Skip to content

Advertisement

You're viewing the new version of our site. Please leave us feedback.

Learn more

BMC Health Services Research

Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Cost of illness of the Cervical Cancer of the uterus in Japan - a time trend and future projections

  • Eijiro Hayata1,
  • Kanako Seto2,
  • Kayoko Haga2,
  • Takefumi Kitazawa2,
  • Kunichika Matsumoto2,
  • Mineto Morita1 and
  • Tomonori Hasegawa2Email author
BMC Health Services Research201515:104

https://doi.org/10.1186/s12913-015-0776-5

Received: 14 May 2014

Accepted: 2 March 2015

Published: 15 March 2015

Abstract

Background

Cervical cancer is associated with high morbidity and mortality rates among young women in Japan. The objective of this study was to assess and project the economic burden associated with cervical cancer in Japan and identify factors affecting future changes in this burden on society.

Methods

Utilizing government-based statistical nationwide data, we used the cost of illness (COI) method to estimate the COIs for 1996, 1999, 2002, 2005, 2008, and 2011 to make predictions for 2014, 2017, and 2020. The COI comprised direct and indirect costs (morbidity and mortality costs).

Results

The COI was estimated to have increased by 66% from 96.1 billion yen in 1996 to 159.9 billion yen in 2011. The number of deaths increased, but the proportion of those aged ≥65 years as a percentage of all deaths remained mostly unchanged, with no increase in the average age at death. The mortality cost per person was estimated to have increased (31.5 million yen in 1996 vs. 43.5 million yen in 2011). Assuming that the current trend in health-related indicators continues, the COI is predicted to temporarily decrease in 2014, followed by almost no change in 2020 (the estimated COI is 145.3–164.6 billion yen). The mortality cost per person is predicted to remain almost unchanged (39.4–46.3 million yen in 2020).

Conclusions

The fact that the life expectancy of affected individuals is not being prolonged and that the mortality in young individuals with a high human capital value is not decreasing may contribute to future sustainment of the COI. We believe that the results of the present study are applicable to discussions of disease control priorities.

Keywords

Cost of illness (COI)Economic burden of diseaseCervical cancerHealth economicsHealth policy

Background

Cervical cancer (ICD-10 code: C53) affected 9,794 Japanese women in 2008 and resulted in 2,737 deaths in 2011, making it the 9th most common type of cancer in terms of morbidity and the 13th most common cancer in terms of mortality in women in these years [1]. However, when limited to women aged <40 years, it is the second most common cancer following breast cancer in terms of morbidity and the third most common cancer following breast and stomach cancer in terms of mortality [1].

Because cervical cancer is associated with high morbidity and mortality rates among relatively young women, its economic burden is predicted to change as women’s participation in society increases. However, few studies have estimated the economic burden of cervical cancer; most reports have estimated only direct treatment costs and performed cost-effectiveness analyses of specified technologies [2-4]. No such long-term studies have been conducted, and none have made future predictions. The objectives of the present study were to assess the economic burden of cervical cancer over time, make future predictions based on these observations, and identify the factors that drive the social burden of cervical cancer.

Methods

Analysis method

We used the cost of illness (COI) method to examine the economic burden of cervical cancer. Government-based statistical data and the COI method proposed by Rice et al. were used to make COI estimates [5-12]. The COI includes both direct cost (DC) and indirect cost (IC); IC includes morbidity cost (MbC) and mortality cost (MtC). The COI is calculated using following equation:
$$ \mathrm{C}\mathrm{O}\mathrm{I}=\mathrm{D}\mathrm{C}+\mathrm{M}\mathrm{b}\mathrm{C}+\mathrm{M}\mathrm{t}\mathrm{C} $$
DCs are medical costs that arise directly as a result of disease, such as costs of treatment, hospitalization, testing, and drugs. We calculated the annual medical costs in the present study from the total medical expenses using the Survey of National Medical Care Insurance Services [13]. This survey only contains data for calculating DCs up to mid-level injuries and disease classifications such as uterine cancer (C53–55); it does not contain lower-level injury and disease classifications, such as cervical cancer of the uterus (C53). Therefore, we calculated DCs by proportionally distributing medical expenses based on the estimated number of patients (ENP) for cervical cancer (C53), endometrial cancer (C54), and other uterine cancers (C55) from the Patient Survey of the Ministry of Health, Labour and Welfare [14]. Thus, DC was calculated using the following equation:
$$ \mathrm{D}\mathrm{C}=\mathrm{D}\mathrm{C}\left(\mathrm{C}53-55\right)\times \mathrm{C}\left(\mathrm{C}5\mathrm{C}53\right)/\mathrm{E}\mathrm{N}\mathrm{P}\left(\mathrm{C}53-55\right) $$
ICs are opportunity costs lost as a result of disease or death. MbC and MtC were calculated using the following equations:
$$ \mathrm{M}\mathrm{b}\mathrm{C}=\mathrm{TOVy}\times \mathrm{OLVd}/2+\mathrm{T}\mathrm{H}\mathrm{D}\times /\mathrm{L}\mathrm{V}\mathrm{d}\ \mathrm{and} $$
$$ \mathrm{M}\mathrm{t}\mathrm{C}=\mathrm{N}\mathrm{D}\mathrm{y}\times \mathrm{L}\mathrm{V}\mathrm{l}, $$
where TOVy is the total person-days of outpatient visits, LVd is the 1-day labor value per person, THD is the total person-days of hospitalization, NDy is the number of deaths, and LVl is the lifetime labor value per person.

The TOVy and THD according to 5-year age groups were calculated based on the above-mentioned Patient Survey [14]. The labor values were calculated according to 5-year age groups using the Basic Survey on Wage Structure [15], Labor Force Survey [16], Estimates of Monetary Valuation of Unpaid Work [17], and Evaluations of Domestic Labor [18], each of which is associated with a specific government office. The LVl was calculated by summing the income that could have been earned in the future if death had not occurred. We calculated the MbC by assuming a 1-day labor value loss for 1 hospitalized day and a half-day labor value loss for one outpatient visit. We used the number of deaths by cervical cancer according to 5-year age groups from the Vital Statistics of the Ministry of Health, Labour and Welfare [19].

LVd and THD were calculated as follows:
$$ \mathrm{L}\mathrm{V}\mathrm{d}=\left(\mathrm{I}\mathrm{y}+\mathrm{ULVy}\right)/365\ \mathrm{and} $$
$$ \mathrm{T}\mathrm{H}\mathrm{D}=\mathrm{H}\mathrm{P}\mathrm{y}\times \mathrm{ALOS}, $$
where Iy is the annual income per person [15], ULVy is the annual monetary valuation of unpaid work per person [17,18], HPy is the annual number of hospitalized patients [14], and ALOS is the average length of stay [14]. The future labor value was adjusted to a present value using a 3% discount rate because 3% is widely used as discount rate in developed countries such as Japan and the United States, where application of the COI method is popular.

COI estimates over time

To examine changes over time, we first estimated the COIs for 1996, 1999, 2002, 2005, 2008, and 2011 using available data. The effect of introducing specific therapeutic techniques was not examined in this study.

Next, to make future predictions, we estimated the COIs for 2014, 2017, and 2020 using the two methods described below.

The first method involved fixing health-related indicators (mortality rate, average number of outpatient visits, average number of hospitalizations, average length of stay, and medical fees per examination) at the 2011 values and making estimates assuming changes in Japan’s population and age composition (hereafter referred to as fixed-model estimation). The data regarding medical fees per examination were obtained from the Patient Survey [14]. Using 2011 as the standard year, we first calculated the mortality rate, average number of outpatient visits, average number of hospitalizations, and average length of stay according to 5-year age groups in 2011. These data were multiplied by the estimated populations for 2014, 2017, and 2020 according to 5-year age groups to obtain the predicted mortality rate, average number of outpatient visits, average number of hospitalizations, and average length of stay for each year. Using data from 2011, the estimated average length of stay, mean life expectancy, and labor value were used to estimate MbC and MtC. DCs were calculated by multiplying the rate of increase in outpatients and inpatients from 2011 to 2014, 2017, and 2020 by the outpatient and inpatient costs for 2011.

The second method involved making estimates assuming continued trends in health-related indicators as well as changes in population and age compositions. After calculating approximation curves (logarithmic and linear approximations) for each item using data after 1996, we obtained figures for 2014, 2017, and 2020. We then calculated the annual rate of increase in medical fees per examination (outpatient and inpatient) [14] from 1996 to 2011 and corrected this increase by multiplying it by outpatient and inpatient costs for 2014, 2017, and 2020. When making future predictions using this method, estimates varied depending on which approximation with which they were calculated. Three patterns of estimates were made: estimates made from logarithmic approximations of all items (logarithm-model estimation), estimates made from linear approximations of all items (linear-model estimation), and estimates made from approximations of items with higher determination coefficients (mixed-model estimation). Logarithmic and linear estimates would produce different annual trends depending on the item; thus, single estimates are likely to produce overestimated or underestimated values. We therefore compared determination coefficients within the same age group in both the logarithmic and linear approximation curves and performed a mixed estimate using the curve with the higher coefficient in each age group. Mixed-model estimation was considered the most likely estimates in this study. The elements used for calculation of the predicted future COI are shown in Table 1.
Table 1

Elements used for calculation of predicted future cost of illness

Model

Item

Elements used for calculation

Fixed or Varied

Fixed model

Number of deaths

Mortality rate

Fixed

The population estimates

Varied

Direct cost

The expenses of outpatient visit and hospitalization

Fixed (Calculated using the unit cost in 2011)

Medical fees per examination

Fixed

Total person-days of outpatient visit

Varied

Total person-days of hospitalizations

Varied

Morbidity cost

Average number of outpatients

Fixed

Average number of hospitalizations

Fixed

Average length of stay

Fixed

The population estimates

varied

Labor-value

Fixed

Mortality cost

Number of deaths

Varied

Life expectancy

Fixed

Labor-value

Fixed

Discount rate: 3%

Fixed

・Logarithm model

Number of deaths

Mortality rate

Varied (Calculated using the trend line formula)

・Linear model

The population estimates

Varied

・Mixed model

Direct cost

The expenses of outpatient visit and hospitalization

Fixed (Calculated using the unit cost in 2011)

Medical fees per examination

Varied

Total person-days of outpatient visit

Varied

Total person-days of hospitalization

Varied

Morbidity cost

Average number of outpatient visits

Varied (Calculated using the trend line formula)

(minimum value: the previous value before 0)

Average number of hospitalizations

Varied (Calculated using the trend line formula)

(minimum value: the previous value before 0)

Average length of stay

Varied (Calculated using the trend line formula)

(minimum value: 7.8 days)

The population estimates

Varied

Labor-value

Fixed

Mortality cost

Number of deaths

Varied

Life expectancy

Fixed

Labor-value

Fixed

Discount rate: 3%

Fixed

Fixed: The value for 2011 was used. Varied: The values for 2014, 2017, and 2020 were calculated based on the trend line.

Source of medical fees per examination: Patient Survey [14].

Source of average length of stay: Patient Survey [14].

Data from 2011 were used to determine the average life expectancy and the labor value. Additionally, the Population Estimates [20] by the Ministry of Internal Affairs and Communications were used for 1996, 2002, 2005, 2008, and 2011 population statistics, while the Population Projections for Japan [21] by the National Institute of Population and Social Security Research were used to make estimates for 2014, 2017, and 2020.

For estimates using approximation curves, some future predicted values may be <0; however, these are unlikely to reflect actual clinical conditions. Therefore, we defined “minimum values” in the present study as described below. For mortality and the numbers of outpatients and inpatients per person, the minimum value was set as the value from the year prior to that in which the estimate was <0. When examined according to age groups, we assumed that the value from the year prior to that when the estimate was <0 would be maintained thereafter and thus applied this value when estimates for 2014, 2017, and 2020 fell to <0. The minimum value for the average length of stay was set at 7.8 days, which is the average in 28 countries (2010) reporting data on neoplasms; this was based on the average length of stay by diagnostic categories in the OECD Health Data 2013 (statistics and indicators). According to the 2011 Patient Survey [14], the average length of stay for cervical cancer (17.8 days) did not differ greatly from the overall mean hospitalization period for malignant neoplasms (20.6 days); thus, we set the mean value for neoplasms in this study as the minimum length of stay for cervical cancer and applied this to age groups with hospitalization periods of <7.8 days in the estimates for 2014, 2017, and 2020. This study used only aggregated and published nationwide data that are freely available online; no humans or animals were used. In Japan, no institutional review board approval is required for this type of study [22].

Results

COI estimates for 1996, 1999, 2002, 2005, 2008, and 2011

The COI was estimated at 96.1 billion yen in 1996, 110.6 billion yen in 1999, 131.7 billion yen in 2002, 133.4 billion yen in 2005, 145.5 billion yen in 2008, and 159.9 billion yen in 2011, indicating an increasing trend. Comparison of estimates from 1996 and 2011 revealed that the COI had increased by 66%. The number of deaths increased, but the proportion of those aged ≥65 years as a percentage of all deaths remained unchanged, with no increase in the average age at death. No change was observed in the fatality rate. The MtC per person calculated by dividing the MtC by the number of deaths followed an increasing trend (Table 2). Additional details of results (TOVy, THD, and LVl) are provided in Additional file 1.
Table 2

Time trend of cost of illness of cervical cancer

 

1996

1999

2002

2005

2008

2011

Population (thousand person)

125,864

126,686

127,435

127,768

127,692

127,799

[% of 65 years or older]

15.1%

16.7%

18.5%

20.2%

22.1%

23.1%

Number of cervical cancer deaths (person)

2,219

2,260

2,443

2,465

2,486

2,737

[% of 65 years or older]

51.7%

51.1%

47.7%

48.2%

47.7%

49.6%

Average age of death (year)

64.1

63.6

62.9

63.6

63.4

64.0

Crude incidence rate (per 100 thousand, female)

12.1

10.7

13.5

13.0

15.0

NA

Crude mortality rate (per 100 thousand, female)

3.49

3.53

3.79

3.82

3.85

4.23

Fatality rate (female)

0.29

0.33

0.28

0.29

0.26

NA

Direct cost (billion yen)

15.8

26.0

20.1

25.3

33.6

31.0

Morbidity cost (billion yen)

10.4

10.1

12.8

10.3

10.6

9.9

Mortality cost (billion yen)

69.9

74.5

98.8

97.8

101.3

119.0

[% of 65 years or older]

16.6%

15.4%

15.8%

16.9%

15.2%

17.5%

Mortality cost per person (million yen)

31.5

33.0

40.4

39.7

40.7

43.5

COI (billion yen)

96.1

110.6

131.7

133.4

145.5

159.9

Source of population: Ministry of Internal Affairs and Communications, Population Estimates.

Source of number of cervical cancer deaths: Vital Statistics.

Average age of death: Calculated according to the number of deaths, age (5-year age grades), and cause of death in Vital Statistics.

Source of crude morbidity rate and crude mortality rate: Center for Cancer Control and Information Services, National Cancer Center, Japan.

Fatality rate: Calculated by dividing the crude mortality rate by the crude morbidity rate.

NA: not available.

COI estimates for 2014, 2017, and 2020 (fixed-model estimation)

The COI was estimated at 159.5 billion yen for 2014, 158.9 billion yen for 2017, and 156.8 billion yen for 2020, with almost no change. DC, MbC, and MtC were all predicted to remain the same (Table 3). The predicted number of deaths showed an increasing trend and is expected to increase by 7.9% from 2011 to 2020. The proportion of deaths in individuals aged ≥65 years is expected to increase (49.6% in 2011, 56.8% in 2020), as is the average age at death (64.0 years in 2011, 66.3 years in 2020). The MtC of those aged ≥65 years as a percentage of the total is expected to be 20.8% in 2020, showing a decreasing trend in the MtC per person.
Table 3

Future prediction of cost of illness

Model

Item

2011

2014

2017

2020

 

Estimated population (thousand person)

127,799

126,949

125,739

124,223

[% of 65 years or older]

23.1%

26.1%

28.0%

29.1%

Fixed model

Number of cervical cancer deaths (person)

2,737

2,816

2,900

2,953

[% of 65 years or older]

49.6%

53.0%

55.5%

56.8%

Average age of death (year)

64.0

64.8

65.6

66.3

Direct cost (billion yen)

31.0

31.1

31.0

30.8

Morbidity cost (billion yen)

9.9

9.9

9.8

9.7

Mortality cost (billion yen)

119.0

118.5

118.1

116.3

[% of 65 years or older]

17.5%

19.3%

20.5%

20.8%

Mortality cost per person (million yen)

43.5

42.1

40.7

39.4

COI (billion yen)

159.9

159.5

158.9

156.8

Linear model

Number of cervical cancer deaths (person)

2,737

2,611

2,598

2,553

[% of 65 years or older]

49.6%

48.3%

47.4%

45.0%

Average age of death (year)

64.0

63.1

62.8

62.3

Direct cost (billion yen)

31.0

23.1

20.8

22.2

Morbidity cost (billion yen)

9.9

6.7

5.5

5.0

Mortality cost (billion yen)

119.0

116.1

117.7

118.1

[% of 65 years or older]

17.5%

16.4%

15.5%

13.9%

Mortality cost per person (million yen)

43.5

44.5

45.3

46.3

COI (billion yen)

159.9

145.9

144.0

145.3

Logarithm model

Number of cervical cancer deaths (person)

2,737

2,714

2,772

2,812

[% of 65 years or older]

49.6%

52.6%

54.0%

54.6%

Average age of death (year)

64.0

64.4

64.8

65.3

Direct cost (billion yen)

31.0

36.9

40.5

43.1

Morbidity cost (billion yen)

9.9

9.6

8.9

8.1

Mortality cost (billion yen)

119.0

113.3

114.0

113.4

[% of 65 years or older]

17.5%

19.0%

19.4%

19.2%

Mortality cost per person (million yen)

43.5

41.7

41.1

40.3

COI (billion yen)

159.9

159.8

163.4

164.6

Mixed model

Number of cervical cancer deaths (person)

2,737

2,604

2,584

2,549

[% of 65 years or older]

49.6%

49.7%

49.3%

48.0%

Average age of death (year)

64.0

63.5

63.3

63.2

Direct cost (billion yen)

31.0

27.7

26.6

28.4

Morbidity cost (billion yen)

9.9

7.8

6.8

6.4

Mortality cost (billion yen)

119.0

113.3

113.5

113.0

[% of 65 years or older]

17.5%

17.5%

17.0%

16.0%

Mortality cost per person (million yen)

43.5

43.5

43.9

44.3

COI (billion yen)

159.9

148.8

146.9

147.8

Source of estimated population, 2011: Ministry of Internal Affairs and Communications, Population Estimates 2014, 2017, and 2020: National Institute of Population and Social Security Research, Population Statistics of Japan.

COI estimates for 2014, 2017, and 2020 (linear-, logarithm-, and mixed-model estimations)

According to the linear-model estimation, the COI was predicted to temporarily decrease to 145.9 billion yen in 2014, after which it is predicted to remain mostly unchanged at 144.0 billion yen in 2017 and 145.3 billion yen in 2020. This implies a 9.1% decrease from 2011 to 2020. According to the logarithm-model estimation, the COI is estimated to remain mostly unchanged at 159.8 billion yen in 2014, 163.4 billion yen in 2017, and 164.6 billion yen in 2020. The predicted number of deaths is predicted to decrease in the linear-model estimation and increase in the logarithm-model estimation (Table 3).

The linear-model estimation showed that DC, MbC, and MtC will decrease temporarily in 2014, after which they will remain mostly unchanged until 2020. The logarithm-model estimation predicts that DC will increase, whereas MbC and MtC will decrease.

According to the mixed-model estimation, the COI was estimated to temporarily decrease to 148.8 billion yen in 2014, after which it will remain mostly unchanged at 146.9 billion yen in 2017 and 147.8 billion yen in 2020. The rate of decrease from 2011 to 2020 is estimated at 7.6%. The number of deaths and the MbC are estimated to decrease over time from 2011, and DC, MtC, and the COI will temporarily decrease in 2014, after which they are estimated to remain mostly unchanged until 2020. Although mixed-model estimation is predicted to be below fixed-model estimation for all items, they are predicted to exceed linear estimates. The proportion of deaths in those aged ≥65 years is expected to decrease to 48.0% in 2020, and the average age at death will decrease to 63.2 years. Furthermore, the MtC per person is predicted to increase to 44.3 million yen, and the proportion of those aged ≥65 years as a percentage of MtC is estimated to decrease to 16.0%.

The COI over time from 1996 is shown in Figures 1 and 2. The results suggest that the COI of cervical cancer will temporarily decrease and then remain mostly unchanged.
Figure 1

Time trends of cost of illness by prediction models.

Figure 2

Cost of illness projection with cost elements.

Discussion

The COI increased from 1996 to 2011. Based on our future predictions, the COI is estimated to remain unchanged according to fixed-model estimates. However, assuming that current trends in health-related indicators continue, linear-model estimates show that the COI will temporarily decrease in 2014, followed by almost no change. On the other hand, logarithmic-model estimates suggest that the trends will remain mostly unchanged from 2011. Mixed-model estimates, which are considered the most reliable, show that despite the decreased number of deaths, the COI will remain mostly unchanged from 2014, with DC and MtC following the same trend. The main model used in our analysis was the mixed model. The fixed model was a reference. The linear and logarithm models provide low-end and high-end estimation, respectively, and they can be regarded as sensitivity analyses that show the robustness of the mixed model.

Factors that influenced the increase in the COI from 1996 to 2011 were greater DC and MtC. In contrast, MbC remained mostly unchanged. The medical fees per examination of patients with uterine cancer increased by 5.3% annually, which is believed to be linked to greater DC due to the increasing trend in the estimated number of patients. The increase in medical fees per examination is likely influenced by recent advancements in medical care. On the other hand, the mean length of hospitalization has shown a consistent downward trend, which may explain the lack of the increase in MbC, canceling out the increase in medical fees and opportunity costs lost as a result of hospitalization. The increase in MtC is important considering the age at death of patients with cervical cancer and the impact of aging in Japan. The average age at death has remained mostly unchanged due to a twin-peak pattern of increasing numbers of deaths at younger ages (30–64 years) and older ages (≥75 years) [19]. In general, because the fatality rate in the older population is high, aging is a factor that increases the number of deaths and MtC. However, aging also decreases MtC because older individuals have relatively lower human capital value. Thus, the impact of aging on MtC is relatively small. However, increased numbers of deaths of young people contributes significantly to the increase in MtC. The annual labor value per person is increasing due to the increase in the labor force participation rate among young women and increasing annual incomes, which reflect the social advancement of women. The increase in the number of deaths and labor value per person among young women is believed to be a significant factor affecting the increase in MtC (Table 4). In a previous report [23] in which the COI of stomach cancer was estimated using the same method described herein, the COI of stomach cancer decreased by 13.9% from 1996 to 2008, which can be attributed to decreased MbC and MtC. Although the number of stomach cancer-related deaths remained unchanged, the average age at death increased, which may have led to a decrease in the MtC per person and an overall decrease in MtC. Additionally, the decreased number of outpatients and inpatients and shortened hospitalization may have reduced MbC. The present study shows a COI trend opposite to that in the above-mentioned study. COI trends differ according to patient attributes and disease features, even for the same solid cancer. Comparison of each factor influencing the COI would allow for evaluation of the characteristics of the economic burden of each disease, which would contribute to the design of future health policies.
Table 4

Time trend of number of cervical cancer deaths, labor force participation rate, annual income, and annual labor value

  

25–29

30–34

35–39

40–44

45–49

50–54

55–59

60–64

65–69

70–74

75–79

80–84

85-

Number of cervical cancer deaths (person) [19]

1996

16

44

68

105

209

195

210

224

256

233

251

208

200

2011

19

68

118

202

219

221

228

304

231

220

281

270

356

changing rate

18.8%

54.5%

73.5%

92.4%

4.8%

13.3%

8.6%

35.7%

-9.8%

-5.6%

12.0%

29.8%

78.0%

Labor force participation rate (%) [16]

1996

67.9

54.8

60.8

69.5

71.6

66.9

58.1

39.0

27.0

10.1

0

0

0

2011

77.0

67.5

67.0

71.2

75.7

72.6

64.0

45.7

27.6

8.6

0

0

0

changing rate

13.4%

23.2%

10.2%

2.4%

5.7%

8.5%

10.2%

17.2%

2.2%

-14.9%

0.0%

0.0%

0.0%

Annual income per person (thousand yen) [15]

1996

1817

1578

1802

2010

2036

1887

1555

969

664

248

0

0

0

2011

2176

2050

2132

2321

2457

2323

1942

1173

678

230

0

0

0

changing rate

19.8%

29.9%

18.3%

15.5%

20.7%

23.1%

24.9%

21.1%

2.1%

-7.3%

0.0%

0.0%

0.0%

Annual labor value per person (thousand yen)

1996

3584

4064

4288

4051

4078

3745

3414

2837

2297

1684

1181

742

304

2011

3493

4339

4900

5087

5004

4681

4305

3223

2608

2301

1837

1513

800

changing rate

-2.5%

6.8%

14.3%

25.6%

22.7%

25.0%

26.1%

13.6%

13.5%

36.6%

55.5%

103.9%

163.2%

Source of number of cervical cancer deaths: Vital Statistics [19].

Source of labor force participation rate: Labor Force Survey, Ministry of Internal Affairs and Communications [16].

Source of annual income per person: Basic Survey on Wage Structure, Ministry of Health, Labour and Welfare [15].

Annual labor value per person: Calculated according to annual income per person, labor force participation rate, and estimates of monetary valuation of unpaid work.

According to our future predictions (fixed-model estimation), the number of deaths will increase, but the COI, DC, MbC, and MtC are estimated to remain unchanged. In particular, MtC is estimated to decrease to no more than 2.3% irrespective of the fact that the number of deaths will increase by 7.8% from 2011 to 2020. The increase in the proportion of deaths in those aged ≥65 years (49.6% in 2011, 56.8% in 2020), the increase in the average age at death (64.0 in 2011, 66.3 in 2020), and the decrease in the MtC per person as a result of the reduced human capital value (43.5 million yen in 2011, 39.4 million yen in 2020) are estimated to be offset by the pressure of increased MtC from the increased number of deaths.

According to the mixed-model estimation, the COI is estimated to temporarily decrease in 2014, followed by almost no change thereafter. The same trend is expected for the number of deaths, DC, MbC, and MtC. The proportion of deaths in those aged ≥65 years will decrease (49.6% in 2011, 48.0% in 2020), as will the average age at death (64.0 in 2011, 63.2 in 2020), and the MtC per person will increase (43.5 million yen in 2011, 44.3 million yen in 2020). The previously mentioned COI estimates of stomach cancer [22] predict decreases in the number of deaths, DC, MbC, MtC, and overall COI. In particular, a 25.1% decrease in the number of deaths and a 55.6% decrease in MtC from 2008 to 2020 are likely factors influencing these estimates. The increase in the average age at death and the sharp decline in the number of deaths among young people with a high human capital value are predicted to be linked to decreased MtC. Compared with stomach cancer, no increase in the average age at death can be observed for cervical cancer, and the lack of the reduction in the number of deaths among young women with high human capital value is a likely factor preventing future reductions in the COI. COI may rather increase in the future because of the promotion of women’s participation in society and the increase in the human capital value of young people. This finding suggests that interventions for younger women can be an important political challenge. Several studies on the economic burden of cervical cancer have been conducted in other countries. For example, Ricciardi et al. [24] estimated the annual DC of managing invasive cancer in Italy as 28.3 million Euro per year. In 2003, Olivia et al. [25] estimated the IC of cervical cancer in Spain using two alternative approaches (human capital method and friction cost method). The annual IC was estimated as 43.4 million Euro by the human capital method and 1.1 million Euro by the friction cost method. However, no such long-term studies have been conducted, and none have made future predictions. Therefore, this is one of the advantages of our study.

Routine prophylactic vaccination against cervical cancer is currently being introduced in Japan. Prophylactic vaccination against cervical cancer is expected to further reduce the number of patients with cervical cancer and related deaths, which should contribute to reducing the COI.

A limitation of the present study is the fact that the COI method only analyzes macroestimates of costs without taking into account the quality of medical care or quality of life, and it does not involve verification of the cost effectiveness of microlevel therapeutic techniques. Moreover, to who and what these costs apply is unclear. For example, several studies have reported the economic effects of prophylactic vaccination against human papillomavirus [3,26-28], and prophylactic vaccination may help to reduce the healthcare costs associated with cervical cancer. Our study does not take the effect of a specific treatment technology into consideration; a further study of COI that includes the possible effect of prophylactic vaccination against cervical cancer treatment would be needed. In addition, because the annual labor value is fixed at the 2011 value, as women’s participation in society continues to accelerate and their incomes increase, MbC and MtC are likely to be underestimated using this method. However, the COI method enables the support of rational decision-making through the efficient use of limited medical resources by measuring the monetary value of disease burden [6,7]. Furthermore, this method provides basic information on policy-making related to prevention and management activities for injuries and diseases that justify intervention plans [10]. Therefore, the knowledge obtained from the present study is valid and can be applied to future policy-making.

Conclusions

We made future predictions of the COI of cervical cancer using government statistics. According to our mixed estimates, which are considered highly valid, if the current trends in health-related indicators continue, the COI will temporarily decrease in 2014, followed by almost no change until 2020. The lack of a prolonged life expectancy in individuals with cervical cancer and the lack of a decrease in the number of deaths among young women with a high human capital value are likely factors preventing a future reduction in the COI. Interventions involving young women have high political priority because the COI has high possibility to increase in the future secondary to the promotion of women’s participation in society.

Abbreviations

COI: 

Cost of illness

DC: 

Direct cost

IC: 

Indirect cost

MbC: 

Morbidity cost

MtC: 

Mortality cost

ENP: 

Estimated number of patients

LVd: 

1-day labor value per person

LVl: 

Lifetime labor value per person

TOVy: 

Total person-days of outpatient visits

THD: 

Total person-days of hospitalization

NDy: 

Number of deaths

Iy: 

Annual income per person

ULVy: 

Annual monetary valuation of unpaid work per person

HPy: 

Annual number of hospitalized patients

ALOS: 

Average length of stay

Declarations

Acknowledgements

There are no specific contributors to acknowledge. No funding agency or grant supported this project.

Authors’ Affiliations

(1)
Department of Obstetrics and Gynecology, Toho University Omori Medical Center
(2)
Department of Social Medicine, Toho University School of Medicine

References

  1. Center for Cancer Control and Information Services, National Cancer Center: Cancer Information Service Homepage. [http://ganjoho.jp/pro/statistics/gdb_year.html]Google Scholar
  2. Uemura K, Kougo M, Okubo K, Okai T, Yoneyama K, Kiuchi Y. Cost-effectiveness analysis of initial treatment for cervical cancer patients. Clin Gynecol Obstet. 2008;62(2):209–16.Google Scholar
  3. Konno R, Sasagawa T, Fukuda T, Georges VK, Nadia D. Cost-effectiveness analysis of prophylactic cervical cancer vaccination in Japanese women. Obstet Gynecolog Ther. 2008;97(5):530–42.Google Scholar
  4. Arakawa I, Kawabayashi Y, Furuno M, Uchida M, Kawana T. Economic evaluation for the prevention of cervical cancer by vaccination—from the perspective of health insurance society and industry. Jpn J Cancer Chemother. 2013;40(4):493–8.Google Scholar
  5. Rice DP. Estimating the cost of illness. Am J Public Health Nations Health. 1967;57(3):424–40.View ArticlePubMedPubMed CentralGoogle Scholar
  6. Rice DP, Hodgson TA. The value of human life revisited. Am J Public Health. 1982;72:536–8.View ArticlePubMedPubMed CentralGoogle Scholar
  7. Crum GE, Rice DP, Hodgson TA. The priceless value of human life. Am J Public Health. 1982;72:1299–300.View ArticlePubMedPubMed CentralGoogle Scholar
  8. Rice DP, Hodgson TA, Kopstein AN. The economic costs of illness: a replication and update. Health Care Financ Rev. 1985;7:61–80.PubMedPubMed CentralGoogle Scholar
  9. Rice DP. Cost-of-illness studies: fact or fiction? Lancet. 1994;344:1519–20.View ArticlePubMedGoogle Scholar
  10. Rice DP. Cost of illness studies: what is good about them? Inj Prev. 2000;6:177–9.View ArticlePubMedPubMed CentralGoogle Scholar
  11. Tarricone R. Cost-of-illness analysis: what room in health economics? Health Policy. 2006;77:51–63.View ArticlePubMedGoogle Scholar
  12. Hodgson TA, Meiners MR. Cost-of-illness methodology: a guide to current practices and procedures. Milbank Mem Fund Q Health Soc. 1982;60:429–62.View ArticlePubMedGoogle Scholar
  13. Survey of National Medical Care Insurance Services, Ministry of Health, Labour and Welfare. [http://www.mhlw.go.jp/toukei/list/26-19.html]
  14. Patient survey, Ministry of Health, Labour and Welfare. [http://www.mhlw.go.jp/toukei/list/10-20.html]
  15. Basic survey on wage structure, Ministry of Health, Labour and Welfare. [http://www.mhlw.go.jp/toukei/list/chingin_zenkoku.html]
  16. Labor force survey, Ministry of Internal Affairs and Communications. [http://www.stat.go.jp/data/roudou/]
  17. Cabinet Office: System of National Accounts, Satellite Accounts, and Unpaid Work. [http://www.esri.cao.go.jp/jp/sna/sonota/satellite/satellite_top.html]
  18. Cabinet Office: System of National Accounts, Satellite Accounts, and Unpaid Work. [http://www.esri.cao.go.jp/jp/sna/sonota/satellite/roudou/contents/20090824g-unpaid.html]
  19. Vital statistics, Ministry of Health, Labour and Welfare. [http://www.mhlw.go.jp/english/database/db-hw/vs01.html]
  20. Population Estimates, Ministry of Internal Affairs and Communications. [http://www.stat.go.jp/data/jinsui/]
  21. Population Projections for Japan, National Institute of Population and Social Security Research. [http://www.ipss.go.jp/syoushika/tohkei/suikei07/suikei.html#chapt1-1]
  22. Ethical Guidelines for Epidemiological Research: [http://www.lifescience.mext.go.jp/files/pdf/n796_01.pdf(accessed on Apr. 15 2014)]
  23. Haga K, Matsumoto K, Kitazawa T, Seto K, Fujita S, Hasegawa T. Cost of illness of the stomach cancer in Japan—a time trend and future projections. BMC Health Serv Res. 2013;13:283.View ArticlePubMedPubMed CentralGoogle Scholar
  24. Ricciardi A, Larrgeon N, Giorgi Rossi P, Raffaele M, Chet C, Federici A, et al. Incidence of invasive cervical cancer and direct costs associated with its management in Italy. Tumori. 2009;95:146–52.PubMedGoogle Scholar
  25. Olivia J, Lobo F, Lopez-Bastida J, Zozaya N, Romay R. Indirect costs of cervical and breast cancers in Spain. Eur J Health Econ. 2005;6:309–13.View ArticleGoogle Scholar
  26. Fleurence RL, Dixon JM, Milanova TF, Beusterien KM. Review of the economic and quality-of-life burden of cervical human papillomavirus disease. Am J Obstet Gynecol. 2003;196:206–12.View ArticleGoogle Scholar
  27. Prasad SR, Hill R. Cost-benefit analysis on the HPV vaccine in Medicaid-enrolled females of the Appalachian region of Kentucky. J Ky Med Assoc. 2008;106:271–6.PubMedGoogle Scholar
  28. Chesson HW, Ekwueme DU, Saraiya M, Watson M, Lowy DR, Markowitz LE. Estimates of the annual direct medical costs of the prevention and treatment of disease associated with human papillomavirus in the United States. Vaccine. 2012;30:6016–9.View ArticlePubMedGoogle Scholar

Copyright

© Hayata et al.; licensee BioMed Central. 2015

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Advertisement