs. Hence the provision of subsidized commercially available medication review software and electronic data system by pharmacy corporate bodies might assist the pharmacists in detecting and resolving DTRPs.
From the results, it was clear that vignettes with prescriptions generated more contact with the physician and 61–89% of the pharmacists made appropriate recommendations. In a related study in Sydney by Gisev et al. [14] among clients of community mental health teams, 81% of the recommendations made by pharmacists to resolve DTRPs were judged appropriate. This high level of appropriate recommendations is in keeping with part of our findings. Pharmacists recommendations of possible resolutions to DTRPs have varied acceptance rates among physicians [8]. Because of the design of this study, we did not evaluate the level of acceptance of the pharmacist recommendations since a SP model was used and one of the authors acted as “the pseudo-physician” to receive the pharmacists call on clarifications and suggestions based on the SP’s vignette.
The national gender distribution of community pharmacists is in contrast with the global trend of female pharmacists been more predominant [41, 51, 52]. The ratio of male:female pharmacists in the country is 1.6:1. This is the same with the regional gender distribution of pharmacists. In our study male to female ratio is 1.4:1 which is almost similar to the national figure and gender distribution at the state level.
Strengths and limitations of the study
Since most DTRPs are self-reported and subjective with its attendant limitations of honesty of reporting and recall bias [15], the design of this study afforded an objective measure of community pharmacists practice of identifying and resolving DTRPs. The study is however not without some limitations. The simulated patient model may be prone to Hawthorne effect, but the possibility was reduced using three different SPs and vignettes. The pharmacists could not have altered their behaviour during the SPs’ visits since they were unaware of the time of the visits. Only one pharmacist correctly suspected a SP visit. A limited number of SPs were used compared with the number of patients seen in the community pharmacies. However, the use of many SPs may also make the pharmacists suspicious and hence modify their behaviour. The three vignettes used do not represent the full remit of pharmacy practice and one visit per SP does not necessarily imply that the behaviour is always similar. Also, the number of community pharmacies involved in the study was small, but this was improved upon by the number of visits to the pharmacies. Furthermore, because the study was carried out in one state in Nigeria, it may not be representative of the practice of community pharmacists in other states in the country. Recall bias was also prevented by audiotaping the conversation between the pharmacists and the SPs.