Although Norway has extensive experience with telemedicine in general, there is limited experience with telestroke and the volume is low compared to international experience. Few services have been operative over time and are integrated in clinical practice. Haukeland University Hospital is an exception, where telestroke was started in 2008 and has been in routine use since 2009.
International telestroke networks have established requirements for participating centres to consult the stroke centre in connection with specific indications, including arrival at the hospital within the thrombolysis window, reduced level of consciousness, progressive strokes, brainstem symptoms, or cerebral haemorrhage [20],[21]. The Norwegian telestroke networks had no criteria for mandatory telestroke consultation. It is possible that atypical cases have not been discussed via telestroke, which may explain the low frequency of telestroke consultations. This may mean that patients with ‘minor’ or ‘atypical’ strokes did not receive an optimal treatment. The fear of treating ‘non-stroke’ with thrombolysis may also have resulted in inadequate treatment of true cerebral infarction [21].
International literature reports that telestroke results in an increased thrombolysis rate [10]. In Finland, the thrombolysis rate was 57.2% for patients who received teleconsultations [14]. Such parameters were not recorded systematically in our study, except for Voss Hospital, which reported that the thrombolysis rate rose quickly after the hospital started using telestroke. The Western region has a significantly higher thrombolysis frequency than the rest of the country (Table 1). As the region geographically is as challenging as most parts of the country, we can assume that a long-term focus on both thrombolysis and telestroke may have been contributing factors. The cumulated thrombolysis frequency in the region was 15% in the period 2011–2013. The region has now established telestroke in all local hospitals. The regional health authorities have stated that departments with good stroke collaboration should be able to provide thrombolysis therapy for about 20% of all patients with ischemic stroke and 40-50% of those who arrive within 4.5 hours [22].
A major challenge is that the patients arrive too late at the hospital, or the time of symptom onset is unknown. In Bodø Hospital this applied to more than 80% of the patients with cerebral infarction [23]. It is not clear to what degree the variation in thrombolysis rates in Norway is due to differences in patient delay or to the doctors’ attitude to thrombolytic therapy in patients with mild strokes [23].
In this study few technical problems were reported related to the equipment or transmissions, but there were unresolved allocation of responsibility related to ICT operations and networks. Other logistics were more challenging, especially the location of the VC-equipment in the hospital. If telestroke involved an extra ‘stop’ for the patient, the service was perceived as impractical. At the hospitals in the Northern region, the lack of space in the emergency department reduced the availability and accessibility of the VC-equipment. Haukeland hospital had a dedicated, spacious telestudio within the neurological department, while the Southern region chose PC-based systems to reduce the space requirements.
Motivation, or lack of it, has been a key issue in adapting telemedicine [24],[25]. This might have been the case at Vesterålen Hospital, which reported having adequate local expertise and that telestroke did not represent a benefit for the hospital. Use of telestroke must be perceived as improving the quality of the treatment: Voss Hospital did not use telestroke when locum staff was on duty during holiday periods at the central hospital. Correspondingly, in the northern region, Vesterålen Hospital expected an experienced neurologist for telestroke consultations, not a resident doctor. Telemedicine networks where specialized regional or central stroke centres collaborate with local hospitals, can meet this request for expertise 24/7 [6],[14].
At Voss Hospital, the doctors reported that it was important ‘to keep the technology warm’ and to use telestroke even when thrombolysis was not considered relevant. Regular testing and use of the equipment may be crucial for efficient use in an emergency setting. Using the VC-system for medical emergencies besides stroke, might also lower the threshold for use and thus increase the volume of telestroke.
Telemedicine in connection with acute conditions has received increased attention in recent years [11],[19]. In the Northern region, it was assumed that telestroke could help small local hospitals to maintain their emergency preparedness. However, telestroke can also be used as a substitute for neurologist coverage by local hospital staff outside office hours, as in the on-call telestroke service recently introduced in Arendal Hospital in the southern region. In this way, telestroke may imply a decentralizing and a centralizing function in different contexts which may explain conflicting perceptions of the value of such services in Norway.
Today, the boundaries between telephony and video are shifting and overlapping [26]. Good video on PCs and smartphones may mean more accessible and time-saving solutions for telestroke. We will still argue that the critical factors are the non-technical issues. If telestroke shall succeed as a collaborative tool linking disciplines and departments together, it is crucial to focus on the implementation processes in the organization. Both local and central hospitals must feel that they are part of a professional community for the best treatment of the patient. Doctors at the local site must have a low threshold for contacting stroke expertise, and experience working as equal partners in a team. This was one of the explanations for the success of telestroke in the Western region.
Limitations of the study
In this study, we have concentrated on telestroke as a visual service (two-way sound-image) and we have not surveyed telephone-based consultation. One of the four health regions has chosen not to use VC-based telestroke, but 24/7 telephone consultation and teleradiology between the central and the local hospitals in the region.
We have referred to the national quality indicator registry for thrombolysis treatment which shows regional differences in Norway. However, it is outside the scope of this paper to analyse the relationship between telestroke and thrombolysis frequency.