Hux JE, Ivis F, Flintoft V, Bica A: Diabetes in Ontario: determination of prevalence and incidence using a validated administrative data algorithm. Diabetes Care. 2002, 25: 512-516. 10.2337/diacare.25.3.512.
Article
PubMed
Google Scholar
Tu K, Campbell NRC, Chen Z-L, Cauch-Dudek KJ, McAlister FA: Accuracy of administrative databases in identifying patients with hypertension. Open Medicine. 2007, 1: E3-E5.
Google Scholar
Powell KE, Diseker RA, Presley RJ, Tolsma D, Harris S, Mertz KJ, Viel K, Conn DL, McClellan W: Administrative data as a tool for arthritis surveillance: estimating prevalence and utilization of services. J Public Health Manag Pract. 2003, 9: 291-298.
Article
PubMed
Google Scholar
Huzel L, Roos LL, Anthonisen NR, Manfreda J: Diagnosing asthma: the fit between survey and administrative database. Can Respir J. 2002, 9: 407-412.
Article
PubMed
Google Scholar
Lix LM, Yogendran M, Leslie WD, Shaw SY, Baumgartner R, Bowman C, Metge C, Gumel A, James RC, Hux JF: Using multiple data features improved the validity of osteoporosis case ascertainment from administrative data. J Clin Epidemiol. 2008, 61: 1250-1260. 10.1016/j.jclinepi.2008.02.002.
Article
PubMed
Google Scholar
Singh JA, Holmgren AR, Noorbaloochi S: Accuracy of Veterans Administration databases for a diagnosis of rheumatoid arthritis. Arthritis Rheum. 2004, 51: 952-957. 10.1002/art.20827.
Article
PubMed
Google Scholar
Peabody JW, Luck J, Jain S, Bertenthal D, Glassman P: Assessing the accuracy of administrative data in health information systems. Med Care. 2004, 42: 1066-1072. 10.1097/00005650-200411000-00005.
Article
PubMed
Google Scholar
Okura Y, Urban LH, Mahoney DW, Jacobsen SJ, Rodeheffer RJ: Agreement between self-report questionnaires and medical record data was substantial for diabetes, hypertension, myocardial infarction and stroke but not for heart failure. J Clin Epidemiol. 2004, 57: 1096-1103. 10.1016/j.jclinepi.2004.04.005.
Article
PubMed
Google Scholar
Rector TS, Wickstrom SL, Shah M, Thomas Greeenlee N, Rheault P, Rogowski J, Freedman V, Adams J, Escarce JJ: Specificity and sensitivity of claims-based algorithms for identifying members of Medicare plus Choice health plans that have chronic medical conditions. Health Serv Res. 2004, 39: 1839-1857. 10.1111/j.1475-6773.2004.00321.x.
Article
PubMed
PubMed Central
Google Scholar
Muhajarine N, Mustard C, Roos LL, Young TK, Gelskey DE: Comparison of survey and physician claims data for detecting hypertension. J Clin Epidemiol. 1997, 50: 711-718. 10.1016/S0895-4356(97)00019-X.
Article
CAS
PubMed
Google Scholar
Robinson JR, Young TK, Roos LL, Gelskey DE: Estimating the burden of disease. Comparing administrative data and self-reports. Med Care. 1997, 35: 932-947. 10.1097/00005650-199709000-00006.
Article
CAS
PubMed
Google Scholar
Lix LM, Yogendran M, Shaw SY, Burchill C, Metge C, Bond R: Population-based data sources for chronic disease surveillance. Chron Dis Can. 2008, 29: 31-38.
CAS
Google Scholar
Sands BE, Duh MS, Cali C, Ajene A, Bohn RL, Miller D, Cole JA, Cook SF, Walker AM: Algorithms to identify colonic ischemia, complications of constipation and irritable bowel syndrome in medical claims data: development and validation. Pharmacoepidemiol Drug Saf. 2006, 15: 47-56. 10.1002/pds.1118.
Article
PubMed
Google Scholar
Hungin AP, Whorwell PJ, Tack J, Mearin F: The prevalence, patterns and impact of irritable bowel syndrome: an international survey of 40,000 subjects. Aliment Pharmacol Ther. 2003, 17: 643-650. 10.1046/j.1365-2036.2003.01456.x.
Article
CAS
PubMed
Google Scholar
Andrews EB, Eaton SC, Hollis KA, Hopkins JS, Ameen V, Hamm LR, Cook SF, Tennis P, Mangel AW: Prevalence and demographics of irritable bowel syndrome: Results from a large web-based survey. Aliment Pharmacol Ther. 2005, 22: 935-942. 10.1111/j.1365-2036.2005.02671.x.
Article
CAS
PubMed
Google Scholar
Wilson S, Roberts L, Roalfe A, Bridge P, Singh S: Prevalence of irritable bowel syndrome: A community survey. B J Gen Pract. 2004, 54: 495-502.
Google Scholar
Muller-Lissner SA, Bollani S, Brummer RJ, Coremans G, Dapoigny M, Marshall JK, Muris JW, Oberndorff-Klein WA, Pace F, Rodrigo L, et al: Epidemiological aspects of irritable bowel syndrome in Europe and North America. Digestion. 2001, 64: 200-204. 10.1159/000048862.
Article
CAS
PubMed
Google Scholar
Boivin M: Socioeconomic impact of irritable bowel syndrome in Canada. Can J Gastroenterol. 2001, 15B: 8B-11B.
Article
Google Scholar
Longstreth GF, Wilson A, Knight K, Wong J, Chiou C-F, Barghout V, Frech F, Ofman J: Irritable bowel syndrome, health care use, and costs: a U.S. managed care perspective. Am J Gastroenterol. 2003, 98: 600-607. 10.1111/j.1572-0241.2003.07296.x.
Article
PubMed
Google Scholar
Goff SL, Feld A, Andrade SE, Mahoney L, Beaton SJ, Boudreau DM, Davis RL, Goodman M, Hartsfield CL, Platt R, et al: Administrative data used to identify patients with irritable bowel syndrome. J Clin Epidemiol. 2008, 61: 617-621. 10.1016/j.jclinepi.2007.07.013.
Article
PubMed
Google Scholar
Legorreta AP, Ricci JF, Markowitz M, Jhingran P: Patients diagnosed with irritable bowel syndrome - Medical record validation of a claims-based identification algorithm. Disease Management & Health Outcomes. 2002, 10: 715-722. 10.2165/00115677-200210110-00005.
Article
Google Scholar
Watson D, Katz A, Reid RJ, Bogdanovic B, Roos NP, Heppner P: Family physician workloads and access to care in Winnipeg, 1991 to 2001. Can Med Assoc J. 2004, 171: 339-342. 10.1503/cmaj.1031047.
Article
Google Scholar
Burgmann T, Clara I, Graff L, Walker J, Lix L, Rawsthorne P, McPhail C, Rogala L, MillerMiller N, Bernstein CN: The Manitoba Inflammatory Bowel Disease Cohort Study: prolonged symptoms before diagnosis-how much is irritable bowel syndrome?. Clin Gastroenterol Hepatol. 2006, 4: 614-620. 10.1016/j.cgh.2006.03.003.
Article
PubMed
Google Scholar
Quan H, Khan N, Hemmelgarn BR, Tu K, Chen G, Campbell N, Hill MD, Ghali WA, McAlister FA: Validation of a case definition to define hypertension using administrative data. Hypertension. 2009, 54: 1423-1428. 10.1161/HYPERTENSIONAHA.109.139279.
Article
CAS
PubMed
Google Scholar
Altman DG: Practical Statistics for Medical Research. 2001, London: Chapman & Hall
Google Scholar
SAS Institute Inc: SAS/STAT User's Guide. 2004, Cary, NC: SAS Institute Inc
Google Scholar
Hungin AP, Chang L, Locke GR, Dennis EH, Barghout V: Irritable bowel syndrome in the United States: prevalence, symptom patterns and impact. Aliment Pharmacol Ther. 2005, 21: 1365-1375. 10.1111/j.1365-2036.2005.02463.x.
Article
CAS
PubMed
Google Scholar
Farrokhyar F, McHugh K, Irvine EJ: Self-reported awareness and use of the International Classification of Diseases coding of inflammatory bowel disease services by Ontario physicians. Can J Gastroenterol. 2002, 16: 519-526.
Article
PubMed
Google Scholar
Sperber AD, Shvartzman P, Friger M, Fich A: A comparative reappraisal of the Rome II and Rome III diagnostic criteria: Are we getting closer to the 'true' prevalence of irritable bowel syndrome?. Eur J Gastroenterol Hepatol. 2007, 19: 441-447. 10.1097/MEG.0b013e32801140e2.
Article
PubMed
Google Scholar
Yale SH, Musana K, Kieke A, Hayes J, Glurich I, Chyou P-H: Applying case definition criteria to irritable bowel syndrome. Clin Med Research. 2008, 6: 9-16. 10.3121/cmr.2008.788.
Article
Google Scholar
Boyer GS, Templin DW, Goring WP, Cornoni-Huntley JC, Everett DF, Lawrence RCRC, Heyse SP, Bowler A: Discrepancies between patient recall and the medical record. Potential impact on diagnosis and clinical assessment of chronic disease. Arch Intern Med. 1995, 155: 1868-1872. 10.1001/archinte.155.17.1868.
Article
CAS
PubMed
Google Scholar
Thompson WG, Irvine EJ, Pare P, Ferrazzi S, Rance L: Functional gastrointestinal disorders in Canada: first population-based survey using Rome II criteria with suggestions for improving the questionnaire. Dig Dis Sci. 2002, 47: 225-235. 10.1023/A:1013208713670.
Article
CAS
PubMed
Google Scholar
Lipscombe LL, Hux JE: Trends in diabetes prevalence, incidence, and mortality in Ontario, Canada 1995 - 2005: a population-based study. Lancet. 2007, 369: 750-756. 10.1016/S0140-6736(07)60361-4.
Article
PubMed
Google Scholar
Hirsch S, Shapiro JL, Turega MA, Frank TL, Niven RM, Frank PI: Using a neural network to screen a population for asthma. Ann Epidemiol. 2001, 11: 369-376. 10.1016/S1047-2797(01)00233-2.
Article
CAS
PubMed
Google Scholar
Prosser RJ, Carleton BC, Smith MA: Identifying persons with treatment asthma using administrative data via latent class modelling. Health Serv Res. 2008, 43: 733-754. 10.1111/j.1475-6773.2007.00775.x.
Article
PubMed
PubMed Central
Google Scholar