We identified a median total delay of 98 days and a total delay exceeding 168 days among ¼ of the patients. Patient and system delay accounted for most of the total delay. Even if the median GP delay was 0 days, a considerable proportion of the patients experienced a long GP-related delay. We found much variation in delay by cancer type. As expected, patients who saw their GPs prior to diagnosis experienced longer delays than those who accessed specialist care directly.
In this paper we alternate between the terms "delay" and "time interval". Strictly speaking, the use of the term "delay" is often inappropriate as part of the time interval is unavoidable, and therefore the term "time interval" is often more correct. As delay is still widely used in the literature we have for comparable reasons continued to use this term, but future investigations might more consequently change the term to time interval.
The study covered the entire population above 17 years with newly diagnosed cancer in a large catchment area counting more than 600,000 inhabitants. The study is thus based on data on the total health-care performance in relation to cancer within a region during a 1-year period.
We reduced selection bias by using registry information to identify potential study participants independently of the participating GPs and hospital physicians. The excellent response rate (83%) limits a possible selection bias; but, still, non-responding GPs may have seen patients with special diagnostic pathways, although non-response analysis revealed no major differences between participating and non-participating physicians in terms of their cancer patients' age, gender or distribution of cancer diagnoses. The description of socioeconomic patient characteristics associated with delay was not within the scope of this article, but this issue is covered in another article [24].
We further assured that only eligible patients were included by requesting that their GPs confirmed their diagnoses. Given the uniform organisation of health care throughout Denmark, we consider our results representative of the country as a whole. We cannot determine whether our findings are representative of other cultural settings or health-care systems in other counties. We recognize that the sample sizes of some of the delay calculations (especially total delay) for 6 of the 10 cancer types in the study (Table 2) are small (due to missing data and a small number of these cancers in Denmark). This may have affected the IQIs and evidently the generalisability of the results.
Minimisation of recall bias is a key prerequisite for the validity of our findings. We therefore encouraged the GPs to consult their electronic patient files including the discharge letters when filling in the questionnaires. Still, lack of complete information in some questionnaires may have introduced information bias. We anticipate that this bias tends to underestimate the reported delay, which may especially be the case for GP-reported delay. In another paper we have shown that it is difficult to define the time of symptom onset [25]. However, we do not yet know whether the patients' or the GPs' estimates are the most correct ones.
Comparison of findings with previous literature
Seen from a health services planning and a research and population perspective, it is relevant to include all cancers to be able to formulate a hypothesis about the need to focus on patient awareness of symptoms and access to diagnostic work-up of serious disease. However, our data on the specific cancer types also emphasise the need for detailed analyses of each specific cancer. We also need more research on the influence of symptom presentation in relation to delay [26]. A previous survey from the same region by Bjerager [13] showed that most delay in diagnosing lung cancer was attributable to system delay, which is consistent with our findings.
Our total delay findings accord with those of Allgar and Neal [17] who investigated patient-reported delay for six cancer types in a large population of UK cancer patients. However, in contrast to our results, they found that the main problem was patient and primary care delay. This discrepancy may be attributed to differences in the English and Danish health care systems in terms of culture, organisation and capacity, and to differences in study design and definitions of delay stages. Our broad definition of system delay encompassed not only time to diagnosis, but the time to start of treatment, as we expected a significant delay between diagnosis and treatment initiation. We need an internationally agreed definition on delay stages (Figure 2); a task that has been initiated in the UK National Initiative on Early Diagnosis of Cancer (NAEDI) and in the Cancer and Primary Care Research International Network (CA-PRI) [2, 27].
Implications of the study
Cancer is a serious disease. The diagnostic evaluation is complex and often conducted in a sequential process, which may explain the long system delay. However, another explanation may be that Danish cancer patients have to wait longer for basic diagnostic investigations. Thus, another main finding of the present study was the long patient delay. We lack international knowledge about variation in patient awareness of symptoms and differences in delay and about the interaction between the health care structure and patient delay [28–30].
A recent paper showed that delay in diagnosis may have severe prognostic consequences and may partly explain the bad cancer outcome results in countries like the UK and Denmark [12]. Recent years have therefore seen the introduction of different initiatives to reduce system delay in the UK. However, a fast-track approach based on a GP's suspicion of cancer may not necessarily be effective as only some 50% of patients present to their GP with alarm symptoms [26, 31]. The effect of seeing cancer as an acute disease and thereby circumventing administrative and capacity-driven bottlenecks in the pathway should be investigated. The fast-track approach was adopted in Denmark in 2008 [1, 27], but it is too early to evaluate if this initiative has reduced system-related delay.
Further research is required to test whether improved access to diagnostic investigations and intra- and inter-sectoral cooperation within the health care sector will have an effect on the diagnosis of cancer.
Further analysis of the long delays characterising the 4th quartile of patients requires clarification of the specific patient, GP and system characteristics that prolong delay. Our investigations invite the conclusion that a more precise research focus on early diagnosis of cancer is, indeed, warranted [2].