Costing framework and transferability
Our study attempted to address some of the criticisms made of previous radiotherapy costing studies [9,18]. Previous rectal cancer radiotherapy cost estimates vary widely, and a lack of transparency in reporting makes it difficult to explain these differences [9]. We took a “survey-based” microcosting approach, which has been used successfully in the past for the costing of various healthcare interventions [15,19]. By interviewing department managers, clinicians and other staff, we were able to define a typical care pathway for an average patient. Each separate process and resource within the pathway was delineated and apportioned a unit cost. This approach provided a clear framework for presenting results and the separate reporting of unit costs should further increase the comparability of the study [15]. The presentation of unit costs also ensures that estimates can be altered with country-specific data in other settings. Costs per fraction, and costs per course, were presented independently to allow future investigators, policy makers or planners to use or synthesis these as required. Overall, this standardized framework should enhance the transferability of our results to different settings.
Radiotherapy treatment costs and components
The average cost per course in 2012 was €2,080, €3,284 and €3,609 for 5, 21 and 25 fractions respectively. Our estimate for a 21 fraction course is slightly higher than the average cost calculated by Ploquin and Dunscombe [9] (mean normalized cost in 2005, €3,239). It is impossible to be entirely certain what costs were included and excluded from previous studies due to a paucity of presented detail, however comparisons across broad cost components can be made.
Unsurprisingly, in our study, labor costs were a key cost driver, accounting for between 36% and 41% of total costs incurred during the planning and treatment phases. This result is relatively consistent throughout the radiotherapy costing literature where labor costs commonly account for roughly half of the costs of radiotherapy treatment [12,14]. Capital costs represented 26% of the cost for a 25 fraction course and were most significant during the treatment phase, consistent with the findings of previous radiotherapy costing studies [12,14]. Where our results differed from others was that overheads accounted for a higher proportion of total costs in our study. Although recommended in Ireland [17] the derivation of overhead costs based on a specific percentage of labor costs is not standard practice in other countries and may account for the difference. Nevertheless, the total cost estimate was relatively insensitive to variations in overheads.
Potential cost savings
Through “efficiency analyses”, informed by expert opinion from our interviews, we were able to highlight key process areas in which efficiencies might be accrued by changing current service provision practices. These areas included: time taken per radiotherapy treatment procedure, capital utilization rates and the number of staff required per linear accelerator. While our results relate to practice in Ireland, similar service provision changes have been proposed in other healthcare systems.
Initially we assumed that an average treatment session could be cut from 15 to 10 minutes, resulting in a reduction of almost one-fifth in the total cost of long-course radiotherapy. An estimate of 10 minutes is consistent with best practice in Irish cancer centers (interview finding). It is however, possible that reducing procedure time could impact negatively on quality or, patient satisfaction, or increase the proportion of complicated cases, but we are not aware of any evidence in this regard.
A further amendment that has been discussed in Ireland is the extension of service hours. To reflect this, we assumed an increase in capacity of 25%, which effectively represents an extension of radiotherapy department operating hours from 9 am–5 pm to 8 am–6 pm. This change alone resulted in a reduction in total cost per course of up to one-quarter. However extension of the treatment day possesses both advantages and disadvantages which have been investigated across Irish, Dutch and UK radiotherapy treatment departments [20]. While increasing patient throughput and access, extended hours could have other consequences, including changes to shift work systems and flexible working arrangements, which may cause industrial relations issues. Health and safety issues would also require monitoring and there could be a knock-on effect on the working life of linear accelerators.
Currently, radiotherapy departments in Ireland operate with four personnel per linear accelerator similar to the staffing arrangements in the Netherlands, the UK and Australia [20]. Reducing the number to three could result in a reduction of costs of up to 9%. However, such a restructuring would run counter to current recommendations in the recent Report of the Expert Group on Radiography Grades in Ireland [21], and would require monitoring to ensure that standards are maintained and the quality of treatment does not suffer. A further potential efficiency improvement relates to the mix of staff present at a radiotherapy treatment session. The use of staff members at lower pay grades would result in lower labor costs. However as this measure was not suggested by any of our interviewees, we chose not to model it.
Cost savings between 20% (short-course) and 35% (long-course) were derived based on the incremental adoption of three potential efficiency enhancing changes. We would argue that these results represent feasible cost reductions across a range of areas in treatment provision and would further enhance the appeal of radiotherapy as a treatment option in rectal cancer. Nevertheless, key concerns such as potential industrial relations issues and impacts on quality would require further investigation (and clarification) before proceeding with these measures.
Strengths and limitations
This study provides an up-to-date estimate of the cost of standard radiotherapy for rectal cancer which is of value in its own right for service planning and management and could be used as a comparator for evaluations of more novel radiotherapy approaches.
The study has several limitations. Data on resource use to populate the patient pathways were obtained from two public hospitals, but there is little reason to believe that these are not typical of the 8 designated cancer centers in Ireland. However, private hospital radiotherapy treatment provision may differ in terms of organization and practice. Our use of expert interviews and the compilation of resource use for an ‘average’ radiotherapy patient necessarily limits the detail in the results compared to, for example, a review of individual patient records or costs derived from the direct observation of actual resource utilization during treatment for individual patients. Nevertheless, using samples of patient records can lead to biases in the estimates due to outlier cases which often skew the results when the sample size is small [15], while direct observation is extremely resource intensive and normally requires additional supplementary consultation and/or interview with hospital departments to collect supplementary data. An overview of existing techniques for microcosting studies is provided by Frick.
Our sole focus was to estimate direct costs from the perspective of the radiotherapy department; we did not attempt to calculate indirect costs, or patient out-of-pocket costs. Our estimates do not include the capital costs of buildings, due to a lack of information available at the surveyed institutions. Furthermore, overhead costs were allocated based on a proportion of labor costs. Overhead costs, more than any other cost component, tends to be location and center specific and so their transferability is generally limited anyway. Finally we did not attempt to model the impact of patients who cancel appointments or do not attend for treatment.