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Can diverse population characteristics 
be leveraged in a machine learning pipeline 
to predict resource intensive healthcare 
utilization among hospital service areas?
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Abstract 

Background:  Super-utilizers represent approximately 5% of the population in the United States (U.S.) and yet they 
are responsible for over 50% of healthcare expenditures. Using characteristics of hospital service areas (HSAs) to 
predict utilization of resource intensive healthcare (RIHC) may offer a novel and actionable tool for identifying super-
utilizer segments in the population. Consumer expenditures may offer additional value in predicting RIHC beyond 
typical population characteristics alone.

Methods:  Cross-sectional data from 2017 was extracted from 5 unique sources. The outcome was RIHC and included 
emergency room (ER) visits, inpatient days, and hospital expenditures, all expressed as log per capita. Candidate pre-
dictors from 4 broad groups were used, including demographics, adults and child health characteristics, community 
characteristics, and consumer expenditures. Candidate predictors were expressed as per capita or per capita percent 
and were aggregated from zip-codes to HSAs using weighed means. Machine learning approaches (Random Forrest, 
LASSO) selected important features from nearly 1,000 available candidate predictors and used them to generate 4 
distinct models, including non-regularized and LASSO regression, random forest, and gradient boosting. Candidate 
predictors from the best performing models, for each outcome, were used as independent variables in multiple linear 
regression models. Relative contribution of variables from each candidate predictor group to regression model fit 
were calculated.

Results:  The median ER visits per capita was 0.482 [IQR:0.351–0.646], the median inpatient days per capita was 0.395 
[IQR:0.214–0.806], and the median hospital expenditures per capita was $2,302 [1$,544.70-$3,469.80]. Using 1,106 vari-
ables, the test-set coefficient of determination (R2) from the best performing models ranged between 0.184–0.782. 
The adjusted R2 values from multiple linear regression models ranged from 0.311–0.8293. Relative contribution of 
consumer expenditures to model fit ranged from 23.4–33.6%.

Discussion:  Machine learning models predicted RIHC among HSAs using diverse population data, including novel 
consumer expenditures and provides an innovative tool to predict population-based healthcare utilization and 
expenditures. Geographic variation in utilization and spending were identified.
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Introduction
In 2017, the United States (U.S.) spent $3.5 trillion 
on healthcare, 33% of which was dedicated to hospi-
tal services [1]. Importantly, healthcare utilization and 
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associated spending is not consumed equally [2, 3]. 
Instead about 5% of the U.S. population, often called 
“super-utilizers,” are responsible for over 50% of health-
care expenditures [3, 5,  4]. Variation in patterns of 
healthcare utilization and spending are also seen at the 
population-level across geographic regions [6–8]. For 
these reasons, there is tremendous interest in interven-
tions that can curtail healthcare use and associated 
spending among individual and population-level super-
utilizers [2, 4]. A key component of these interventions 
are models capable of predicting utilization of resource 
intensive healthcare (RIHC). While several prediction 
models exist, the unit of analysis for these models is the 
individual [5, 9, 10]. Extending prior modelling work 
from the individual to the population by using a geo-
graphic unit of analysis offers a novel approach that may 
complement previous research.

Geographic units are defined by political boundaries 
(e.g., state, county), administrative areas (e.g., towns), 
or census units (e.g., census tracts) [11]. While political, 
administrative, and census units are used in healthcare 
research, studies suggest hospital service areas (HSAs) 
offers methodological advantages because HSAs define 
local hospitalization patterns, and better capture health-
care markets, especially when compared to other geopo-
litical boundaries [11, 12]. Given this distinction, HSAs 
are used to study variation in utilization, spending, out-
comes, and quality of care in the U.S. and are consid-
ered ideal for studies seeking to inform health policy [6, 
12–14]. The Dartmouth Atlas defined HSAs and their 
methods are widely accepted and previously described 
[6, 12, 15]. Briefly, each HSA is defined by assigning zone 
improvement plan (ZIP) codes to hospital areas where 
the greatest proportion of their Medicare residents were 
hospitalized.

Population risk factors (e.g., age, socioeconomic sta-
tus, housing instability etc.) are documented drivers of 
healthcare utilization and when aggregated to the HSA-
level may help predict RIHC [3, 16–19]. The power of 
machine learning allows the opportunity to explore 
known risk factors for RIHC while also investigating 
unknown or potentially novel risk factors. To that end, 
consumer expenditures are data on the purchases of 
goods and services made by individuals or households 
[20]. The decision to purchase a good or service is influ-
enced by many variables, and is said to reflect the inter-
section of income, education, environment, behavior, 
and preference [21]. Since many of these variables also 
influence healthcare utilization, it stands to reason that 
purchased goods and services may offer information on 
risk for RIHC [16, 17, 19, 22, 23]. In other words, con-
sumer expenditures may represent proxies for more tra-
ditional risk factors for RIHC (e.g., income, education, 

environment). Alternatively, consumer expenditures 
may also serve as proxies for unobservable or diffi-
cult to measure variables or they may reflect goods or 
behaviors associated with health. For example, expendi-
tures on biking equipment may be a proxy for exercise, 
access to safe biking infrastructure, or it may reflect an 
area with higher disposable income. Exercise or life-
style practices, characteristics of the environment, and 
income are all associated with healthcare utilization and 
RIHC [16, 17, 19]. Since consumer expenditures are said 
to reflect the intersection of many traditional risk fac-
tors for RIHC, it’s possible they may provide new infor-
mation not contained in the traditional risk factors and 
this new information may be helpful in measuring risk 
for RIHC.

The objective of this study was to utilize machine learn-
ing with diverse population-level data to predict RIHC 
among HSAs. This approach allows for the examination 
of disparities in utilization and spending of RIHC within 
U.S. healthcare markets and provides a novel predictive 
tool. Since HSAs reflect local healthcare markets and 
their level of aggregation can capture local healthcare 
delivery system practices, this predictive tool may direct 
health policy interventions or inform resource alloca-
tion efforts [6, 13]. A second objective was to investi-
gate the predictive and explanatory utility of consumer 
expenditure data in modeling RIHC among HSAs. Con-
sumer expenditures may serve as an additional determi-
nant of variation in RIHC, offering another data source 
for researchers, public health practitioners, and policy 
planners.

Methods
This cross-sectional, ecological study created an ensem-
ble of models for predicting 3 measures of RIHC utiliza-
tion among Hospital Service Areas (HSA) in 2017. HSAs 
were eligible if they had a hospital contributing data to 
the American Hospital Association (AHA) annual sur-
vey in 2017 (N ~ 3,100). Data on each eligible HSA came 
from 5 sources: (1) AHA annual survey, (2) the U.S. Cen-
sus Bureau (USCB), (3) Centers for Disease Control and 
Prevention (CDC) (4)  the American Community Sur-
vey, and (5) Bureau of Labor Statistics (BLS). AHA data 
were obtained from a licensing agreement with the Dart-
mouth Analytical Core, while the remaining data were 
accessed from Data Planet©, a tool from SAGE Publish-
ing, licensed to Dartmouth College [24]. Data Planet© 
aggregates data across multiple sources, including public 
domain and licensed data. This study adhered to STROBE 
reporting guidelines and was exempt from the Dart-
mouth College institutional review board. All analytical 
work was performed in R version 3.6.0 (R Foundation).
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Outcomes
Three outcome variables represented utilization of 
RIHC. All 3 outcomes were extracted from the AHA 
data and included: (1)  total number of inpatient days, 
defined as the number of adult and pediatric days of 
care occurring at any hospital type, excluding newborn 
days or cases, (2) total number of emergency room (ER) 
visits, defined as the number of emergency department 
visits at short term general, short-term non-general 
or long-term hospitals, and (3)  hospital expenditures, 
defined as total hospital expenditures from short-term 
general, short-term non-general, long-term and Veter-
ans Affairs (VA) hospitals [25]. Data were aggregated 
to the HSA and all 3 outcomes were expressed as per 
capita values using population data from 2017, and 
were log transformed for analysis [26]. Heat maps for 
each outcome were generated using Tableau and pub-
licly available geographic boundary files from The Dart-
mouth Atlas [27].

Candidate Predictors
Four candidate predictor groups were considered: 
(1) demographics from USCB, (2) adult and child health 
characteristics from the CDC, (3)  community char-
acteristics from the ACS, and (4)  consumer expendi-
tures from the BLS. Demographics are based on 2010 
Census of Population and Housing, projected to 2017 
[28]. Data from the 2010 Census were collected from 
the entire U.S. population and provide information 
on age, sex, race, ethnicity, along with basic informa-
tion on housing characteristics and land area estimates 
[29]. Adult and child health characteristics are based on 
the CDC’s national health interview survey for adults 
and children [30, 31]. Each year, the National Center 
for Health Statistics (branch of CDC) samples a set of 
households nationally to provide information on their 
physical and mental health along with access to routine 
healthcare services and general health behaviors [32]. 
Community factors are based on the 2017 ACS, which 
is administered by the USCB to capture information 
about local communities characteristics [33, 34]. Con-
sumer expenditure data are based on the nationwide 
Consumer Expenditure Survey (CEX), which is admin-
istered every year to collect information on household 
expenditures for foods, home goods, and miscellaneous 
items [30, 35, 36]. The survey covers a broad range of 
goods and services, including recurring expenses (e.g., 
rent, loan payments, insurance etc.) along with smaller 
more frequent purchases (e.g. food, household supplies, 
clothing etc.), including educational items (e.g. school 
supplies, uniforms), and healthcare expenses (medical 
equipment, health insurance) [37].

All candidate predictors were available at the zip-
code for 2017 and were aggregated to the HSA using a 
zip-code-to-HSA crosswalk, publicly available from The 
Dartmouth Atlas [38]. All candidate predictors were 
aggregated using weighted average based on the zip-code 
population to HSA-population. To account for popula-
tion size, all candidate predictors were expressed as per 
capita (expenditures, population density) or per capita 
percent. Data from all candidate predictor groups were 
merged to each outcome using the HSA number. Prior 
to model development, all candidate predictors were 
normalized.

Predictive Model Development & Implementation
A systematic model development approach was 
employed, which allowed for evaluation of data inputs 
(e.g., candidate predictor groups, including second-
order terms), feature selection techniques, and machine 
learning models (Fig. 1) [39]. To begin, the full data was 
split into train and test-sets using a 0.80 to 0.20 ratio. 
The train-set was used to identify second-order terms, 
perform feature selection, and train machine learning 
models. The test-set was held-out and used for model 
evaluation.

Prior to feature selection, second-order terms were 
generated for use in parametric modeling. Second-order 
terms were generated using the iml package in R, which 
leverages random forest and the H-statistics to iden-
tify pair-wise interactions explaining variation in each 
outcome [40]. Model specification for random forest 
models used to generate second-order terms is found in 
additional file 1. The feature with the greatest interaction 
strength was used to generate all pairwise interactions 
and the pairwise interactions with the greatest interac-
tion strength (top 10%) were retained for parametric fea-
ture selection and modeling.

After relevant second-order terms were identified, 
feature selection was implemented. Least absolute 
shrinkage and selection operator (LASSO) and random 
forest were used to perform feature selection, which 
was applied to each set of candidate predictor variables 
separately. Inherent to the LASSO algorithm is the abil-
ity to perform feature selection [41, 42]. For random for-
est, features in the top 10% of feature importance were 
selected for future modeling. Specification for LASSO 
and random forest feature selection models are avail-
able in additional file  1. Variables selected from feature 
selection were used in the machine learning pipeline, 
which developed models using non-regularized and 
LASSO regression, along with random forest and gra-
dient boosting regression. Models were trained using 
tenfold cross-validation with 5 repeats on the train-set 
previously derived. Due to sl3 package limitations and 
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computational burden, default hyperparameters were 
used. Models were evaluated on the full holdout test-set. 
Additional information on model specification is avail-
able in additional file  1. Within the machine learning 
pipeline, there were 4 iterations, which applied the same 
models and methods previously described but altered 
the data inputs across iterations (Fig.  1). Data inputs 
to machine learning models were the features selected 
during feature selection. Iteration 1–4 were run twice, 
first using features selected using LASSO (main effects 
and second-order terms) and then again using features 
selected using random forest (main effects only). Itera-
tion 1 included variables from the demographic can-
didate predictor group and each subsequent iteration 
(2–4)  added variables from a new candidate predictor 
group. This occurred such that iteration 2 contained 
variables from 2 candidate predictor groups (i.e. demo-
graphics and adult and child health characteristics), iter-
ation 3 contained variables from 3 candidate predictor 
groups (i.e. demographics, adult and child health char-
acteristics, and community characteristics) and itera-
tion 4 contained variables from all 4 candidate predictor 
groups (i.e. demographics, adult and child health char-
acteristics, community characteristics, and consumer 
expenditures). Ultimately, this created a nested approach 
where each iteration added a new set of variables while 
retaining those from the previous iteration (Fig. 1).

The best performing model, for each outcome, was 
identified in 3 main steps using cross-validated mean 
squared error (MSE), calculated on the test-set. First, 
within each iteration for a unique feature selection 
technique, the lowest MSE was retained. This yielded 
4 model MSEs (1 per iteration) per feature selection 
technique, for a total of 8 model MSEs. Second, across 
the 4 iterations for a unique feature selection tech-
nique, the model with the lowest MSE was retained. 
This yielded 2 model MSEs, 1 per features selection 
technique. Third, the final 2 model MSEs were com-
pared and the model with the lowest MSE was the best 
performing model. This approach was employed for 
each of the 3 outcomes. Observed vs. expected plots 
were generated for best performing prediction mod-
els. In addition, the best performing prediction mod-
els were used to identify the top 5% of predicted HSAs 
for each outcome. Features from the best performing 
prediction model were used as independent variables 
in multiple linear regression models (1 for each out-
come). Relative contribution of variables from each 
candidate predictor group to the full multiple linear 
regression model fit was assessed by measuring the 
difference in R2 from the full model minus the R2 from 
the reduced model containing only variables from 1 of 
the 4 candidate predictor groups, a method adapted 
from χ-pie calculations [43].

Fig. 1  Systematic model development schematic. This approach allowed for evaluation of 4 data inputs, 2 features selection techniques, and 4 
machine learning models. Ultimately, it generated 32 models per outcome, for a total of 96 models for the entire study
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Results
This study included 3,153 HSAs with ER services and 
3,174 HSAs with inpatient hospital services, represent-
ing 91.8% and 92.4% of all HSAs in the U.S., respectively. 
Median per capita values were as follows: 0.482 ER vis-
its (IQR: 0.351–0.646), 0.395 inpatient days (IQR:0.214–
0.806), and $2,302.0 hospital expenditures (IQR: 
$1554.70-$3469.80). Variation in all 3 outcomes were 
observed across eligible HSAs (Fig.  2). A total of 1,106 
candidate predictors from 4 groups were used in the final 
machine learning models, including 1,007 main effects 
and 99  s order terms. Given the number of total candi-
date predictors, univariate statistics are presented in 
the online supplemental (additional files 2,3,4,5,6,7,8,9). 
Univariate statistics for inpatient days and hospital 
expenditures are the same (N of 3,174 for both), how-
ever, estimates of comparable variables for the ER visits 
outcome are slightly different as the eligible HSA popu-
lation for this outcome was 3,153 (compared to 3,174). 
Approximate estimates for select characteristics are pro-
vided. Briefly, among all eligible HSAs, the median age 
per HSA was approximately 43 years, the median family 
size among HSAs was about 3 people, and 73% of HSA 
residents were non-Hispanic white. In addition, about 
9.7% of the adult population per HSA had heart disease, 
and nearly 10% of children per HSA had attention defi-
cit hyperactivity disorder. Among employed adults, about 
20% per HSA had a commute time to work that was less 
than 15  min and almost 8% per HSA were employed 
among healthcare or social assistance fields. On average 
for each HSA, per capita annual expenditures on food 
away from the home, laundry equipment, and gardening 

and lawncare services were $1,252.33, $9.01, and $54.26, 
respectively.

The best performing prediction models across all 3 out-
comes used LASSO for feature selection and included var-
iables from all 4 candidate predictor groups (Table 1). Log 
ER visits per capita (referred to as ‘ER visits’), log inpatient 
days per capita (referred to as ‘inpatient days’), and log 
hospital expenditures per capita (referred to as ‘hospital 
expenditures’) experienced modest-to-good fit across the 
range of predicted values (Fig. 3). The mean absolute per-
centage errors for non-log transformed outcomes were 

Fig. 2  Per capita values for resource intensive healthcare outcomes among Hospital Service Areas. Heat map of annual per capita emergency room 
visits, inpatient days, and hospital expenditures from hospital service areas in 2017, broken into quintiles. White areas reflect ineligible Hospital 
Service Areas

Table 1  Best Performing Models for resource intensive 
healthcare outcomes in 2017 among Hospital Service Areas

a Candidate predictor groups: 1. Demographics, 2. Adult & Child Health 
Characteristics, 3. Community Characteristics, and 4. Consumer Expenditure 
Variables
b MSE = mean squared error, calculated on test-set
c Coefficient of determination, calculated on test-set
d Least Absolute Shrinkage and Selection Operator

Outcome
(log per capita)

ER Visits 
(N = 3,153)

Inpatient 
Days 
(N = 3,174)

Hospital 
Expenditures 
(N = 3,174)

Candidate 
predictor groups 
included a

4 4 4

Feature Selection LASSOd LASSOd LASSOd

Model Type Random Forest LASSOd Gradient 
Boosting 
Machines

MSEb 0.003 0.011 0.004

R2 c 0.247 0.184 0.782
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as follows: ER visits 3.56%, IP days 76.73%, and hospital 
expenditures 4.87%. Top 5% of predicted HSAs for inpa-
tient days and hospital expenditures were concentrated 
among Midwestern and Plains states of the U.S. (Fig. 4B 
& C). Whereas top 5% of predicted HSAs for ER visits 
experienced more regional heterogeneity, with represen-
tation from HSAs in Southwest and East Coast regions 

(Fig.  4A). The predicted and actual values at the upper 
extremes of ER visits and hospital expenditure models, 
as shown in Fig.  4A & C respectively, highlight the util-
ity of using these models to identify super-utilization. To 
better visualize model fit at the extremes, Q-Q plots for 
each outcome are provided in additional files  10 and 11 
and confirm fit issues at the upper and lower extremes 

Fig. 3  Observed v. Expected plots from best performing prediction models for resource intensive healthcare outcomes. A Log Emergency Room 
Visits per capita | test-set R2 0.247 | test-set MSE: 0.003. B Log Inpatient Days per capita | test-set R2 0.184 | test-set MSE:0.011. C Log Hospital 
Expenditures per capita | test-set R2 0.782 | test-set MSE:0.004

Fig. 4  Top 5% of Predicted HSAs from Best Performing Prediction Models for resource intensive healthcare outcomes. A 2017 Log Emergency 
Room Visits per capita. B 2017 Log Inpatient Days per capita. C 2017 Log Hospital Expenditures per capita
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for ER visit and inpatient day models. Coefficients (or 
equivalents) from each best performing prediction model 
are available in additional files 12 (ER visits), 13 (inpatient 
days), and 14 (hospital expenditures).

Multiple linear regression models (referred to as 
‘regression models’) were run using candidate predictors 
from the best performing prediction model as independ-
ent variables. This process was repeated for all 3 out-
comes. Due to size, full model output for each outcome 
is available in additional files 15 (ER visits), 16 (inpa-
tient days), and 17 (hospital expenditures). Table 2 pro-
vides abridged model output, generated using the top 5 
variables based on the absolute value of the T-statistic. 

These variables reflect important associations for each 
outcome. While all 3 outcome variables were log trans-
formed, their coefficients can be multiplied by 100 and 
roughly be interpreted as a percent increase or decrease 
in the non-log transformed outcome. For example, a one-
unit change in the per capita percent of children within 
the HSA without a usual place of healthcare corresponds 
to a 14% decrease in ER visits per capita in the same HSA.

The ER visits regression model included 205 variables, 
42 were statistically significant, and the adjusted R2 was 
0.312 (additional file  15). Consumer expenditure varia-
bles offered the greatest relative contribution (33.60%) to 
the full model fit (Table 3). The most important variables 

Table 2  Abridged a Model Output from Multiple Linear Regression Models for resource intensive healthcare outcomes

a Model output provided for top 5 variables based on absolute value of T statistic
b Expressed as annual 2017 log per capita values
c Percent change in non-log transformed outcome, the sign of associated coefficient indicates direction of change

Variable Coefficientc Standard Error Z Statistic P Value Percent Changec

Emergency Room Visitsb

% Employees whose commute time to work is between 30–59 min -0.001 0.000 -4.340 0.000 -0.10%

% Children without a usual place of health care -0.151 0.038 -3.918 0.000 -14.0%

% Employees whose commute method to work is walking -0.004 0.001 -3.736 0.000 -0.40%

% of school aged enrolled in private grades 1–4 -0.004 0.001 -3.732 0.000 -0.40%

% Adults never visited doctor 0.659 0.192 3.441 0.001 93.3%

Inpatient Daysb

% Employed within health care or social assistance jobs 0.009 0.002 5.639 0.000 0.90%

% Children with food allergies -0.320 0.063 -5.083 0.000 -27.4%

% Children whose last dentist visit was more than 5 years ago 0.103 0.027 3.819 0.000 10.8%

% Children whose last health care professional visit was 6 months ago or less -0.204 0.054 -3.792 0.000 -18.5%

% of population not paying cash for rent -0.006 0.002 -3.621 0.000 -0.60%

Hospital Expendituresb

% Employees whose commute time to work is less than 15 min 0.003 0.000 8.630 0.000 0.30%

% Employed within health care or social assistance jobs 0.007 0.001 6.537 0.000 0.70%

Expenditures on men’s nightwear ($/capita) -0.611 0.101 -6.021 0.000 -45.7%

% Male population 15 + who never married 0.000 0.000 -5.204 0.000 0.0%

% Employed within agriculture, forestry, fishing, or hunting jobs 0.004 0.001 5.091 0.000 0.40%

Table 3  Relative Contributiona of Candidate Predictor Groups to Regression Model Fit for resource intensive healthcare outcomes

a The relative contributions of variables from each candidate predictor group are assessed by measuring the difference in R2 from the full model minus the R2 from the 
reduced model containing variables from 1 of the 4 candidate predictor groups
b All outcomes expressed as annual log per capita values from 2017
c The percentage from each group represents the percent contribution to the full model, for each outcome

Candidate Predictor Domain Emergency Room Visitsb (%) c Inpatient Daysb (%) c Hospital 
Expendituresb 
(%) c

Demographics 22.70 24.40 18.38

Adult & Child Health Characteristics 23.99 32.13 43.23

Community 19.71 16.46 15.02

Consumer Expenditures 33.60 27.01 23.37
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in the ER visits regression model were from adult & child 
health characteristics and community characteristics 
candidate predictor groups (Table 2). The per capita per-
cent of employed adults walking to work (p < 0.001) was 
inversely associated with ER visits (Table  2, additional 
file 15) while the percent of adults who never visited the 
doctor (p = 0.001) was positively associated with ER visits 
(Table 2, additional file 14).

The inpatient days regression model included 287 vari-
ables, 69 of which were statistically significant, and the 
adjusted R2 was 0.329 (additional file  16). Consumer 
expenditure variables offered 27.01% to total model fit, 
however, adult and child health characteristics offered 
the greatest relative contribution at 32.13% (Table 3). The 
most important variables in the inpatient days regression 
model were from adult & child health characteristics and 
community characteristics candidate predictor groups 
(Table  2). The per capita percent of children with food 
allergies (p < 0.001) and per capita percent of children 
with a healthcare visits in the prior 6 months (p < 0.001) 
were inversely associated with inpatient days while per 
capita percent of adults employed in healthcare or social 
service fields (p < 0.001) was positively associated with 
inpatient days (Table 2, additional file 16).

Finally, the hospital expenditures regression model 
included 304 variables, 87 of which were statistically 
significant, and the adjusted R2 was 0.829 (additional 
file  16). Variables from the adult and child health char-
acteristic group accounted for almost half of the total 
model fit while consumer expenditures offered 23.37% 
relative contribution (Table  3). All candidate predictor 
groups except adult & child health characteristics were 
represented among the important variables for the hospi-
tal expenditures regression model (Table 2). Annual per 
capita expenditures on men’s nightwear (p < 0.001) were 
inversely associated with hospital expenditures while per 
capita percent of employed adults working in healthcare 
or social services fields (p < 0.001) was positively asso-
ciated with hospital expenditures (Table  2, additional 
file 17).

Discussion
Using diverse population-level data, this study imple-
mented a machine learning pipeline to predict 3 meas-
ures of RIHC. Ultimately, the pipeline predicted RIHC 
among HSAs with modest performance for ER visits and 
inpatient day and good performance for hospital expen-
ditures. This suggests some utility in predicting RIHC 
among healthcare markets and provides an innovative 
predictive tool to predict population-based healthcare 
utilization and expenditures. In addition, further analyti-
cal work identified important associations between pop-
ulation characteristics, including consumer expenditures, 

and HSA-level utilization of RIHC. This offers some 
preliminary evidence for the value of consumer expen-
ditures in studying utilization patterns of RIHC at a 
population-level.

To our knowledge, this is the first study generating 
a prediction model for RIHC among HSAs. However, 
comparable models in the literature are available at the 
individual level. In terms of model performance, our 
results were consistent with existing models for hospital 
expenditures. Caballer, Olmeda, and Consuelo developed 
models for predicting total healthcare expenditures for 
a district in Spain and achieved an adjusted R2 between 
0.46–0.49 [44]. In addition, predictions of healthcare 
costs using four validated case-mix systems and comor-
bidity indices were compared using administrative data 
from British Columbia, achieving R2 values between 
0.08–0.20 [45]. In this same study, acute care costs were 
predicted separately with a range of R2 values between 
0.02–0.06 [45].

All 3 models identified geographic variation in utili-
zation and spending consistent with a large and grow-
ing body of literature [6, 7, 14]. The top 5% of predicted 
HSAs for inpatient days and hospital expenditures were 
predominately located in the Plains States, a region pre-
viously characterized as having above average healthcare 
spending per capita [8]. Pennsylvania and Louisiana were 
the most common states among the top 5% of predicted 
HSAs for ER visits per capita, a finding consistent with 
both states above average ER visits per capita in 2017, 
2018 and 2019, along with their above average healthcare 
expenditures per capita [8, 46–48]. However, our mod-
els did not identify any Alaskan HSAs in the top 5% of 
predicted HSAs for the ER visits and hospital expendi-
ture models, despite the states long record of high spend-
ing and utilization [8, 46–48]. When compared to other 
states in the U.S., Alaska has unique population charac-
teristics, including its geography, population density, and 
demographics [49]. In addition, the healthcare market in 
Alaska also experiences some distinctions that affect pro-
vider supply, costs, and access to healthcare [49, 50]. It is 
possible that the unique aspects of Alaska’s population, 
especially its geographic isolation and its unique health-
care market are not well characterized by the data used 
in this project.

Variables from all 4 candidate predictor groups con-
tributed to regression model fit, underscoring the 
importance of diverse population characteristics in 
explaining variation in RIHC. Specifically, abridged 
model outputs identified health status and employment 
characteristics as important variables explaining varia-
tion in all 3 outcomes. Health or disease status is con-
sistently cited as an important risk factor for healthcare 
utilization, including RIHC [3, 51]. Characteristics of 
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employment is also unsurprising, as health insurance 
is predominantly employer based in the U.S. and insur-
ance status is associated with healthcare utilization, 
including RIHC [52, 53]. Together, these results add to 
a growing body of literature documenting important 
associations between population characteristics and 
healthcare utilization. For example, Zhang et  al. 2021 
found social determinants of health were associated 
with geographic variation in Medicare spending among 
U.S. counties and Fitzpatrick et al. found improvement 
in predicting healthcare utilization with the inclusion 
of socioeconomic and behavioral health data among a 
Canadian cohort [7, 17]. Moreover, Wodchis et al. found 
associations between food insecurity, personal income, 
and non-homeownership and high utilization of RIHC 
[17]. Importantly, population characteristics are often 
modifiable and can serve as targets for interventions. 
To that end, interventions focused on expanding access 
to affordable health and dental care coverage for adults 
and children is one modifiable risk factor to target as an 
effort to curtail RIHC.

Our study contributes to the literature by (1)  using 
HSAs as the unit of analysis, and (2)  using consumer 
expenditure data. Since HSAs are reflections of local 
healthcare markets, they are often used to study geo-
graphic variation in healthcare utilization and spending 
[7, 14]. HSAs are often a target of policy interventions 
aimed at reducing high utilization and spending because 
their aggregation captures system level factors driving 
excess use and expenditures [6]. Despite this research, no 
study to date has used HSAs in models predicting RIHC. 
Moreover, higher levels of geographic aggregation can 
mask heterogeneity. For example, when aggregated to the 
state level, Kansas had approximately 0.80 inpatient days 
per capita in 2017, however, 5 of the top 5% of predicted 
HSAs for inpatient days per capita were in Kansas. Since 
HSAs offer targets for policy interventions and provide 
granular estimates of geographic variation in healthcare 
utilization and spending, results from this study sug-
gest this predictive tool can aid policymakers and health 
system analysts to better plan for resource needs within 
respected communities.

This study offers one of the first to use consumer 
expenditures in predicting and explaining variation in 
RIHC. Across all 3 outcomes, consumer expenditures 
were included in best performing prediction models and 
contributed to regression model fit. While these find-
ings are preliminary, they lend some support for includ-
ing consumer expenditures when studying RIHC. While 
the use of consumer expenditure data in the context of 
healthcare research is relatively novel, results from one 
prior study conducted by SAS® (Cary, NC) determined 
consumer expenditures improved models predicting 

healthcare utilization and associated costs, generally 
aligning with results from our study [54], (Ricket et al. : 
Novel integration of governmental data sources using 
machine learning to identify super-utilization among 
U.S. counties, submitted). Importantly, results from this 
study represent preliminary findings and should be inter-
preted with caution as this study cannot address causal-
ity between consumer expenditures and RIHC. Results 
provide early evidence to support continued research on 
the utility of consumer expenditures to study healthcare 
utilization, however, future studies are needed to confirm 
these findings and explore possible mechanisms.

Results from this study have several implications. First, 
machine learning models can be leveraged as a tool to 
predict geographic variation in healthcare utilization and 
spending. Such a tool can help policy planners identify 
healthcare markets in need of policy initiatives or com-
munity-based interventions. Second, population charac-
teristics associated with RIHC can serve as modifiable 
targets for future interventions. Third, results from this 
study suggest some value in using consumer expendi-
tures to study RIHC. Since these variables are routinely 
collected, they represent a potential new data source for 
health service researchers to explore for future research.

Limitations
While this work offers novel insights into the power of 
leveraging vast data resources to predict RIHC, the work 
is not without limitations. First, this is an ecological study 
and as such, findings cannot address individual-level fac-
tors associated with RIHC. Moreover, this study cannot 
comment on longitudinally or temporal trends as it uti-
lizes cross-sectional data. Moreover, cross-sectional find-
ings from this study may not be robust overtime. Future 
research seeks to integrate more years of data. Despite 
these limitations, this study uses high-quality data from 
reputable governmental and non-governmental sources. 
In addition, this study only included HSAs participat-
ing in the 2017 AHA annual survey, however, over 90% 
of all HSAs were included. Separately, this study did 
not include physician supply, which could affect the 3 
outcomes in this study. The documented association 
between physician supply and healthcare utilization are 
mixed, however, several recent and noteworthy studies 
identified no significant relationship [55]. In addition, 
the stability of variables selected from LASSO presents 
another limitation, as the primary objective of LASSO 
is to select variables with highest prediction [56]. Simi-
larly, the use of adaptative LASSO is generally consid-
ered an improvement upon standard LASSO, however, 
results from a small sensitivity analysis found no differ-
ence in model performance when using adaptive LASSO 
for feature selection [56]. Despite this, future research 
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endeavors should consider the advantages conveyed by 
using adaptive LASSO [56]. Lastly, aggregation to HSA 
may limit generalizability to countries outside of the U.S, 
especially areas where healthcare systems and the man-
agement of hospital care differs vastly from the U.S.

Conclusion
Data from 5 unique sources were leveraged in a machine 
learning pipeline to predict 3 metrics of RIHC, including 
ER visits, inpatient days, and hospital expenditures. The 
novel machine learning prediction tool provides an inno-
vative approach to predicting population-based health-
care utilization and associated spending. Disease status 
and employment characteristics were important varia-
bles explaining variation in RIHC and serve as modifiable 
targets for future interventions.
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