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Abstract

Background: Hospital catchment areas define the primary population of a hospital and are central to assessing the
potential demand on that hospital, for example, due to infectious disease outbreaks.
Methods: We present a novel algorithm, based on label propagation, for estimating hospital catchment areas, from
the capacity of the hospital and demographics of the nearby population, and without requiring any data on hospital
activity.
Results: The algorithm is demonstrated to produce a mapping from fine grained geographic regions to larger scale
catchment areas, providing contiguous and realistic subdivisions of geographies relating to a single hospital or to a
group of hospitals. In validation against an alternative approach predicated on activity data gathered during the
COVID-19 outbreak in the UK, the label propagation algorithm is found to have a high level of agreement and perform
at a similar level of accuracy.
Results: The algorithm can be used to make estimates of hospital catchment areas in new situations where activity
data is not yet available, such as in the early stages of a infections disease outbreak.
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Background
During the COVID-19 pandemic, the rapid assessment
of the available capacity of a hospital and the potential
demand on its services has been important in identifying
geographical areas where hospital services are at risk of
becoming overwhelmed. Along with epidemic dynamics,
residual hospital capacity guides the imposition of public
health measures such as social distancing. When assess-
ing the load on a hospital due to COVID-19 the demand
may be unevenly distributed in space and rapidly changing
in time. Available capacity may be influenced by multi-
ple factors, including staff availability. At the same time
there may be fundamental changes to health provision in
the acute response of the pandemic, with for example the
cancellation of routine operations. In the early epidemic
in the UK, for example, there was block booking of pri-
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vate health care providers to assist the NHS [1], and the
rapid creation of large scale field hospitals [2]. In previous
work we examined the potential for redirecting patients
from one region to another to balance the load of health
care provision [3] and we have observed this phenomenon
as intensive care units reach capacity [4]. When we con-
sider both the change in provision of services and the
redistribution of patients, there is a potential need to rede-
fine the demographic and geographic profiles of health
care service providers (•catchment areasŽ and •catchment
populationsŽ) [5] to allow for effective planning.

The catchment area or population of a hospital is a
broad concept which serves a number of purposes, such
as:

€ Definition of the primary population of a hospital
(and their demographics) for strategic planning
purposes [6].

€ Definition of higher level organisational structures
and collaborative networks [7].
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€ Identification of areas with under, or over provision
of services

€ Calculation (and visualisation) of incidence and
prevalence of disease from hospital reported statistics
(identifying the denominator) [8] and hence
admission rates per head of population.

€ Preferred routing of patients to hospitals for
optimising specific services.

There are two general approaches to modelling catch-
ment areas which we will discuss in detail - activity based
or algorithmic approaches. Algorithmic approaches are
based solely on regional population counts and hospi-
tal capacity. Activity based approaches minimally require
data on hospital activity across all the region at an individ-
ual level, such as individual patient admission records.

Either of these individual modelling approaches result
in a hospital catchment area that is either overlapping or
non-overlapping. An overlapping output may reflect the
fact that patients may have a choice in the use of the ser-
vices, and that a range of individually varying predictors
influence individuals• capacity and willingness to adhere
to arbitrarily imposed boundaries. It may also reflect a
fundamental organisation of the service, for example the
networks of critical care [4], in which some activity of
a hospital caters directly for the local population, but
other activity is conducted supporting other regional hos-
pitals. As such overlapping approaches may better reflect
reality, but non-overlapping outputs are often a neces-
sary simplification for secondary analyses, where cross-
classification is not specifiable [9]. It is often desirable for
secondary analysis that boundaries align with geograph-
ical and organisational boundaries, but non-overlapping
outputs may result in real world cases being incorrectly
assigned to a hospital based on the catchment area, and
this will tend to be spatially uneven, clustering at the
fringes of the imposed boundaries [10].

The simplest algorithmic approaches involve a measure
of the size of a hospital inversely weighted by straight
line distance [11]. This can be extended by models which
use an analogy to gravity to calculate the potential field
of every hospital, based on both capacity (e.g. beds)
and demand (e.g. patients) [11…13]. The resulting poten-
tials may be cut off at a specified value, or where they
are exceeded by another hospitals potential, to produce
either overlapping or non-overlapping fields. Such algo-
rithmic approaches may not respect geographical or exist-
ing organisational boundaries, but they can be used to
model hypothetical scenarios, such as the impact of creat-
ing a new hospital. Further details of the range of different
models that have been proposed have been previously
published [5, 8].

Activity based models began with the proportional flow,
or Norris-Bailey, model [14, 15], and similar techniques

developed by Wennberg and Gittelsohn [16]. These exam-
ine the proportion of patients from an area visiting a
particular hospital versus the proportion of patients in an
area who visit any health care provider. An extension of
this was recently used to define catchment areas for major
injury following acute trauma [17]. More recently modern
statistical approaches have been applied to the same basic
activity data including k-Means classification [8], Bayesian
regression modelling. [6] or Markov multiscale commu-
nity detection [7, 18], to define hospital catchment areas,
and a k-means clustering algorithm to define adminis-
trative hospital groups [19]. Whilst arguably providing a
more accurate reflection of reality, activity based models
are predicated on the availability and currency of activ-
ity data, which may exhibit historical or cultural biases.
Depending on the purpose of the catchment area such
historical bias may or may not be desirable [8].

Estimation of hospital catchment areas is a simplifica-
tion of a complex logistical and organisational problem. In
England, for example, hospital sites are typically grouped
into single organisational units (NHS trusts) which report
combined activity. Thus a single unit of health-care pro-
vision (NHS trust) may have a range of physical locations,
not all of which offer the full range of services. ICU pro-
vision is often focused in a single hospital in an NHS
Trust, whereas acute or step-down beds may be dis-
tributed across multiple sites. Some specialist services,
such as intensive care, also may be unevenly distributed,
and larger units used as "tertiary referral centres" which
take in more complex patients from a wider geographical
area.

In the early phase of the COVID-19 pandemic, a rapid
estimate was needed of the potential demand on intensive
care services as a result of observed and forecast infec-
tions, in the context of a changing landscape of health
service provision. At this point, there was no compara-
ble data with which to drive activity based models, and
volatile estimates of hospital capacity. In order to plan
provision of additional ventilators and high dependency
beds, we needed a model of geographical catchment
areas that could be used to translate regional epidemi-
ological models of infections into a prediction of future
admissions to individual hospitals, taking into account the
regional demographics, and an estimate of the expected
level of care the patients would need. Such a catchment
area model must interface with existing spatial bound-
aries implemented in epidemiological models and publicly
available demographic estimates, and fulfil the following
criteria:

€ Allow a clean one way mapping from fine grained
geographic regions (e.g. from regional demographic
estimates or epidemiological models) to the coarse
grained administrative hospital region.
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€ Provide contiguous and realistic subdivisions of
geographies relating to a single hospital or to a
hospital group.

€ Provide areas that are determined by the capacity of
hospital at different levels of care provision, and the
size of the local population, or anticipated size of
outbreak in the local population.

€ Create regions of approximately equal local supply
(e.g. beds) and demand (e.g. patients) at boundaries.

€ Respect topological constraints in the mapping data,
such as large rivers or inlets, such that the overland
route to the hospital is accounted for rather than
straight line distance.

€ Flexible in that it can be recomputed rapidly if the
background parameters change, for example, a
regional outbreak or provision of additional hospitals,
in a way that is not dependant on individual level
activity data.

In this work we present a solution we developed for
this problem, and introduce a novel algorithmic catch-
ment area model which is specifically designed to meet the
needs of the COVID-19 pandemic as described above, but
is globally applicable to the situation where we can quan-
tify demand for a resource and a set of point locations that
supply that resource, and could be used, for example, in
retail. This model is inspired by label propagation tech-
niques used for community detection in networks [20…
22]. The paper is presented as follows; firstly we intro-
duce the algorithm, secondly we describe some illustrative
examples, and thirdly we qualitatively compare the output
of the algorithm to both manually created organisational

boundaries, and to observed patient ICU admissions dur-
ing the first wave of the COVID 19 pandemic.

Materials and methods
This section consists of 3 parts: a detailed description of
the algorithmic catchment area model, a description of
the data used to create initial outputs from the model, and
a description of initial assessment of the model against
available data.

Algorithm
The algorithm is inspired by label propagation network
clustering, where labels correspond to the supply of a ser-
vice, and the nodes in the network correspond to the
demand for the service (see Fig.1 and Algorithm 1). For
illustrative purposes in this paper we will focus on the
example of hospitals, where the "supply" is provision of
hospital beds, the "demand" is the population size, and
the "network" is the neighbourhood of geographical areas
under consideration.

To connect supply and demand, or hospital beds to
population size, the algorithm propagates a number of
labels, each representing the source of supply (e.g. the
hospital), through the geographical network, at a rate
defined by both the size of the supply (e.g. beds in each
hospital), and the demand for the service (e.g. the popula-
tion) within the areas the label has already propagated to.
Thus as demand outstrips supply from a particular source
the rate of label propagation associated with that source
decreases.

We assume the whole geographical region under con-
sideration can be represented as a mathematical graph,G

Fig. 1 Schematic illustration of the proposed label propagation algorithm. The association of a hospital with a region propagates from the hospital
location (P) into the different regions (V) at a rate depending on the hospital capacity S(P) and the population of the region, D(V), at each round of
the iteration (k) until there are no more neighbours to propagate a label to. The direction of spread is determined by the geographical
neighbourhood of each region V
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Algorithm 1: A weighted label propagation algorithm for matching geographical supply to demand
Input : VN - the N regions of demand as a set of geographical polygons
Input : D(Vn) - the density of demand in any given region as a function of the regionVn
Input : PM - a set ofM labelled suppliers as a set of geographical points
Input : S(Pm) - the capacity of supply at any given supply point as a function of the supplierPm
Input : Cgrowth - a rate constant defining rate of label propagation
Output : GM - M labelled subgraphs of graphG, relating to the catchment areas of suppliersPM

- define G as the graph consisting of geographical regions VN , connected by
edges, EN , given by their geographical neighbours �( VN ):

EN � �( VN );
G � (VN ,EN );
- define VM and V new

M,0 as the geographic regions of G serviced by points PM , and
GM,0 as a set of labelled sub-graphs (also initially consisting solely of the
vertices VM ):

VM � G � PM ;
V new

M,0 � VM ; GM,0 � VM ;
- define the initial unlabelled set of vertices:
U0 � ¬ VM ;
- define the initial un-labelled neighbours of labelled sub-graphs, GM :
UM,0 � �( VM );
- define an accumulated growth score for each un-labelled neighbour UM,0 of each

GM,0:
AUM,0 � 0;

k � 0;
- execute the loop while there are still unlabelled vertices and there exist

some unlabelled neighbours of labelled vertices
while |Uk| > 0 and |UM,k| > 0 do

k � k + 1;

- define the un-labelled vertices as the set of V not contained in any of
GM,kŠ1:

Uk � ¬ GM,kŠ1;
- define the un-labelled neighbours of GM,kŠ1 as UM,k as the previously

unlabelled neighbours and the neighbours of the most recently labelled
neighbours V new

M,kŠ1:
UM,k � UM,kŠ1 � (Uk � �( V new

M,kŠ1));
- define the reserve capacity, RM , to supply existing labelled, GM,kŠ1, and

un-labelled neighbours UM,k, as:
RM � S(PM )

D(UM,k� GM,kŠ1) ;

- for unlabelled areas only, update the accumulated growth score, AUM,k, with
the normalised rank of the reserve capacity and multiplied by a constant
Cgrowth > 1 representing the speed at which the accumulated growth score
increases in all areas:

RM,k � Rm{m � UM,k};
AUM,k � AUM,kŠ1 + Cgrowth × rank(RM,k)/ |RM,k|;
- for all the un-labelled vertices, select the label M, with the highest

score, and if the accumulated score has reached the threshold of 1,
incorporate it into the labelled sub-graph, GM,kŠ1:

Amax
Uk

= max(AUm,k ,m � M);
V new

M,k � UM,k � { Amax
Uk

> 1};
GM,k � GM,kŠ1 � V new

M,k ;
UM,k+ 1 � UM,k � ¬ V new

M,k ;
end
return GM,k
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and is divided into N smaller regions (parameterisation
discussed below), represented by the verticesV (where
V = Vn,n = 1, 2,. . . ,N) each with known population of
sizeD(Vn).

We define M hospitals located at the geographical
points P (where P = Pm,m = 1, 2, 3. . . M), and with
capacity to supplyS(Pm) beds. Typically there are fewer
hospitals than regions (M << N). We constrainPm such
that no more than onePm is found within any givenV,
i.e. each small region hosts no more than one hospital. In
practice the assumption that a maximum of one hospital is
found in each small region is occasionally not true. When
this does happen, we preprocess the data to combine
hospitals that are located together into a single entity.

The connections of neighbouring regions of any area
Vx are defined byEx = �( Vx), and likewise the set of
neighbouring vertices of any subgraphGy are defined by
Ey = �( Gy). These quantities are readily calculated using
the geographical intersection of different areas and var-
ious algorithms exist to calculate these from geospatial
data [23, 24].

Our goal is to divide the graphG into M labelled sub-
graphsGm such that the sub-graphs are connected, and
that neighbouring sub-graphs have similar bed availabil-

ity per unit population
( ∑

Sm∑
Dm

)
. We do this by assigning a

score for each combination of region and hospital, which
is initially zero. For every iteration of the algorithm this
score is incremented in any unlabelled region that neigh-
bours a region that has been labelled (i.e. assigned to
a specific hospital). The score is increased by a small
amount determined by the ratio of supply (hospital beds)
available, and demand (population to be served) in the
regions assigned to that hospital. Thus labels propagate
more quickly from points with a high capacity, through
regions with a low population than vice-versa. The first
label to propagate to a given area, and for which the score
is above a threshold is defined as the •supplierŽ for that
area, which is labelled as such. This ensures that each
region is served by only one hospital.

Qualitative testing data
The algorithm requires firstly an estimate of demand, for
this we used population counts, secondly a geographical
network and thirdly an estimate of supply, in this case
hospital capacity data.

For Great Britain there are detailed estimates of the
population at granular geographic detail (lower super out-
put area - LSOA) available from the Office of National
Statistics (ONS) for England and Wales, and population
estimates by Data Zone (DZ) are provided by the National
Records Service (NRS) in Scotland [25, 26]. These popu-
lation estimates are available by single year of age for each

area. These are combined to create a single figure for the
adult population of each small geographic area.

Each geographical area is associated with a boundary
files for lower super output areas and data zone from the
2011 census, which are provided by the ONS and NRS
[27, 28].

To estimate the capacity of hospitals we used a range
of primary sources (described in the supplementary mate-
rials) to manually compile a list of NHS and indepen-
dent hospital sites. When not provided in the primary
sources, we identified their geographical locations from
their postcode, and we estimated bed numbers from both
a combination of published NHS statistics and from daily
COVID-19 situation reports from early April 2020, pro-
vided by the NHS. The situation reports detailed both
available beds at this point in time but also gave an indi-
cation of maximum surge capacity for high dependency
beds. These data were manually curated and are indica-
tive of the state of the NHS at maximal readiness. Bed
state estimates for independent hospital providers were
also available through the situation reports.

In Northern Ireland, population estimates were not
available at a similar geographical resolution as the ONS
and NRS sources, and we are unaware of any publicly
available hospital capacity estimates. They were therefore
not included in this analysis.

The detail of the original data sources we used is pre-
sented in the supplementary material, not all of which
are publicly available. The algorithm is implemented as an
R packagearear (available fromhttps://terminological.
github.io/arear/), which also contains both the manu-
ally curated hospital capacity and data pertaining derived
demographics data described here.

Validation
There is no ground truth for the catchment areas for hos-
pitals in the NHS during the COVID-19 pandemic. The
rationale for original development of this algorithm was
to make an estimate in absence of any activity data, in the
early stages of the pandemic. Since then activity data has
become available and this allows us to validate the label
propagation approach to the activity based approach.

The activity based mapping takes the form of a many-
to-many probabilistic mapping between lower tier local
authority districts (LTLA) and NHS Acute Trusts in Eng-
land derived from Secondary Uses Service (SUS) health-
care data for England [29]. We create equivalent proba-
bilistic associations between the coarse grained LTLA and
NHS trusts by generating a fine grained lower super out-
put area (LSOA) catchment area for NHS trusts using the
label propagation algorithm, and the demographic and
bed capacity estimates described above. This is aggregated
to coarse grained local authority districts using mapping

https://terminological.github.io/arear/
https://terminological.github.io/arear/
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files provided by the ONS [30], weighted by LSOA pop-
ulation size [25] (Source: Office for National Statistics
licensed under the Open Government Licence v.3.0). This
equivalent mapping based on the label propagation algo-
rithm is compared to the activity based mapping graph-
ically. To determine the degree of agreement between
approaches the expected number of admissions to each
NHS trust from each LTLA was estimated using each
method. These were compared to each other using the
intra-class correlation coefficient [31, 32] using a mean-
of-raters, absolute-agreement, two-way random-effects
model [33], as implemented in the R packageirr [34].

Secondly we obtain the coarse location (partial UK post-
code, also known as outcode) from a list of intensive
care patients admitted between 20th October 2000 and
16th March 2021 from the CHESS data set [35], which
is an anonymised patient level hospital admission data
set. We use outcode boundary shapes [36], LSOA demo-
graphic estimates, and an areal interpolation [37] to gen-
erate an estimate of demographics for each outcode. Using
this outcode based regional population estimate, outcode
boundary shapes, and the manually curated high depen-
dency unit capacity estimates we calculate an outcode
based catchment area estimate from which we are able to
predict the NHS trust each patient was admitted to based
on their outcode, which we compare to the observed NHS
trust from the CHESS data. For this comparison we cal-
culate both the multinomial accuracy, and for each NHS
trust, the one-versus-all binomial accuracy as follows:

accuracy=
1

|X|

∑
k� G

∑
gobs(x)= k

I
(
gpred(x) = gobs(x)

)

where X is the set of observations,G is the set of NHS
trusts, gpred and gobs are the predicted and observed
classes respectively andI is the indicator function which
returns 1 if the predicted match observed and 0 otherwise.

For the activity based approach we assign each patient
to a LTLA by virtue of the geographical location of the
centroid of their outcode shape and then determine the
most probable NHS trust associated with that LTLA. This
forms a prediction of the NHS trust based on the patient•s
outcode, which we can compare to the observed NHS
trust in the same manner as above.

Results
Qualitative testing results
The results presented in this section qualitatively test the
algorithm to determine whether it is producing catchment
area regions that are geographically contiguous, aligned
with existing demographic boundaries, and respect coarse
geographical boundaries such as large rivers. The catch-
ment areas should also produce estimates that minimise
differences in the level of service provision from area to
area, and we expect the overall regional variation of sup-

ply versus demand to be locally smooth. Figure2 shows a
catchment area based on individual hospitals that offered
high dependency beds during April 2020, and a regional
demand based on population estimates of adults in lower
super output areas. The resulting set of catchment areas
presented in panel A and C behave as desired in terms
of the geographical properties. They also produce a fairly
uniform density of high dependency bed provision per
capita population, from region to region, as seen in panel
B. In areas where there are high densities of hospitals such
as London where the algorithm, by design, cannot propa-
gate from centrally located hospitals past more peripheral
hospitals, leading to small numbers of areas with high pro-
vision per head of population. This is discussed further
below.

Further qualitative investigation of the properties of the
algorithm are shown in Fig.3 where we see more regional
detail of the same algorithm applied this time to general
hospital beds rather than high dependency beds. Panel A
shows the boundaries of the estimated catchment areas
in white against the population density of a small area of
the South West of England containing three hospitals (Ply-
mouth, Torbay and the Royal Devon and Exeter hospitals).
We can see in this example the extent of the catchment
area to the South of Torbay is defined by the Dart river
estuary, thus respecting topological constraints.

Figure 3 panel B shows details about the progression
of the algorithm from one iteration to the next, as labels
propagate from each of the hospitals into the surround-
ing areas until encountering another catchment area. As
we expect from the design the algorithm is seen to spread
from hospital sites quickly through areas of low pop-
ulation (panel A), such as the countryside surrounding
Plymouth in the bottom left, and more slowly through
areas of higher population such as the areas surrounding
Torbay in the middle right.

Validation
In comparing the label propagation mapping to the activ-
ity based mapping we see that the proportions of any
given LTLA that are assigned to any given trust are simi-
lar between the two methods Fig.4, panel A) with a clear
trend to agreement. The major differences are seen in the
extremes where, for example, in the top left of panel A, the
activity based approach may predict that no patients are
observed in a given hospital from a given LTLA, whereas
the label propagation approach predicts the opposite.
Panel B shows the same relationship but this time scaled
by the population size in each area, and this shows that the
impact of differences between predictions seen in panel
A is in areas with smaller populations and is therefore
attenuated. Calculation of the intra-class correlation coef-
ficient between the predicted number of cases from each
method gives excellent agreement between the two meth-
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