Data were collected on 2008 infusions administered or prescribed to 1326 patients between April 2015 and December 2016. Overall, 961 infusions (47.9%) had at least one procedural or documentation deviation. The prevalence of deviations varied considerably among trusts, affecting between 9.9 and 100% of infusions (Table 1). Trusts’ deviation profiles also varied, with some having greater numbers of certain types (Tables 2 and 3).
Giving set labelling
Deviations in giving set labelling affected 26.8% of infusions. Deviations affected 16.7 to 100% of infusions that required a giving set label across trusts (Fig. 1). Deviations affecting giving set labelling were common at Trusts D, G, H, K and P. Rates of deviation were affected by both the level of detail required by local policy and clinicians’ policy awareness. For example, at Trust D, infusions in all areas except critical care were generally non-compliant; observers only learned that their hospital policy required all IV giving sets to be labelled in the closing stages of data collection, despite being asked to familiarise themselves with relevant policy prior to data collection. In their debrief meeting, observers reported that this requirement was within their peripheral cannula policy and that they had not been able to find it initially. At Trust P, giving sets were only labelled in critical care when this was needed to differentiate between drugs, but their policy explicitly stated that all IV lines must be labelled with the time and date they were connected to the patient; none were labelled with this information. Trust K, which had the most comprehensive giving set labelling requirements, also had a high rate of non-compliance (83.5% of infusions); their policy required all IV lines to be labelled with the name and strength of the medicine, route of administration, diluent and final volume, patient’s name, expiry date and time, and name of practitioner preparing the medicine. Patient Safety Alert 20 [5] does not specify whether or not giving sets need to be labelled.
Eight of the 16 trusts (Trusts B, C, E, I, J, L, M and N) had no trust-wide requirements for labelling giving sets and so had no or low rates of labelling deviations, e.g. Trust B only had policy requirements that applied to critical care. Some trusts required all IV giving sets to be labelled whereas others were more selective. Focus group participants agreed that there were two main reasons for labelling giving sets: 1) to distinguish between multiple giving sets, and 2) to indicate when giving sets need to be changed. Trusts A and O had designed their policy to directly address these points, i.e. “staff had to label giving sets only where more than one was in use and to date them for continuous infusions that would need to be changed.”
Documentation deviations
Deviations in documenting IV administration affected 16.7% of infusions, ranging from 4.6 to 36.5% across individual trusts (Fig. 2). Failure to document the start time was the most common problem. Other less frequent but potentially more troublesome issues were discovered during the observations. In some cases, administration was not documented at all. In one case, 20 mmol potassium chloride in a litre of 0.9% sodium chloride was prescribed, but the trust did not stock this formulation. Instead, staff administered two infusion bags of 500 ml 0.9% sodium chloride, with 20 mmol potassium chloride in one of them. However, poor documentation meant it was not clear that this prescription was split across two bags and which was being given first. Patient Safety Alert 20 [5] recommends making a detailed record of the administration as soon as possible after administration but does not give more detailed directions.
Additive label deviations
Deviations in recording required details on the additive label affected 10.9% of all infusions. Deviations affected 3.3 to 74.0% of infusions that required an additive label across trusts (Fig. 3). Policy requirements affected different proportions of infusions at trusts (Fig. 3). For example, at Trust J, 78% of infusions were standard fluids with no additives, and these did not require a label. Furthermore, not all trusts specified the information required on additive labels in the relevant policy but there seemed to be an implicit expectation in all trusts that nurses should complete parts of the additive labels. Most additive label deviations were considered low risk by observers and focus group participants, such as missing batch numbers for licensed non-biological medications. Trust K had a high deviation rate; their written policy required the most information to be documented on their additive labels: patient’s name, ward/clinical area, drug, final concentration and volume, administration rate, total amount of drug added to the syringe or bag, batch number and details of the medication added [diluent, date prepared, time prepared, expiry date, expiry time, route of administration]. This is more detailed than the Patient Safety Alert 20 [5] recommendations of name of medicine, strength, route of administration, diluent and final volume, patient’s name, expiry date and time, and the name of the practitioner preparing the medicine.
Trust B’s policy required nurses to record batch number on additive labels. However, nurses at the focus group raised objections about the utility of doing this: e.g., for short infusions that would be thrown away after 20 min. They suggested that a better place to record batch numbers (if necessary) would be in the patient’s medical records where this information would be more permanent. One nurse suggested that some medications come with a removable batch number sticker that could be stuck in the patient’s notes. Trust D focus group participants said they had had no detailed additive label requirements written into policy, did not expect the batch number to be commonly completed on the label, and wondered if the labels should be redesigned without the section for batch numbers.
Potentially significant deviations included an additive label only marked ‘DEX’, which referred to dexamethasone but could be confused with dextrose or other drugs; and a completely unlabelled syringe of fentanyl that was in a syringe driver. Other additive label deviations were initially suspected to be medication errors but on further investigation they were solely documentation issues. For example, observers found a 1000 mg bottle of paracetamol infusing into a patient prescribed 675 mg. However, the nurse reported they had removed 325 mg before setting up the infusion, so the patient would receive the correct amount. The observers pointed out that the bottle was not labelled to indicate that this had been done, but the nurses said it was usual practice to remove the excess dose and not label these changes on that ward. Patient Safety Alert 20 [5] makes no recommendations for the process of removing excess dose but does recommend labels are used for medicines prepared in clinical areas and that detailed records of administration are made.
Patient identification deviations
The percentage of infusions with a patient ID deviation varied between clinical areas: general surgery (2.5%); critical care (2.5%); general medicine (5.1%); paediatrics (9.9%), and oncology day care (10.3%). Patient Safety Alert 20 [5] recommends patient ID and details are checked in accordance with local policy. Safer Practice Notice 11 [10] recommends all hospital inpatients in acute settings should wear ID wristbands.
The deviation rate relating to ID wristbands was 5.8% overall, ranging from 0.0 to 16.9% across trusts (Fig. 4). Trust F was fully compliant, which may be because this trust had prioritised this area and had been auditing this practice prior to our study. Trust C was the only trust where the policy stated that patients receiving IV infusions in oncology day care were not required to wear ID wristbands. The oncology day care manager at Trust B reported ongoing problems with wristband compliance in oncology day care, although local policy required ID wristbands. She perceived that it was difficult to change staff behaviour and reported technical problems with the printer required for patient ID wristbands.
Variability in IV flush policies
Most trusts had a patient group direction (PGD) to allow nurses to administer small volume flushes (e.g. 1-20 ml of sodium chloride 0.9%) without a patient-specific medication order. Oncology day care units sometimes used larger flushes that would need a separate prescription if it fell outside the limits of the PGD (e.g. up to 250 ml or 500 ml across a series of infusions). However, at Trust K’s oncology day care unit, such larger volumes were administered without a prescription or PGD; this practice was deemed acceptable by their haematology and oncology care oversight groups. Trust D had an electronic prescribing system that automatically included larger flushes in its chemotherapy regimens, although one flush was observed running but missing from the medication order.
The issue of whether to flush the whole giving set or just the IV access device arose at a number of trusts. For example, at Trust P, a nurse had prepared a 100 ml bag of 0.9% sodium chloride which was not prescribed and was beyond the 20 ml PGD limit, to flush between giving omeprazole and furosemide infusions. The nurse intended to flush the whole giving set to ensure the whole dose was administered and to avoid manipulating the connection with the access device. This was noted as unusual practice by Trust P observers, who reported that the first giving set would usually be detached, the access device flushed and then a new giving set connected for the second drug. However, some focus group participants recognised that this may lead to partial infusions as some of the dose will remain in the giving set. Patient Safety Alert 20 [5] recommends flushing the access device before and after administration.
Variability in double checking policies
Patient Safety Alert 20 [5] recommends double checking systems, e.g. an independent check or smart pump technology, but it does not go into detail about how these should be done. Different single, double, independent and second checking procedures were required for IV infusions at different trusts. Trusts A and O explicitly permitted single checking for IVs except for specified high risk drugs, specific situations and controlled drugs. For example, Trust O’s policy required staff to double check prior to administration of chemotherapy. In contrast, Trust G’s policy required staff to double check all stages of preparation and administration from cupboard to bedside, although there was acknowledgment in the focus group that this was not always practical. The wording of double checking policies at some trusts implied that this was ‘required’ whereas others seemed more flexible with wording such as ‘where possible’. During the focus group, nurses and pharmacists at Trust P recognised that the wording of their policy was ambiguous, in that the policy was intended to mean that a second clinician signs to confirm that the right patient was receiving the right drug with the correct pump settings, whereas the nursing staff who attended the focus group thought the second signatory was only confirming the contents of the bag or syringe. Trust P pharmacy staff also wanted to move away from the concept of a ‘second checker,’ as this terminology suggested it could be less important and only a confirmatory role, and move towards a ‘second administrator’ who was equally accountable and would be expected to do a thorough independent check. Trust I was the only trust to have a separate detailed appendix to their main policy to specify what an independent double check involved.