- Research article
- Open Access
- Open Peer Review
Capacity management of nursing staff as a vehicle for organizational improvement
https://doi.org/10.1186/1472-6963-7-196
© Elkhuizen et al; licensee BioMed Central Ltd. 2007
- Received: 27 April 2007
- Accepted: 30 November 2007
- Published: 30 November 2007
Abstract
Background
Capacity management systems create insight into required resources like staff and equipment. For inpatient hospital care, capacity management requires information on beds and nursing staff capacity, on a daily as well as annual basis. This paper presents a comprehensive capacity model that gives insight into required nursing staff capacity and opportunities to improve capacity utilization on a ward level.
Methods
A capacity model was developed to calculate required nursing staff capacity. The model used historical bed utilization, nurse-patient ratios, and parameters concerning contract hours to calculate beds and nursing staff needed per shift and the number of nurses needed on an annual basis in a ward. The model was applied to three different capacity management problems on three separate groups of hospital wards. The problems entailed operational, tactical, and strategic management issues: optimizing working processes on pediatric wards, predicting the consequences of reducing length of stay on nursing staff required on a cardiology ward, and calculating the nursing staff consequences of merging two internal medicine wards.
Results
It was possible to build a model based on easily available data that calculate the nursing staff capacity needed daily and annually and that accommodate organizational improvements. Organizational improvement processes were initiated in three different groups of wards. For two pediatric wards, the most important improvements were found to be improving working processes so that the agreed nurse-patient ratios could be attained. In the second case, for a cardiology ward, what-if analyses with the model showed that workload could be substantially lowered by reducing length of stay. The third case demonstrated the possible savings in capacity that could be achieved by merging two small internal medicine wards.
Conclusion
A comprehensive capacity model was developed and successfully applied to support capacity decisions on operational, tactical, and strategic levels. It appeared to be a useful tool for supporting discussions between wards and hospital management by giving objective and quantitative insight into staff and bed requirements. Moreover, the model was applied to initiate organizational improvements, which resulted in more efficient capacity utilization.
Keywords
- Night Shift
- Capacity Management
- Pediatric Ward
- Internal Medicine Ward
- Cardiology Ward
Background
Market changes, labor shortages, and the introduction of a form of activity-based costing (diagnosis treatment combination (DTC) financing policy) in the Netherlands have provided an impetus for hospitals to reorganize care processes to improve efficiency. Establishing a form of capacity management with regard to agreed service levels of quality of care is essential to gaining insight into the balance between available and required resources, like staff and equipment. For inpatient care facilities in a hospital, this requires information on bed capacity and nursing staff capacity, on a daily as well as annual basis. Quantitative models can be used to calculate capacity needs for different planning purposes and for short, medium and long term planning issues. Although several useful models are described in the international literature [1–3] many of them are difficult to apply in practice because they require a great deal of data and clerical work [1].
To be able to apply capacity management in practice, models must fulfill different functions: "annual staff planning," "roster scheduling support," and "daily assignment of nurses to wards [4–6]." In addition, "strategic decisions" are sometimes mentioned as a separate planning level [3, 7, 8]. Models based on mathematical optimization techniques from operations research are generally focused on short-term scheduling [3, 9–11]. Models that do integrate different planning horizons (daily, periodical (1–2 months), and annual) are for example described by Abernathy et al.[7] and Wright et al.[11]. These models contain connected models for periodical staff planning and daily scheduling. However, models incorporating operational planning issues with tactical and strategic decisions or operational scheduling support with annual staff planning were not found in the literature. For accurate capacity management, operational planning issues (like the number of nurses on each shift) should be handled together with tactical planning issues (like annual nurse staffing).
-
At operational level, the most relevant topic is whether the organization of nursing activities is such that appropriate and efficient care can be provided.
-
Questions at a tactical decision level that should be supported with a capacity management model concern capacity consequences of changes in length of stay (LOS), number of admissions, and patient acuity.
-
Relevant strategic issues are the optimal number of beds per ward and potential savings in nursing staff capacity by using small flexible nursing pools shared by related wards.
Ideally, capacity management would support discussion between management and staff on all these issues and promote improvements.
-
the number of nurses needed for a hospital ward, and
-
opportunities to improve capacity utilization on a ward.
Three cases will be used to demonstrate how this model can be applied to support issues at operational, tactical, and strategic levels.
Methods
Outline of model.
Core data
The basis of the model is formed by historical bed utilization and nurse-patient ratios. Historical bed utilization gives the number of beds used on a daily basis and was available for all wards on an hourly basis from January 2005. For an inpatient department, quality of nursing care is directly related to direct nursing hours per patient [12]. Available direct nursing hours per patient depends on nurse-patient ratios and indirect activities. So, an appropriate nurse-patient ratio can be determined by using a standard for both indirect activities and direct nursing hours. For example, when each patient needs an average of 1.2 hours of direct care and a nurse spends two hours on indirect activities during each shift, each nurse can handle five patients in an 8 hour shift – the nurse-patient ratio can then be set at 1:5. During evening and night shifts, fewer care hours per patient are needed, so ratios can be set at a somewhat higher level (more patients per nurse), for example 1:6 or 1:8. Guidelines for nurse-patient ratios can be derived from the international literature. In two countries – USA (California) and Australia (Victoria) – legal minimums for nurse-patient ratios were set for general medical and surgical wards [13]. These minimum ratios were 1:5 in California and vary between 1:4 and 1:6 in Victoria for day shifts. Research on the relationship between patient outcomes and nurse-patient ratios has shown that the higher the ratios, the more adverse events occurred [14, 15]. Because of this, we advocate setting nurse-patient ratios at around 1:4–5 for early shifts, 1:6–7 for late shifts, and 1:8–10 for night shifts. The ratios applied in the AMC differ somewhat between wards.
To transform direct nursing care hours into the full-time equivalents (FTEs) needed annually, data were used from agreements on working conditions for all university hospitals in the Netherlands (such as contract hours, holiday hours, and time allotted for professional development).
To perform tactical what-if analyses (changing parameters, and comparing effects) the number of admissions and total number of admission days was included. Average LOS can be calculated by dividing total admission days by the number of admissions.
Model
Operational output of the model is the number of nurses that need to be scheduled for each shift. For the tactical level, the model provides the number of FTEs needed annually for direct care on a ward. To be able to analyze the strategic issue of the possibilities for flexible nursing staff, the number of nurses needed for average bed utilization and the extra number needed in peak periods are separated. The strategic issue of ward size can be analyzed by comparing model results for separate wards with model results using aggregated data for several wards.
The calculated model results can be compared with the current number of nurses. To make a fair comparison, only nurses available for direct patient care were included. Additional staff, as the ward manager, are not included in the model and in the comparison between model results and actual situation. This means that differences were presumed to be rooted in a variety of possible causes at different decision levels:
Operational issues
-
Working methods are not efficient enough to meet the agreed nurse-patient ratio with current nursing staff capacity. An effective way to explore this further is to have a relative outsider observe the working processes, for example someone from a comparable department that does meet the ratios.
-
Sick leave (including maternity leave) in the ward differs substantially from the standard 4% level.
Tactical issues
-
Applied nurse-patient ratios are not in accordance with average patient acuity levels on the ward. To investigate this in more detail for a specific ward, acuity levels can be analyzed for a sample of patients.
-
Bed utilization is considerable with respect to current production. This could be caused by a lack of efficient admission and discharge processes, which lead to unnecessarily long LOS.
-
The ward has nursing staff capacity shortage or surplus.
Strategic issues
-
Wards are too small, which results in efficiency losses, especially during night shifts.
-
A great deal of fluctuation in bed utilization can lead to inefficiency. Introducing a flexible nursing pool could be an option.
All input parameters can be used for what-if analyses. These analyses were checked by comparing the results using bed utilization in 2006 as input with the results using historical bed utilization for 2005, combined with changes in admissions LOS from 2005 to 2006.
Model application
The model was applied to three different capacity management problems on three separate groups of hospital wards. The problems entailed operational, tactical, and strategic management issues: optimizing working processes on pediatric wards, predicting consequences of LOS reduction on required nursing staff on a cardiology ward, and calculating the nursing staff consequences of merging two internal medicine wards. Nurse-patient ratios were agreed upon. For historical bed utilization, the number of beds and nurses needed for every shift and on an annual basis were calculated. What-if analyses were performed and further examinations of working processes were carried out.
Results
Core data
Parameters and values of the model.
Contractual annual working hours per FTE | 1872.0 | |
---|---|---|
Holiday hours | 9% | 168.5 |
Extra holiday hours for employees > age 45 | 0.2% | 3.7 |
Compensation for official holidays | 3.5% | 65.5 |
Professional development | 2% | 37.4 |
Average sick leave | 4% | 74.9 |
Available annual working hours per FTE | 1521.9 |
The number of admissions and total number of admission days were extracted from our hospital management information system. The source of the number of admission numbers and days was the same as the source of the hourly bed utilization. Therefore, the total number of admissions had resulted into the recorded hourly bed utilization. Average LOS can be calculated by dividing total admission days by the number of admissions.
Model
Using historical bed utilization to calculate the number of nurses needed per shift.
With these calculations, we created two scenarios: the 'average' scenario and the 95th percentile scenario. The annual number of nursing hours is calculated for both scenarios (average and 95th percentile) using the number of weekdays (255), the number of weekend and official holidays (110), and the shift durations for nurses for the early shift (8 hours), evening shift (8 hours), and night shift (9 hours). The number of FTE nurses for a ward is calculated by dividing this by annual availability (see Table 1). This is the number of FTEs needed for direct patient care. The 95th percentile scenario gives the number of nurses needed for patient care. This implies that 5% of the time, nurses have to handle a few more beds than the ratio indicates which corresponds with current practice. Providing all wards with enough nurses in all cases (100%) would result in a great deal of overcapacity. The average scenario is calculated to gain some understanding into the difference between average and peak load in that specific ward. Another idea is that the number of additional nurses needed between the average and the 95% scenario could possibly be shared by similar wards. This would mean that a small pool of nurses could be formed to work on two or three related wards, where the nature of patient care is comparable. Because in general, nurses are not contracted to work on a specific ward, changing between wards should be possible. Perhaps, not all employees are willing to change between wards. However, for experienced nurses it can offer an opportunity to broaden their work field and flexibility can be rewarded to motivate employees [16].
Apart from the model, the number of overhead and supporting functions have to be determined. These are independent of bed utilization. For analysis purposes, historical production data with regard to number of admissions and patient days are added into the model.
Comparison of what-if analysis applied to the 2005 model with growth for 2006 and model results for 2006.
Model results | Weekdays | Weekend/holidays | FTEs | ||||
---|---|---|---|---|---|---|---|
Early | Evening | Night | Early | Evening | Night | ||
With historical data 2005 | 6 | 4 | 3 | 6 | 4 | 3 | 25.7 |
2005 +what-if scenario with growth for 2006 | 7 | 4 | 3 | 6 | 4 | 3 | 27.0 |
With historical data 2006 | 7 | 4 | 3 | 6 | 4 | 3 | 27.0 |
Model application
Case: Operational changes in pediatric wards
Model results for five pediatric wards.
Weekdays | Weekend/holidays | No of nurses according to model (yearly FTE) | Actual number of nurses in 2005 (yearly FTE) | Difference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ward | Available beds | Early | Evening | Night | Early | Evening | Night | ||||
Infants (0 years) | 19 | Number of beds | 16 | 16 | 16 | 15 | 15 | 15 | 22.6 | 26.7 | -4.1 |
Nurse-patient ratios | 3.5 | 4.5 | 5.5 | 3.5 | 4.5 | 5.5 | |||||
Nurses needed | 5 | 4 | 3 | 4 | 3 | 3 | |||||
Children (1–9 years) | 24 | Number of beds | 21 | 20 | 20 | 14 | 14 | 15 | 23.2 | 25.5 | -2.2 |
Nurse-patient ratios | 3.5 | 5 | 6.5 | 3.5 | 5 | 6.5 | |||||
Nurses needed | 6 | 4 | 3 | 4 | 3 | 2 | |||||
Teenagers (10–17) years | 24 | Number of beds | 23 | 22 | 22 | 19 | 19 | 20 | 24.5 | 22.4 | 2.1 |
Nurse-patient ratios | 4 | 6 | 8 | 4 | 6 | 8 | |||||
Nurses needed | 6 | 4 | 3 | 5 | 3 | 3 | |||||
Oncolgy | 13–19 | Number of beds | 18 | 15 | 15 | 14 | 13 | 13 | 26.4 | 26.9 | -0.5 |
Nurse-patient ratios | 2.5 | 4 | 5 | 2.5 | 4 | 5 | |||||
Nurses needed | 7 | 4 | 3 | 6 | 3 | 3 | |||||
Surgery | 8 | Number of beds | 8 | 8 | 8 | 8 | 7 | 8 | 9.8 | 10.2 | -0.4 |
Nurse-patient ratios | 3.5 | 4.5 | 5.5 | 3.5 | 4.5 | 5.5 | |||||
Nurses needed | 2 | 2 | 1 | 2 | 2 | 1 |
Case: Tactical decisions on a cardiology ward
Model results for cardiology.
Weekdays | Weekend/holidays | ||||||||
---|---|---|---|---|---|---|---|---|---|
Early | Evening | Night | Early | Evening | Night | No of nurses according to model | Actual number of nurses in 2005 | Difference | |
Number of beds* | 29 | 28 | 28 | 24 | 26 | 24 | 22.4 | 25.8 | -3.4 |
Nurse-patient ratios | 5 | 7.5 | 15 | 5 | 7.5 | 15 | |||
Nurses needed | 7 | 5 | 4 | 6 | 4 | 3 |
Case: Strategic improvements in internal medicine wards
Model results for two internal medicine wards.
Ward | Available regular beds | Weekdays | Weekend/holidays | No of nurses according to model | |||||
---|---|---|---|---|---|---|---|---|---|
Early | Evening | Night | Early | Evening | Night | ||||
Internal Medicine | 18 | Number of beds | 18 | 17 | 17 | 16 | 16 | 16 | 19.1 |
(F6ZU) | Nurse-patient ratios | 4 | 6 | 8 | 4 | 6 | 8 | ||
Nurses needed | 5 | 3 | 2 | 4 | 3 | 2 | |||
Internal Medicine | 16 | Number of beds | 16 | 15 | 15 | 15 | 15 | 15 | 17.7 |
(F7NO) | Nurse-patient ratios | 4 | 6 | 8 | 4 | 6 | 8 | ||
Nurses needed | 4 | 3 | 2 | 4 | 3 | 2 | |||
Total | 34 | Number of beds | 34 | 32 | 32 | 31 | 31 | 31 | 36.8 |
Nurse-patient ratios | 4 | 6 | 8 | 4 | 6 | 8 | |||
Nurses needed | 9 | 6 | 4 | 8 | 6 | 4 | |||
One ward | 34 | Number of beds | 33 | 32 | 31 | 31 | 31 | 31 | 33.6 |
F6ZU+ F7NO | Nurse-patient ratios | 4 | 6 | 8 | 4 | 6 | 8 | ||
Nurses needed | 8 | 5 | 4 | 8 | 5 | 4 | |||
Difference | 1 | 1 | 1 | 1 | 3.2 |
Discussion
A comprehensive model for capacity planning was developed. In many Dutch hospitals, as is the case in other countries, nurse staffing is historically-based. The model offers the opportunity to calculate staffing requirements for wards based, on recent ward-specific data. With the model, required capacity can be calculated on an annual basis and for each shift. Decision support for operational, tactical, and strategic levels is possible with the model: efficiency of working processes can be evaluated, wards can be compared, capacity needed can be compared with staff budgets, consequences of changing LOS and production targets (number of admissions) can be calculated, and ward sizes can be evaluated in terms of required nursing staff capacity. It appeared to be a useful tool for supporting discussions regarding capacity management issues between wards and hospital management by giving objective and quantitative insight into staff and bed requirements.
In three cases, it was shown that the model offered different ideas for the best way to improve capacity utilization. For pediatrics, opportunities for improvement were found at the operational level in the organization of working processes. With more efficient physician rounds and standardized admission and discharge procedures, the nurse-patient ratios agreed with the wards were attainable. This calculated annual nursing staff was adopted in the 2007 budget, and the existing inexplicable differences between wards were removed. For the cardiology department, the key to reducing workload was to reduce LOS, by keeping the same number of admissions. Finally, for two internal medicine wards, possible savings were calculated in nursing staff capacity by merging the wards, a strategic level decision. In all cases, the model was applied as part of a larger project.
The model goes beyond efficiency and cost reduction [17]. It offers insight into opportunities to improve working processes and reduce workload, which makes the nurses' work easier. Employing an adequate number of nurses is beneficial for patients and for nurses themselves [18, 19]. One of the strong points of the model is the use of historical utilization data rather than available beds. This means both annual production and fluctuation in utilization are taken into account and provides a more fair comparison between wards and between current and calculated numbers of staff. In the AMC, the hourly bed utilization data are regularly recorded and are easily accessible for use in the model. The model is also applicable with less detailed data like maximum or average bed utilization per shift. For the observation at the pediatric wards, structured observations were used. Limitation was that no inter-observer consistency was calculated.
The model has not the aim to replace integrated hospital and patient planning methods (see for example [20, 21]). Our model had the aim to support capacity management decisions on ward level, by calculating staffing needs for different planning levels. Apart form hospital wide planning, a lot of capacity improvements can be attained by carefully analyzing capacity utilization on single hospital units. With our model alternative possibilities for improvement can be determined by what-if analyses.
Daily staff scheduling is not incorporated in the model. For the scheduling of nurses, several solutions are available in literature (see for example [11]). Other models concern the short term adaptation of schedules (see for example [22, 23]). Our model adds a possibility to provide a quick insight in capacity needs and opportunities to improve capacity usage.
The model could potentially be criticized for not considering patient acuity. In the literature, there is some criticism of the application of nurse-patient ratios [24, 25]. However, alternative models are much more complicated and many aspects of patient acuity and organization of care can be incorporated into nurse-patient ratios. Differences in patient care needs between wards can be taken into account by adjusting the nurse-patient ratios. We used the US and Australian ratios as guideline in our discussions with department staff. However, in all case studies, we applied ward-specific ratios that take the Dutch situation and ward specific patient needs into account. For example, as can be seen in Table 3, we applied different ratios for each pediatric ward. These ratios were set by mutual agreement between hospital management and department staff of the pediatric wards. For the levels of analysis in this model, it is sufficient to apply an average nurse patient ratio per ward. This will be sufficient to calculate the number of nurses needed in each shift and yearly, and to perform the what-if analyses. To measure the acuity for patients on a specific ward for a period of time the AUKUH Acuity/Dependency tool developed for the NHS may be useful [26]. This tool supports the measurement of acuity and dependency across a range of wards and specialties. For detailed adaptation of daily nursing staff, daily measurement of patient acuity could be required, due to variety in admitted patients at a moment [22, 23, 27]. However, in our cases, we checked the acuity mix of patients to investigate the stability of the number of needed nurses in each shift. The patient mix for a sample of weekdays was analyzed for the pediatric and cardiology wards. Each day on each ward there appeared to be a balanced patient mix of mostly "average" patients, a few patients with lower care needs, and even fewer patients with relatively high care needs. Therefore, we are convinced that the calculated number of nurses for each shift is appropriate for safe and adequate patient care. When this is not the case, for example for very small wards, daily adjustment of staffing numbers may be needed. The smaller the number of patients, the larger the variety in number of patients as well as acuity mix will be [28]. These short term adaptation are, however, beyond the scope of this model, that is developed for planning purposes on operational, tactical and strategic level, and not for daily scheduling.
Nursing mix by training levels is not an explicit part of the model. The literature shows that deploying highly educated nurses is cost-effective compared with lower educated nurses [3, 29, 30]. Due to increasing patient complexity, there is an increasing need for Registered Nurses compared to lower educated staff [3, 17]. The model calculates the total number of nurses needed during each shift. In Dutch hospitals, the majority of those in nursing teams are certified nurses. It was assumed that in each shift a sufficient number of qualified nurses would be scheduled. The actual allocation of nurses, and therefore the skill-mix available in a shift is more a scheduling issue which is outside the scope of the model. A future model extension could be the incorporation of different skills in the staffing needs to overcome this limitation.
Two research areas were explored to extend research with the model. First, the application of flexible resource pools will be studied. A model option is to separate average capacity needed per shift and the extra capacity needed in peak periods. This peak capacity could possibly be shared by two or more related wards. Second, the model appears to be suitable for benchmarking resource utilization between comparable wards in different hospitals. Benchmarking projects were started with two other academic hospitals in the Netherlands.
Conclusion
A comprehensive model could be developed that covers both capacity planning for nursing staff and improving capacity utilization in hospital wards. The model was applied successfully in supporting capacity decisions on operational, tactical, and strategic levels. For two pediatric wards, improvements were made by improving working processes so that the agreed nurse-patient ratios could be attained. In a second case, for a cardiology ward, what-if analyses with the model showed that the workload could be substantially decreased by reducing LOS. The third case demonstrated possible savings in capacity by merging two small internal medicine wards. The model appeared to be useful in calculating capacity needed and in initiating organizational improvements, resulting in more efficient capacity utilization.
Declarations
Authors’ Affiliations
References
- Hurst K: Selecting and Applying Methods for Estimating the Size and Mix of Nursing Teams. 2003, Leeds, Nuffield Institute for Health, 1-19.Google Scholar
- Halloran EJ, Vermeersch PEH: Variability in nurse staffing research... data collection and the method of reporting. Journal of Nursing Administration. 1987, 17: 26-34. 10.1097/00005110-198702000-00007.View ArticlePubMedGoogle Scholar
- Siferd SP, Benton WC: Workforce Staffing and Scheduling - Hospital Nursing Specific Models. Eur J Oper Res. 1992, 60: 233-246. 10.1016/0377-2217(92)90075-K.View ArticleGoogle Scholar
- Brusco MJ, Futch J, Showalter MJ: Nurse staff planning under conditions of a nursing shortage. J Nurs Adm. 1993, 23: 58-64.View ArticlePubMedGoogle Scholar
- Kao EPC, Tung GG: Aggregate nursing requirement planning in a public health care delivery system. Socioecon Plann Sci. 1981, 15: 119-127. 10.1016/0038-0121(81)90027-6.View ArticlePubMedGoogle Scholar
- Warner DM: Nurse staffing, scheduling, and reallocation in the hospital. Hosp Health Serv Adm. 1976, 21: 77-90.PubMedGoogle Scholar
- Abernathy WJ, Baloff N, Hershey JC, Wandel S: A three-stage manpower planning and scheduling model-A service sector example. Oper Res. 1973, 21: 693-711.View ArticleGoogle Scholar
- Brown LE, Lewin BA: Supplemental staffing agencies: friend ... or foe?. Nurs Manage. 1982, 13: 37-47.View ArticlePubMedGoogle Scholar
- Bordoloi SK, Weatherby EJ: Managerial implications of calculating optimum nurse staffing in medical units. Health Care Manage Rev. 1999, 24: 35-44.View ArticlePubMedGoogle Scholar
- Burns RN, Carter MW: Work Force Size and Single Shift Schedules with Variable Demands. Manage Sci. 1985, 31: 599-607.View ArticleGoogle Scholar
- Wright PD, Bretthauer KM, Cote MJ: Reexamining the nurse scheduling problem: Staffing ratios and nursing shortages. Decision Sciences. 2006, 37: 39-70. 10.1111/j.1540-5414.2006.00109.x.View ArticleGoogle Scholar
- Shullanberger G: Nurse staffing decisions: An integrative review of the literature. Nurs Econ. 2000, 18: 124-148.PubMedGoogle Scholar
- Nurses IC: Fact Sheet. Nurse: Patient Ratios. 2003, [http://www.icn.ch/matters_rnptratio.htm]Google Scholar
- Aiken LH, Clarke SP, Sloane DM, Sochalski J, Silber JH: Hospital nurse staffing and patient mortality, nurse burnout, and job dissatisfaction. J Am Med Assoc. 2002, 28: 1987-1993. 10.1001/jama.288.16.1987.View ArticleGoogle Scholar
- Lang TA, Hodge M, Olson V, Romano PS, Kravitz RL: Nurse-patient ratios: a systematic review on the effects of nurse staffing on patient, nurse employee, and hospital outcomes. J Nurs Adm. 2004, 34: 326-337. 10.1097/00005110-200407000-00005.View ArticlePubMedGoogle Scholar
- Hollabaugh S, Kendrick S: Staffing: the five-level pyramid. Nurs Manage. 1998, 29: 34-36.View ArticlePubMedGoogle Scholar
- Sochalski J, Aiken LH, Fagin CM: Hospital restructuring in the United States, Canada, and Western Europe - An outcomes research agenda. Med Care. 1997, 35: OS13-OS25. 10.1097/00005650-199710001-00004.View ArticlePubMedGoogle Scholar
- Adams A, Bond S: Staffing in acute hospital wards: part 1. The relationship between number of nurses and ward organizational environment. J Nurs Manag. 2003, 11: 287-292. 10.1046/j.1365-2834.2003.00361.x.View ArticlePubMedGoogle Scholar
- Adams A, Bond S: Staffing in acute hospital wards: part 2. Relationships between grade mix, staff stability and features of ward organizational environment. J Nurs Manag. 2003, 11: 293-298. 10.1046/j.1365-2834.2003.00398.x.View ArticlePubMedGoogle Scholar
- Vissers J, Beech R: Health operations Management. Patient flow logistics in health care. Edited by: Vissers J and Beech R. 2005, London, United Kingdom, RoutledgeGoogle Scholar
- Van Merode GG, Groothuis S, Hasman A: Enterprise resource planning for hospitals. Int J Med Inform. 2004, 73: 493-501. 10.1016/j.ijmedinf.2004.02.007.View ArticlePubMedGoogle Scholar
- Siferd SP, Benton WC: A Decision Model for Shift Scheduling of Nurses. Eur J of Oper Res. 1994, 74: 519-527. 10.1016/0377-2217(94)90228-3.View ArticleGoogle Scholar
- Wyatt M, Healey K: Managing capacity and workload in children's services. Paediatr Nurs. 2005, 17: 31-34.View ArticleGoogle Scholar
- Seago JA: The California experiment - Alternatives for minimum nurse-to-patient ratios. J Nurs Adm. 2002, 32: 48-58. 10.1097/00005110-200201000-00012.View ArticlePubMedGoogle Scholar
- Forster DA, McLachlan HL, Yelland J, Rayner J, Lumley J, Davey MA: Staffing in postnatal units: is it adequate for the provision of quality care? Staff perspectives from a state-wide review of postnatal care in Victoria, Australia. BMC Health Serv Res. 2006, 6: 83-10.1186/1472-6963-6-83.View ArticlePubMedPubMed CentralGoogle Scholar
- Nisbet E: Acuity Dependence Tool Implementation Resource Pack. 2006, South East London Workforce Development Confederation, [http://www.selwdc.nhs.uk/document_information.php?PID=0000000305&DID=00000000000000000805]Google Scholar
- Walker D: A "bottom-line" approach to nurse staffing. Nurs Manage. 1996, 27: 31-32.View ArticlePubMedGoogle Scholar
- De Bruin A, Nijman B, Caljouw R, Visser M, Koole G: Improving bed utilization [In Dutch: bedden beter bezet]. Zorgvisie. 2007Google Scholar
- McCue M, Mark BA, Harless D: Nurse staffing, quality, and financial performance. J Health Care Finance. 2003, 29: 54-76.PubMedGoogle Scholar
- Hall-McGillis L, Doran D: Nurse staffing, care delivery model, and patient care quality. J Nurs Care Qual. 2004, 19: 27-33.View ArticleGoogle Scholar
- The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6963/7/196/prepub
Pre-publication history
Copyright
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.