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Abstract

Background: We propose a mathematical model formulated as a finite-horizon Markov Decision Process (MDP) to
allocate capacity in a radiology department that serves different types of patients. To the best of our knowledge,
this is the first attempt at considering radiology resources with different capacities and individual no-show
probabilities of ambulatory patients in an MDP model. To mitigate the negative impacts of no-show, overbooking
rules are also investigated.

Methods: The model’s main objective is to identify an optimal policy for allocating the available capacity such that
waiting, overtime, and penalty costs are minimized. Optimization is carried out using traditional dynamic
programming (DP). The model was applied to real data from a radiology department of a large Brazilian public
hospital. The optimal policy is compared with five alternative policies, one of which resembles the one currently
used by the department. We identify among alternative policies the one that performs closest to the optimal.

Results: The optimal policy presented the best performance (smallest total daily cost) in the majority of analyzed
scenarios (212 out of 216). Numerical analyses allowed us to recommend the use of the optimal policy for capacity
allocation with a double overbooking rule and two resources available in overtime periods. An alternative policy in
which outpatients are prioritized for service (rather than inpatients) displayed results closest to the optimal policy,
being also recommended due to its easy implementation.

Conclusions: Based on such recommendation and observing the state of the system at any given period
(representing the number of patients waiting for service), radiology department managers should be able to make
a decision (i.e., define number and type of patients) that should be selected for service such that the system’s cost
is minimized.
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Background
Diagnostic imaging facilities are highly specialized units
that offer various types of services such as X-ray, ultra-
sound, computed tomography (CT), and magnetic res-
onance imaging (MRI) to different classes of patients. In
general, depending on how these patients arrive at the
facility, they are classified as inpatient (hospitalized),
outpatient, or emergency [1, 2]. Imaging facilities are
constrained resources in most healthcare systems [3],
which rely on rapid examination to provide timely diag-
nosis and proper referral of patients to treatments. The
gap between demand and capacity in those facilities re-
sults in increasing waiting times [4], and proper alloca-
tion of the available capacity is one of the most
challenging activities for their managers [3].
Capacity allocation, also known as advanced schedul-

ing, consists of deciding the number of patients to be ad-
mitted to the system and how the available capacity
should be distributed among the different types of pa-
tients waiting for care [5]. The main objective is to find
efficient ways to allocate service requests given the avail-
able capacity, maximizing either service level (measured
as the number of patients served within a clinically ac-
ceptable waiting time) or service revenues [6]. Efficient
capacity allocation may lead to operational, clinical, and
economic gains, not only by providing patients with
timely access to healthcare but also by reducing costs.
However, patient scheduling is a complex activity due to
its stochastic nature and to the existence of different
levels of priority [6].
In radiology departments, inpatients, outpatients, and

emergency patients arrive with different probabilities
and levels of urgency, presenting different cost and rev-
enue structures. Decisions on how to serve them must
consider different care options, with potential impacts
on healthcare quality and the use of available facilities
[7]. The solution to such a complex decision problem re-
quires the use of mathematical tools; when uncertainties
are involved in the process, Markov Decision Processes
(MDPs) may be used to model the dynamics of the
system and find its best feasible solution [8].
Markov Decision Processes have been used to model

capacity allocation problems in different healthcare set-
tings; e.g., radiotherapy [9], surgical theater [10], multi-
disciplinary, multistage, and outpatient medical
assistance programs [11]; multi-facility diagnostic cen-
ters [8]; and outpatient consultations [6, 12, 13]. Some
published works addressed the problem of resource allo-
cation in radiology services using the MDP structure (a
summary of these studies’ main characteristics is avail-
able in Additional file 1: Table S1) [1, 2, 4, 5, 14–18].
In this article, we propose a mathematical formulation

based on a finite horizon MDP for the complex problem
of allocating dynamic capacity in radiology services

considering multiple resources, different types of pa-
tients, no-show modeling, and overbooking. Our propos-
ition incorporates two factors not yet addressed in
previous studies listed in Table S1 (Additional file 1),
namely: (i) multiple resources with different capacities,
allowing to better represent the reality of several radi-
ology departments in which modern equipment coexist
with older ones; and (ii) no-show probabilities of outpa-
tients scheduled for CT examinations modeled using a
penalized logistic regression model, considering individ-
ual characteristics of patients and schedules (see Add-
itional file 2 for more details).
This study was motivated by theoretical and practical

aspects. This article presents some contributions to the
state-of-the-art on capacity planning of radiology ser-
vices when compared to the works listed in Table S1
(Additional file 1). First, we present mathematical for-
mulations that allow determining possible states and
feasible actions considering the capacity configuration,
which may be adapted to situations of single or multiple
resources. It is known that capacity configuration dir-
ectly impacts the definition of states and actions since
the number of resources available for service is consid-
ered a constraint. Second, advanced capacity allocation
methods that consider individual no-show probabilities
allow a better representation of radiology services, being
adaptable to consider specific characteristics of patients
from a given region. To take into account individual no-
show probabilities in an MDP structure, it is necessary
to use a different approach for calculating transition
probabilities, which is done in this article. In addition,
considering individual probabilities instead of an average
no-show rate allows a more realistic approximation of
the MDP return function, which directly impacts the de-
cision of allocating capacity.
From a practical viewpoint, the study was motivated

by concerns from the radiology service managers with
the idleness of CT resources due to the no-show of out-
patients and, consequently, with the large average wait-
ing time for exams (78 days). With that in view, no-show
prediction and the analysis of overbooking rules to miti-
gate its adverse consequences, as proposed in this article,
can reduce waste in the use of resources, increase prod-
uctivity and reduce waiting times, as reported in similar
studies in other healthcare settings [19–22]. That is rele-
vant, especially in the Brazilian case, characterized by a
unified public health system with growing demand and
lack of investments to expand service capacity.
Long waiting times for CT exams may also aggravate

further the clinical status of patients affected by diverse
health problems, e.g., delays in cancer diagnosis are asso-
ciated with longer treatment times [23] and a higher
mortality rate [24, 25]. Using a model as proposed here
can improve the efficiency of the decision-making
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process in exam facilities, improving service rates and,
consequently, reducing waiting times. Facilitated access
to CT scans enhances the quality of health care for pa-
tients. CT scans allow for more effective planning of
care, indicating the need for surgical procedures, redu-
cing exploratory surgery, improving cancer monitoring
and treatment, and guiding the treatment of common le-
sions (injury, stroke, heart disease), and reducing hos-
pital stay [26].

Methods
Problem description, notation, and assumptions
We considered a radiology service with three resources
(which are computed tomography equipment) with dif-
ferent patient processing capacities. The objective is to
minimize the total cost of care, consisting of waiting,
overtime, and penalty costs for not serving patients over
a business day of service. The problem was modeled as a
finite horizon MDP and solved using DP. Table 1 pro-
vides the notation used in this article.
We assume a finite planning horizon of one business

day with N regular service periods comprised of equally
spaced time intervals, such that ti and ti + 1 represent the
start and end of the i − th regular period. Due to the use
of overbooking rules, K overtime service periods are
made available to serve patients not contemplated dur-
ing regular periods, such that t(N + k) and t(N + k + 1) repre-
sent the start and end of the k − th overtime period.
Overtime periods are also comprised of discrete and
identical time intervals.
On each business day, three types of patients arrive in-

dependently in each regular period i (i = 1,…,N),
namely: (j = 1) inpatients (IPs), (j = 2) outpatients (OPs),
and (j = 3) emergency patients (EPs) . Demand for OP
exams is known beforehand since they request service
days or weeks in advance and are scheduled according
to AgOP. Each outpatient h displays an individual and in-

dependent probability of show ( pOPh
i ) or no-show ð1 -

pOPh
i ) which, in opposition to the existing literature, is

determined considering the patient’s individual charac-
teristics and schedules. All OPs that arrive for service
are deemed punctual.
IP and EP service requests are random, generated by

the hospital (wards or emergency department), and oc-
curring with probabilities pIPi and pEPi , respectively. It is
assumed that one single service request will arrive for
IPs and EPs during a regular period i, in accordance with
previous related literature [1, 16].
Variables wIP

i ; wOP
i and wEP

i give the number of IPs,
OPs, and EPs waiting to be served at the start of regular
period i; wIP

ðNþkÞ and wOP
ðNþkÞ give the number of IPs and

OPs waiting to be served at the start of overtime period
N + k. EPs are prioritized over IPs and OPs, i.e., if an EP

enters the system at (ti − 1, ti], she must be selected im-
mediately for service in the next period (ti, ti + 1]. That
ensures EPs are not put on hold, incurring waiting costs.
On the other hand, waiting costs wcIP and wcOP are in-
curred if IPs and OPs are not selected for service during
regular periods; if they are not served in regular periods
then overtime periods will be available, incurring over-
time costs ocIP and ocOP. In overtime periods, no IPs or
OPs arrive for service. We assume that EPs arriving at
N + 1 are served by dedicated CT equipment; thus, no
more than two resources can be allocated to serve IPs
and OPs in overtime periods. In addition, penalty costs
pcIP and pcOP are incurred for IPs and OPs left unserved
after the regular and overtime periods have elapsed. In
line with previous studies [1, 16], it is assumed that IPs
have a higher associated penalty cost due to the possibil-
ity of spending an extra day in the hospital. It is assumed
that an unserved IP can arrive for service the next day,
at any regular period. In opposition, unserviced OPs
may request service at a future time according to a new
appointment schedule. EPs that arrive between one busi-
ness day of service and the next are served by a dedi-
cated resource; therefore, the system starts each day in
empty state ðwIP

0 = wOP
0 = wEP

0 ¼ 0Þ.
The number of patients that can be served is limited

by the number Ci and C(N + k) of resources available in
each regular and overtime period, respectively. The ser-
vice time of a patient (regular or overtime) is independ-
ent of the state of the system or type of patient, being
considered equal to the duration of the period. However,
in the analyzed department, one of the resources has a
smaller capacity (despite performing the same types of
CT exams), and its associated service time is equivalent
to twice that of others. In overtime periods, one or two
resources can be made available to meet the demand
remaining from regular periods. Service capacity in regu-
lar (considering up to 3 resources) and overtime (consid-
ering a single resource) periods is represented in Fig. 1.

Mathematical formulation for the dynamic capacity
allocation problem
The capacity allocation problem considered was mod-
eled as a finite horizon Markov Decision Process (MDP),
often used to represent systems that evolve randomly
through stages through a finite number of discrete-time
moments. The proposal extends the problem of dynamic
resource allocation presented in Kolisch and Sickinger
[1], incorporating the following factors: (i) possibility of
IP and EP arrivals from the first period of regular service
(i = 1); (ii) three resources with different service capaci-
ties; (iii) OP no-show probabilities determined based on
a penalized logistic regression model considering their
individual characteristics and schedules; (iv) use of
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Table 1 Notation

Symbol Description

Patient types

IP Inpatient

OP Outpatient

EP Emergency patient

Indices

i i − th regular service period, i = 1, …, N

k k − th overtime service period, k = 1, …, K

j Patient type, j = IP, OP, EP

h h − th outpatient scheduled for regular service period i, h ¼ 1;…; AgOPi

Intervals

ti, t(N + k) Start of i − th regular period and of k − th overtime period

ti + 1, t(N + k + 1) End of i − th regular period and of k − th extra period

State variables

w j
i Number of type j patients waiting for service at the start of regular period i, for j = IP, OP, EP

w j
ðNþkÞ Number of type j patients waiting for service at the start of overtime period N + k, for j = IP, OP

Z Space containing all possible states of N regular periods

Zi Set of all feasible states at the start of regular period i, immediately before waiting patients are selected for service, such that Zi ∈
Z

zi State at the start of regular period i, such that zi ¼ ðwIP
i ;w

OP
i ;wEP

i Þ∈Zi , gives the number of IPs, OPs and EPs waiting to be served

|zi| Sum of elements in state zi, jzij ¼ wIP
i þ wOP

i þ wEP
i

S Space containing all possible states of K overtime periods

Sk Set of all feasible states at the start of overtime period k, immediately before waiting patients are selected for service, such that
Sk ∈ S

sk State at the start of overtime period k, such that sk ¼ ðwIP
ðNþkÞ;w

OP
ðNþkÞÞ∈Sk , gives the number of IPs and OPs waiting to be served

|sk| Sum of elements in state sk, jsk j ¼ wIP
ðNþkÞ þ wOP

ðNþkÞ
Actions

A Set of all possible actions in N regular periods

Azi Set of all feasible actions in state zi, such that Azi∈A

ai Action taken in regular period i, such that ai ¼ ðaIPi ; aOPi ; aEPi Þ∈Azi , represent all IPs, OPs and EPs selected for service

B Set of all possible actions in K overtime periods

Bsk Set of all feasible actions in state sk, such that Bsk∈B

bk Action taken in overtime period k, such that bk ¼ ðbIPðNþkÞ; b
OP
ðNþkÞÞ∈Bsk , represent all IPs and OPs selected for service

Model parameters

N Total number of regular periods

K Total number of overtime periods

p j
i Arrival probability of patient type j during regular period i, for j = IP, OP, EP

AgOP Appointment schedule of OPs

AgOPi Number of OPs scheduled in regular period i

Ci, C(N + k) Service capacity in each service period, given by the number of equipment available in regular periods i and in overtime periods
N + k

wcj Individual waiting cost for patient type j during regular period, for j = IP, OP

ocj Individual overtime cost of serving patient type j, for j = IP, OP

pcj Individual penalty cost for not serving patient type j, for j = IP, OP

Functions

Pi Transition probability between states i and i + 1

da Silva et al. BMC Health Services Research          (2021) 21:968 Page 4 of 24



overbooking to mitigate the effects of OP no-shows; and
(v) use of overtime service periods to serve IPs and OPs.

Decision stages
Assume a system that at each business day has N regular
periods and K overtime periods evenly distributed in
discrete time intervals. At the start of each service period
(or stage), the system is observed regarding its state, and
a decision (or action) is taken considering the number
Ci and C(N + k) of resources available.

State space
In the proposed model, Z and S represent the sets of all
possible states in N and K regular and overtime periods,
respectively. Subsets Zi ∈ Z and Sk ∈ S represent feasible
states at the start of each regular period i and overtime
period N + k, just before waiting patients of type j are

selected to be served; zi ∈ Zi is a given state in i, such
that zi ¼ ðwIP

i ;w
OP
i ;wEP

i Þ; sk ∈ Sk is a given state in k, such
that sk ¼ ðwIP

ðNþkÞ;w
OP
ðNþkÞÞ.

The set of all feasible states at the start of each regular
period i is defined as follows (details are given in
Additional file 3):

� For i = 1:

Zi ¼ wIP
i ;w

OP
i ;wEP

i

� �j 0≤w
IP
i ≤1

0≤wOP
i ≤AgOP

i
0≤wEP

i ≤1

8<
:

9=
; ð1Þ

� For i ≥ 2:

Table 1 Notation (Continued)

Symbol Description

P j
i Transition probability between states i and i + 1 for patients type j, such that j = IP, OP, EP

wci Total waiting cost during regular period i

ock Total overtime cost in period k

pcN + K + 1 Total penalty cost for not providing service to patients

TCN + K Total overall cost during a finite horizon decision period (one business day), with N + K decision points

Vi(zi) Minimum expected cost for each regular period i

Vk(sk) Minimum expected cost for each overtime period k

VN + K + 1(sN + K +

1)
Minimum expected penalty cost

Fig. 1 Service capacity in regular and overtime periods
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Zi ¼

wIP
i ;w

OP
i ;wEP

i

� �
�����
0≤wIP

i ≤ i

0≤wOP
i ≤

Xi
l¼1

AgOP
l

0≤wEP
i ≤1

wIP
i þ wOP

i ≤
Xi
l¼1

AgOP
l þ i−

Xi - 1
l¼1

Cl−w
EP
l

� �" #

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
;

If
Xi
l¼1

AgOP
l þ i≥

Xi - 1
l¼1

Cl−w
EP
l

� �" #

wIP
i ;w

OP
i ;wEP

i

� ������
0≤wIP

i ≤1
0≤wOP

i ≤AgOP
i

0≤wEP
i ≤1

8<
:

9=
;;

otherwise

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;
ð2Þ

Note that for the analyzed system at any regular period
i there will always be capacity available to serve IPs and/
or OPs, even if one EP has been selected (since 2 ≤ Ci ≤
3), meaning that the remaining capacity in i, given by
the difference between the capacity and the number of
EPs waiting ðCi−wEP

i Þ, will be allocated to serve IPs and/
or OPs.
The set of all feasible states at the start of each over-

time period N + k is defined as follows (details are given
in Additional file 3):

� For k = 1:

Sk ¼

wIP
Nþkð Þ;w

OP
Nþkð Þ

� �
�����
wIP

Nþkð Þ≤N

wOP
Nþkð Þ≤

XN
l¼1

AgOP
l

wIP
Nþkð Þ þ wOP

Nþkð Þ≤
XN
l¼1

AgOP
l þ N−

XN
l¼1

Cl−w
EP
l

� �" #

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

if
XN
l¼1

AgOP
l þ N ≥

XN
l¼1

Cl−w
EP
l

� �" #

wIP
Nþkð Þ;w

OP
Nþkð Þ

� ������w
IP
Nþkð Þ ¼ 0

wOP
Nþkð Þ ¼ 0

( )
;

otherwise

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;
ð3Þ

� For k = 2, …, K:

Sk ¼ wIP
Nþkð Þ;w

OP
Nþkð Þ

� �

�����
wIP

Nþkð Þ≤N

wOP
Nþkð Þ≤

XN
l¼1

AgOP
l

wIP
Nþkð Þ þ wOP

Nþkð Þ≤
XN

l¼1
AgOP

l þN−XN
l¼1

Cl−w
EP
l

� �
−
XNþk−1

y¼1

CNþy

" #

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
ð4Þ

The same condition verified for eq. (2) are applicable
in eqns. (3) and (4) regarding the constraint associated
with the number of IPs and OPs waiting to be served;
i.e. ðwIP

ðNþkÞ þ wOP
ðNþkÞÞ.

Set of actions
In our model, A and B are the sets of all possible actions
in N and K regular and overtime periods, respectively.
Subsets Azi∈A and Bsk∈B represent all feasible actions of
specific system states zi and sk, respectively. For each
specific state of a regular period i, zi ¼ ðwIP

i ;w
OP
i ;wEP

i Þ∈
Zi , a decision (or action) must be made regarding serv-
ing an EP, and the remaining capacity must be then allo-
cated to IPs (wIP

i ) and OPs (wOP
i ) waiting to be served.

Analogously, for each specific state of an overtime
period N + k, sk ¼ ðwIP

ðNþkÞ;w
OP
ðNþkÞÞ∈Sk , a decision

must be made about choosing IPs (wIP
ðNþkÞ ) and/or

OPs ( wOP
ðNþkÞ ) waiting to be served, given the available

capacity C(N + k).
Decisions made in regular and overtime periods are

represented by ai and bk, respectively, such that ai
¼ ðaIPi ; aOP

i ; aEPi Þ∈Azi gives the number of IPs, OPs,
and EPs selected for service in regular period i, and
bk ¼ ðbIPðNþkÞ; b

OP
ðNþkÞÞ∈Bsk gives the number of IPs and

OPs selected for service in overtime period N + k.
Therefore, the set Azi of feasible actions for a given

state of regular period i is given by:

Azi ¼ aIPi ; a
OP
i ; aEPi

� �j
aIPi ≤wIP

i
aOP
i ≤wOP

i
aEPi ¼ wEP

i
aIPi þ aOP

i þ aEPi ¼ min Ci; zij jð Þ

8>><
>>:

9>>=
>>; ð5Þ

such that jzij ¼ wIP
i þ wOP

i þ wEP
i .

The set Bsk of feasible actions for a given state of over-
time period N + k is given by:

Bsk ¼ bIPNþkð Þ; b
OP
Nþkð Þ

� �
j
bIPNþkð Þ≤w

IP
Nþkð Þ

bOP
Nþkð Þ≤w

OP
Nþkð Þ

bIPNþkð Þ þ bOP
Nþkð Þ ¼ min C Nþkð Þ; skj j� �

8><
>:

9>=
>;
ð6Þ

where jsk j ¼ wIP
ðNþkÞ þ wOP

ðNþkÞ.

Transition probabilities
Once decisions have been made for each regular period
i, the random arrivals of new IPs, OPs and EPs are the
only sources of uncertainty in the transition from
current state (zi) to the next system state (zi + 1). Consid-
ering that in overtime periods new patients do not arrive
for care, the next state of the system will depend exclu-
sively on the decision made in the current state. There-
fore, transition probabilities are only valid for
determining the next states in regular periods.
As a result of choosing action ai ¼ ðaIPi ; aOP

i ; aEPi Þ∈Azi

in state zi ¼ ðwIP
i ;w

OP
i ;wEP

i Þ∈Zi and considering that pIPi ,

pOPh
i , pEPi are the independent arrival probabilities of IPs,

OPs, and EPs, the system evolves to the next state in
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regular period i + 1, denoted by ziþ1 ¼ ðwIP
iþ1;w

OP
iþ1;w

EP
iþ1Þ

∈Ziþ1, considering the following probability function:

Pi ziþ1ð jzi; aiÞ ¼ PIP
i wIP

iþ1

� ��wIP
i ; a

IP
i Þ:POP

i wOP
iþ1

� ��wOP
i ; aOP

i Þ:PEP
i wEP

iþ1

� ��wEP
i ; aEPi Þ

ð7Þ

where Pi is the transition probability in time instant ti,P
ziþ1∈Ziþ1

Pi ðziþ1jzi; aiÞ ¼ 1 , PIP
i , POP

i and PEP
i are the

transition probabilities for IPs, OPs, and EPs, respect-
ively, given by the following probability functions:

PIP
i wIP

iþ1

� ��wIP
i ; a

IP
i Þ ¼

1−pIPi if wIP
iþ1 ¼ wIP

i −a
IP
i

pIPi if wIP
iþ1 ¼ wIP

i −a
IP
i þ 1

0 otherwise

8<
:

ð8Þ

where ð1−pIPi Þ denotes the situation in which no new IP
arrives and ðpIPi Þ denotes the arrival probability of a new
IP between i and i + 1.

POP
i wOP

iþ1

� ��wOP
i ; aOP

i Þ ¼

X
β1þ…þβQ¼u

YQ
h¼1

pOPh
i

� �βh 1−pOPh
i

� �1−βh !8<
: ;

if wOP
iþ1 ¼ wOP

i −aOP
i þ u; u ¼ 0; 1;…;Q and Q ¼ AgOP

iþ1
0; otherwisef

8>>>>>>>><
>>>>>>>>:

ð9Þ

such that
PQ
u¼0

ð
X

β1þ…þβQ¼u

ð
YQ
h¼1

ðpOPh
i Þβhð1−pOPh

i Þ1−βhÞÞ ¼ 1 ,

βh (h = 1,…,Q) is a binary variable representing the
arrivals of u OPs scheduled for the next regular period
i + 1. Eq. (9) allows calculating the transition probability
for OPs (POP

i ) considering that each patient displays an

independent no-show probability (1 – pOPh
i ) determined

considering the patient’s characteristics and other factors
(see Additional file 2).

PEP
i wEP

iþ1

� ��wEP
i ; aEPi Þ ¼

1−pEPi if wEP
iþ1 ¼ wEP

i −aEPi and i ¼ 1;…;N
pEPi if wEP

iþ1 ¼ wEP
i −aEPi þ 1 and i ¼ 1;…;N

0 otherwise

8<
:

ð10Þ

Interpretation of terms in Eq. (10) is simmilar to that
of Eq. (8).

Costs
Associated with each action in our model there is a cost,
which may be (i) a waiting cost in a regular period i, or
(ii) an overtime cost in an overtime period N + k. Thus,
choosing an action ai ¼ ðaIPi ; aOP

i ; aEPi Þ∈Azi implies in a
waiting cost wci(zi, ai) for IPs and OPs not selected for
service, which is given by Eq. (11).

wci zi; aið Þ ¼ wcIP: wIP
i −a

IP
i

� �
þ wcOP: wOP

i −aOP
i

� � ð11Þ

An overtime cost ock(sk, bk) is incurred whenever a given
state (sk) of an overtime period is not the terminal state of
the system, i.e., whenever wIP

ðNþkÞ > 0 and wOP
ðNþkÞ > 0 .

Thus, the overtime cost is also dependent on state sk and
chosen action bk, as follows:

ock sk ; bkð Þ ¼ ocIP:bIPk þ ocOP:bOP
k ð12Þ

A penalty cost pcN +K + 1 is incurred at period N + K +
1, being dependent on the terminal state of the system
(sN +K + 1) and proportional to the number of IPs and
OPs not served:

pcNþKþ1 sNþKþ1ð Þ ¼ pcIP:wIP
NþKþ1ð Þ

þ pcOP:wOP
NþKþ1ð Þ ð13Þ

The total cost (TC) for a finite decision-making hori-
zon (comprised of one business day of service) with N +
K decision stages is given by:

TCNþK ¼
XN
i¼1

wci zi; aið Þ þ
XK
k¼1

ock sk ; bkð Þ

þ pcNþKþ1 sNþKþ1ð Þ ð14Þ

Value function V of the MDP/bellman equation
The aim of the model proposed here is to determine an
optimal policy for allocating available capacity that de-
fines an action for each state, such that the total cost of
a business day of service is minimized. The MDP’s value
function V represents the minimum expected cost for
each state in the finite planning horizon. Considering
that the model presented displays different types and
cost structures for the service periods and that there are
no transition probabilities in overtime periods, the mini-
mum expected cost associated with the optimal policy is
obtained by regressively and numerically solving the fol-
lowing recursive equations (Figs. 2 and 3 illustrate the
dynamics of the proposed model in regular and overtime
service periods, respectively):

� For regular periods i (i = 1,…,N):

V i zið Þ ¼ min
ai∈Azi

wci zi; aið Þ þ
X

ziþ1∈Ziþ1

Pi ziþ1ð jzi; aiÞ:V iþ1 ziþ1ð Þ
( )

ð15Þ

� For overtime periods k (k = 1,…, K):
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Vk skð Þ ¼ min
bk∈Bsk

ock sk ; bkð Þ þ Vkþ1 skþ1ð Þf g ð16Þ

In addition, given that the optimal policy was used
for patient selection over a business day with N + K
periods, VN + K + 1 represents the expected minimum
penalty cost for patients not served after regular and
overtime periods (i.e., at period N + K + 1), being
given by:

VNþKþ1 sNþKþ1ð Þ ¼ pcNþKþ1 sNþKþ1ð Þ
¼ pcIP:wIP

NþKþ1ð Þ
þ pcOP:wOP

NþKþ1ð Þ ð17Þ

Case study
We tested our propositions using real data collected
from the Radiology Department of Hospital de Clinicas
de Porto Alegre, a public University hospital with 850

Fig. 2 Model dynamics considering regular periods

Fig. 3 Model dynamics considering overtime periods
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inward beds located in southern Brazil. We focused on
the computed tomography (CT) unit of that department.
The work was approved by the Research Ethics Commit-
tee of the hospital under project number CAEE
83645318.6.0000.5327.
The CT unit serves IPs, OPs, and EPs, issuing approxi-

mately 30,000 reports per year. On a business day of ser-
vice, between 8:00 h and 17:00 h (Monday to Friday), 74
OPs are scheduled (which corresponds to 2 OPs per
regular period), in addition to 6 OPs in overbooking.
Thirty-seven regular periods (N = 37) are available daily,
in addition to 4 overtime periods (K = 4), all lasting 15
min. Three CT equipment are available to serve the
three types of patients, two with a 15-min service time
and one (older model) with a 30-min service time.

Parameters and baseline case
The case unit serves patients from the Brazilian Unified
Health System (SUS – Sistema Unico de Saude). Since
the unit operates on a public budget that is made avail-
able annually, the objective function in this study is asso-
ciated with costs (waiting, penalty, and overtime costs)
that should be minimized not to compromise the hospi-
tal’s budget.
Waiting and penalty costs for the baseline case consid-

ered the nominal monthly per capita household income
in the State in which the hospital is located [27]. In
2019, that income was US$ 343.87; considering 220
monthly hours of work, the hourly household income is
US$ 1.56. The outpatient waiting cost (wcOP) was set to
be US$ 1.56 in regular service periods (proportional to
the patient’s potential income loss); the inpatient waiting
cost (wcIP) was set as 0.5wcOP, differing from previous
studies [1, 14, 16] in which wcIP = 0. This cost is indir-
ectly linked to longer hospital stays, making it impossible
for new patients to be admitted. For each OP not served
in regular and overtime periods a penalty cost pcOP is in-
curred, which was set as equal to an 8-h (i.e. one work-
day) income loss. The penalty cost pcIP, associated with
IPs, was set to be 2pcOP. The overtime cost considered
the hourly wage of a radiologist in the city where the
hospital is located [28], which is US$ 11.04. The over-
time cost for an extra 15-min period is thus US$ 2.76.

Following Gocgun et al. [16], the baseline arrival prob-
abilities for IPs (pIPi ) and EPs (pEPi ) were estimated con-
sidering the ratio between the total number of service
requests for these types of patients and the total number
of business days in the month of November 2019. The
no-show probability of each OP was calculated using the
penalized logistic regression model presented in Add-
itional file 2. Considering individual characteristics and
schedules of the 2515 patients included in the validation
portion of the dataset, 100,000 random values were gen-
erated by Monte Carlo simulation for each predictor in
the regression model, from which 100,000 no-show
probabilities were estimated.
In the numerical analysis, we considered the baseline

case and two alternative levels (low and high), as shown
in Table 2.

Overbooking rules
Two overbooking rules from the literature [17] were
considered, both commonly adopted in the Brazilian
Unified Health System. In the first rule, known as
“double-booking” or “double” overbooking, two or more
patients are scheduled for the same service period. In
our study, overbooked OPs were assigned to regular ser-
vice periods starting with i = 1 and assigning an extra pa-
tient in the subsequent sixth period (i + 6). Therefore,
three OPs (two regular and one overbooked) were
scheduled on the 1st, 7th, 13th, 19th, 25th, and 31st
periods. In the second rule, known as “flight” overbooking,
all overbooked OPs are scheduled for the first period i = 1,
potentially reducing resources’ idleness but increasing the
waiting time for patients. In our study, eight OPs were
scheduled at i = 1 (two regular and six overbooked).

Alternative policies
The optimal policy obtained from solving the recursive
eqns. (15) and (16) was compared with the following al-
ternative policies, commonly reported in the literature
and observed in practice:

P1. Random selection policy: patients who wait at the
start of a regular or overtime period are randomly
selected for care;

Table 2 Parameter values for baseline and two alternative levels

Parameter Patient type

Inpatient (IP)
Baseline (low; high)

Outpatient (OP)
Baseline (low; high)

Emergency (EP)
Baseline (low; high)

Waiting cost (US$) 0.78 (0.39; 1.17) 1.56 (0.78; 2.34) –

Overtime cost (US$) 2.76 (1.38; 4.14) 2.76 (1.38; 4.14) –

Penalty cost (US$) 24.96 (12.48; 37.44) 12.48 (6.24; 18.72) –

Arrival probability 0.60 (0.40; 0.80) – 0.15 (0.10; 0.20)
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P2. Priority for OPs: OPs are prioritized over IPs. This
policy is the one closest to current practice in the
analyzed radiology department;
P3. Priority for IPs: IPs have priority over OPs;
P4. Mixed Policy 1: in the first half of regular periods,
IPs are prioritized, while in the second half, the priority
shifts to OPs. Since in our study N = 37, the first half
was comprised of 19 regular periods and the second
half of 18 regular periods. In case overtime periods are
used, OPs are prioritized;
P5. Mixed Policy 2: adopts a strategy opposite to that
of Mixed Policy 1 in regular periods while prioritizing
IPs in the case of overtime periods.

Computational experiments
The model proposed in our study was implemented in
SciLab 6.0.2, using a computer with 2.50 Giga-hertz
(GHz) CPU and 8 Gigabytes (GB) RAM (the SciLab im-
plementation code is available in Additional file 4). Two
hundred sixteen different scenarios were built for com-
parison, based on the following configurations: 2 levels
of resources (1 and 2 resources) allocated in overtime
periods; 3 levels of costs (baseline, low and high); 3 ar-
rival probabilities for IPs and EPs (baseline, low and
high); 2 overbooking rules (“double” and “flight”); and 6
policies (optimal, P1, P2, P3, P4 and P5).
Optimal and alternative policies were compared in

performance using the following indicators (i) total cost
of a business day of service and (ii) number of IPs and
OPs not served. Performance was evaluated over 10,000
business days of random events (represented by arrivals
for the three types of patients) simulated for each of the
216 scenarios. Descriptive statistics (mean and standard
deviation of 10,000 simulations) were computed for the
two indicators considered. A t-test was used to compare
the performance of the optimal policy and the alterna-
tive policy with the average total cost value closest to
that of the optimal policy, considering a significance
level of 5%.

Results
Table 3 shows the mean and standard deviation (in par-
entheses) of the total cost for each policy, derived from
the simulation of 10,000 days of random events. The op-
timal policy displayed lower average total cost when
compared to alternative policies for IP and EP arrival
probabilities at baseline levels (0.60 and 0.15, respect-
ively) overall combinations of overbooking, number of
resources in overtime periods, and cost levels. Policy P2
presented the average total cost closest to that of the op-
timal policy but different at 5% significance, reinforcing
that the optimal policy should be selected to allocate the
available capacity among the different types of patients.

Table 3 also shows that the “flight” overbooking rule
presented the highest average total costs for all policies
in all scenarios analyzed. The same behavior is observed
when varying the arrival probabilities of IPs and EPs (see
Tables 4 and 5), since the overbooking rule allocates a
large number of regular and overtime OPs in the first
service period, which consequently increases the OPs'
waiting cost. When arrival probabilities of IPs and EPs
are at baseline, the optimal policy with “double” over-
booking and two resources is the best system configur-
ation (with two resources in overtime periods, more
patients can be served, decreasing penalty costs). The
same configuration also results in lower total cost com-
pared to the one with a single overtime resource since
overtime costs are smaller than penalty costs. The same
conclusion is valid for IP and EP arrival probabilities at
low and high levels, as shown in Tables 4 and 5.
Table 4 presents the results considering IP and EP ar-

rival probabilities at the low level (0.40 and 0.10, respect-
ively). The optimal policy again displays the lowest
average total cost, followed by policy P2; however, in
some scenarios, the difference between the average total
costs of the two policies was not significant since the cri-
terion for patient selection in P2 (OPs are prioritized) is
close to that of the optimal policy when IP and EP ar-
rival probabilities are at the low level.
Table 5 presents the results considering IP and EP ar-

rival probabilities at the high level (0.80 and 0.20, re-
spectively). Again, the optimal policy displayed the
lowest average total costs compared to alternative pol-
icies. P5 was the policy with average total costs closest
to those of the optimal policy considering the two over-
booking rules and 1 resource allocated in overtime pe-
riods; in the case of 2 resources, P2 was the policy
closest to the optimal policy. However, both alternative
policies displayed average total costs significantly differ-
ent from that of the optimal policy.
Tables 3, 4, and 5 indicate the optimal policy superior

performance compared to intuitive policies, further sup-
ported by the analysis of the total costs frequency distri-
butions for the 10,000 days of simulated random events.
Figure 4 presents the histograms of arrival probabilities
of IPs and EPs at baseline, considering double overbook-
ing, two resources in overtime periods, and costs at the
baseline level. The average total costs and the 75th per-
centile values for each policy are also presented, which
indicate that 75% of the simulated days display total
costs lower than these values. For example, in Fig. 4 (A),
it can be seen that 75% of the 10,000 simulated days dis-
played costs lower than $429 for the optimal policy and
$586, $511, $594, $637, and $535 for P1, P2, P3, P4, and
P5, respectively.
Figure 5 also presents histograms of arrival probabil-

ities of IPs and EPs at baseline levels, two resources in
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overtime periods, and costs at the baseline level, but
under the “flight” overbooking rule.
Figure 6 presents histograms of arrival probabilities of

IPs and EPs at baseline levels, double overbooking, two
resources in overtime periods, and costs at the baseline
level. Figure 7 presents the resulting histograms consid-
ering the same parameters as Fig. 6 but under the
“flight” overbooking rule.
Figure 8 presents histograms of arrival probabilities of

IPs and EPs at the high level, double overbooking, two
resources in overtime periods, and costs at the baseline
level. Figure 9 presents the resulting histograms consid-
ering the same parameters as Fig. 8 but under the
“flight” overbooking rule.

From the frequency distributions, it can be observed
that regardless of the overbooking rule, number of re-
sources in overtime periods, levels of costs and probabil-
ities of arrival of IPs and EPs, the optimal policy
presented the lowest 75th percentile values and the
lower average total costs, which further reinforces its
recommended use in radiology service analyzed, particu-
larly with IPs and EPs arrival probabilities at baseline
levels (see Figs. 4 and 5) and at high levels (see Figs. 8
and 9). Additional files 5, 6, and 7, respectively, present
the histograms for the three levels of IPs and EPs arrival
probabilities (baseline, low and high), double and “flight”
overbooking rules, 1 (one) and 2 (two) overtime resources
considering the other two cost levels (low and high).

Table 3 Descriptive statistics for the total cost of policies considering two types of overbooking, two levels of overtime resources,
and three cost levels, with IP and EP arrival probabilities at baseline level

Type of
overbooking
# overtime
resources
Cost levels(2)

Arrival probabilities pIPi ¼0:60 e pEPi = 0.15

Optimal P1 P2(1) P3 P4 P5

Double overbooking

1 resource

Baseline level ($) 343.32
(130.78)

467.75
(171.73)

404.00*
(158.27)

476.86
(172.22)

496.53
(198.91)

434.89
(148.07)

Low level ($) 169.07
(66.03)

228.85
(84.81)

198.60*
(78.72)

245.11
(85.76)

254.90
(100.57)

213.18
(74.05)

High level ($) 507.79
(196.64)

702.71
(251.26)

580.32*
(238.22)

720.99
(259.57)

751.90
(300.00)

637.70
(223.79)

2 resources

Baseline level ($) 293.05
(120.25)

441.38
(161.73)

324.76*
(146.07)

455.76
(167.32)

425.95
(198.42)

397.19
(144.94)

Low level ($) 150.58
(59.94)

215.63
(80.62)

160.48*
(72.68)

228.03
(83.28)

222.88
(97.87)

194.71
(70.97)

High level ($) 441.07
(180.21)

630.40
(246.19)

489.20*
(220.83)

687.53
(251.76)

631.43
(292.19)

610.11
(214.06)

Flight overbooking

1 resource

Baseline level ($) 410.59
(144.53)

585.43
(186.50)

467.66*
(172.89)

604.80
(186.85)

613.76
(216.93)

502.70
(161.40)

Low level ($) 210.16
(72.10)

294.81
(92.41)

234.99*
(86.54)

301.18
(93.32)

312.83
(106.63)

258.50
(79.98)

High level ($) 611.92
(214.32)

875.72
(276.01)

716.71*
(256.26)

899.27
(277.60)

918.27
(325.10)

747.90
(240.13)

2 resources

Baseline level ($) 377.21
(133.06)

551.66
(175.75)

398.56
(158.50)

571.57
(179.06)

543.33
(206.55)

479.11
(154.86)

Low level ($) 182.82
(66.20)

276.54
(88.42)

189.19
(77.43)

284.86
(90.64)

262.95
(104.33)

235.20
(76.41)

High level ($) 561.52
(197.30)

814.18
(268.57)

592.78
(234.71)

846.25
(270.12)

820.29
(314.28)

697.01
(232.77)

(1)Policy with total cost closest to optimal policy; (2)Waiting, overtime and penalty costs set at the same level; *Value differs from the optimal policy at 5%
significance level
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Tables 6, 7, and 8 present the mean and standard devi-
ation values of the number of IPs and OPs not served
calculated over 10,000 days of simulated random events
for the 216 analyzed scenarios. The two overbooking
rules resulted similar in terms of number of resources
and cost levels for different arrival probability levels,
reinforcing the hypothesis that the “flight” rule displays
higher average total costs due to OP waiting costs.
Under the optimal policy, the average number of

patients unserved was smaller when two resources were
allocated in overtime periods. Considering the averages
of the 3 costs’ levels, the average reductions were: (i)
when pIPi ¼ 0:60 and pEPi ¼ 0:15 , 52% reduction for IP
and 46% for OP (“double” overbooking), and 51 and 46%

reductions for IP and OP, respectively (“flight” over-
booking) (Table 6); (ii) when pIPi ¼ 0:40 and pEPi ¼ 0:10,
93% reduction for IP and 86% for OP (“double” over-
booking), and 91 and 87% reductions for IP and OP,
respectively (“flight” overbooking) (Table 7); (iii) when
pIPi ¼ 0:80 and pEPi ¼ 0:20 , 26% reduction for IP and
24% for OP (“double” overbooking), and 28 and 25%
reductions for IP and OP, respectively (“flight” over-
booking) (Table 8). Reductions in the average number of
unserved patients led to lower average total costs with 2
resources allocated in overtime periods, regardless of
remaining configurations.
Tables 6, 7, and 8 also show that the optimal policy

promotes a balance between the number of IPs and OPs

Table 4 Descriptive statistics for the total cost of policies considering two types of overbooking, two levels of overtime resources,
and three cost levels, with IP and EP arrival probabilities at the low level

Type of
overbooking
# overtime
resources
Cost levels(2)

Arrival probabilities pIPi ¼0:40 e pEPi = 0.10

Optimal P1 P2(1) P3 P4 P5

Double overbooking

1 resource

Baseline level ($) 112.25
(77.45)

165.03
(110.69)

114.96*
(89.18)

179.42
(115.82)

150.68
(114.73)

139.50
(94.95)

Low level ($) 55.03
(37.45)

82.52
(54.28)

55.85
(43.87)

82.68
(54.85)

73.57
(56.65)

71.09
(48.15)

High level ($) 161.53
(114.41)

222.40
(156.82)

166.57*
(131.12)

258.82
(169.23)

223.99
(174.05)

212.16
(145.72)

2 resources

Baseline level ($) 90.92
(63.62)

152.79
(99.96)

101.44*
(62.99)

161.55
(101.63)

127.83
(91.51)

140.21
(89.69)

Low level ($) 46.75
(32.27)

80.96
(51.52)

48.60*
(31.32)

82.66
(51.98)

64.37
(45.68)

66.53
(43.46)

High level ($) 143.99
(93.77)

230.29
(151.72)

146.50*
(98.73)

248.54
(156.36)

196.58
(138.51)

203.99
(131.22)

Flight overbooking

1 resource

Baseline level ($) 169.43
(85.57)

252.00
(134.24)

170.55
(102.37)

238.96
(133.80)

240.45
(137.52)

207.82
(114.96)

Low level ($) 84.34
(44.76)

116.28
(64.76)

84.48
(50.13)

123.63
(66.59)

119.13
(68.31)

103.82
(58.20)

High level ($) 249.22
(129.76)

369.74
(199.12)

255.11*
(146.80)

383.96
(203.73)

357.37
(205.57)

302.48
(171.79)

2 resources

Baseline level ($) 153.10
(74.07)

240.35
(126.87)

156.41*
(79.62)

246.59
(128.17)

216.77
(113.97)

206.45
(107.87)

Low level ($) 78.23
(37.65)

117.70
(61.94)

78.23
(39.90)

118.99
(63.56)

111.28
(57.93)

99.76
(52.41)

High level ($) 233.99
(114.59)

349.00
(187.17)

240.04*
(119.92)

369.78
(190.75)

325.58
(170.51)

313.09
(164.14)

(1)Policy with total cost closest to optimal policy; (2)Waiting, overtime, and penalty costs set at the same level; *Value differs from the optimal policy at 5%
significance level
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not served, while remaining policies penalize only one
type of patient due to their patient selection criteria.

Discussion
Our study contributes to the literature by incorporating
into the dynamic capacity allocation problem two as-
pects that best represent the reality of many radiology
departments. First, we showed that the number of avail-
able resources has implications not only regarding the
set of feasible actions in each service period but also re-
garding the set of possible states, demonstrated through
restrictions that limit the sum of IPs and OPs waiting
for service at the start of each period. Such restrictions
contribute to minimizing the impact of the

“dimensionality curse” present in real problems with
large state spaces, which in turn limit the application of
traditional dynamic programming methods in determin-
ing optimal policies of an MDP model. In the model
presented here, if states were created considering only
lower and upper limits of each patient type waiting for
service, disregarding restrictions related to capacities in
each service period, 93,534 possible states would be gen-
erated under “double” overbooking and allocation of two
overtime resources. Applying the proposed restrictions,
the number of states reduces by approximately 43%, to
52,680.
The second contribution is associated with the fact

that OP no-show probabilities were obtained from a

Table 5 Descriptive statistics for the total cost of policies considering two types of overbooking, two levels of overtime resources,
and three cost levels, with IP and EP arrival probabilities at the high level

Type of
overbooking
# overtime
resources
Cost levels(3)

Arrival probabilities pIPi ¼0:80 e pEPi = 0.20

Optimal P1 P2(1) P3 P4 P5(2)

Double overbooking

1 resource

Baseline level ($) 656.56
(141.34)

832.58
(170.72)

758.82
(161.60)

866.45
(171.92)

923.30
(189.28)

754.50*
(141.25)

Low level ($) 324.96
(70.70)

407.52
(85.61)

378.27
(81.18)

432.05
(86.26)

466.04
(92.80)

371.85*
(71.10)

High level ($) 969.74
(212.71)

1258.75
(258.59)

1126.33
(242.66)

1319.41
(257.27)

1387.52
(283.22)

1118.28*
(213.98)

2 resources

Baseline level ($) 586.69
(140.54)

783.24
(171.00)

668.53*
(161.44)

815.19
(174.62)

868.99
(205.47)

716.37
(141.86)

Low level ($) 292.47
(70.08)

398.07
(84.96)

344.99*
(80.13)

418.19
(86.15)

434.20
(101.38)

353.85
(72.03)

High level ($) 882.31
(208.00)

1195.90
(254.48)

1015.75*
(239.29)

1261.63
(258.62)

1282.50
(307.69)

1071.53
(214.38)

Flight overbooking

1 resource

Baseline level ($) 738.81
(152.76)

954.45
(176.59)

851.64
(169.44)

996.46
(177.74)

1058.32
(190.40)

820.62*
(151.04)

Low level ($) 372.66
(76.82)

483.94
(87.03)

421.22
(84.62)

493.10
(88.76)

534.36
(94.74)

416.52*
(75.68)

High level ($) 1116.08
(223.58)

1432.55
(270.45)

1261.66
(255.89)

1494.57
(265.11)

1595.45
(285.36)

1258.85*
(224.34)

2 resources

Baseline level ($) 663.58
(151.39)

927.70
(174.66)

751.88*
(168.71)

953.99
(180.40)

1006.81
(212.10)

818.11
(147.15)

Low level ($) 339.78
(74.50)

464.97
(88.97)

381.60*
(85.50)

482.96
(89.88)

498.59
(105.10)

400.68
(74.42)

High level ($) 993.97
(220.90)

1378.43
(262.20)

1143.96*
(254.86)

1442.79
(269.03)

1507.36
(314.48)

1213.41
(226.83)

(1),(2) Policy with total cost closest to optimal policy; (3)Waiting, overtime, and penalty costs set at the same level; *Value differs from the optimal policy at 5%
significance level
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statistical model that considers the characteristics of pa-
tients and appointment schedules. In the MDP model
proposed here, individual no-show probabilities are con-
sidered in the calculation of transition probabilities be-
tween system stages, which was not considered in the
related literature. The extensive numerical analyses car-
ried out under different scenarios based on parameters
obtained in a case study allowed us to validate the opti-
mal policy in comparison with 5 alternative policies, two
of which were not covered in previous studies (P4 and
P5). We reinforced conclusions from similar studies
which attest to the superiority of optimal policies over
intuitive policies [16, 17].
The implementation of the model proposed here can

effectively improve the efficiency of the analyzed radi-
ology department, maximizing the service rates of SUS

patients. Our model may be easily adopted by managers
of radiology departments to allocate available capacity.
For example: consider the case where in the first period
(i = 1) 3 OPs ðAgOP

1 ¼ 3Þ are scheduled under the double
overbooking rule, and there are 3 resources available for
service (C1 = 3). Let z1 = (1, 3, 1) be the observed system
state, meaning that 1 IP, 3 OPs, and 1 EP await service.
In this case, the model indicates that there are two feas-
ible actions for this state, given the available capacity:
Az1 ¼ ð0; 2; 1Þ or Az1 ¼ ð1; 1; 1Þ . The model indicates
that the best decision is the one with the lowest costs,
that is, Az1 ¼ ð0; 2; 1Þ that represents selecting for service
0 IPs, 2 OPs, and 1 EP at the cost of US$ 16.37. In Add-
itional file 8, a spreadsheet is provided with the solution
presented by the model for the problem considering a
double overbooking rule, two resources allocated in

Fig. 4 (A) Histograms of total costs of 10,000 days of service simulated with double overbooking, 1 (one) overtime resource and costs at baseline
level (probabilities of IPs and EPs – baseline level); (B) Histograms of total costs of 10,000 days of service simulated with double overbooking, 2
(two) overtime resources and costs at baseline level probabilities of IPs and EPs – baseline level)
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overtime periods, cost levels and probabilities of arrival
of IPs and EPs set at the base levels. By informing the
period of service and the numbers of IPs, OPs, and EPs
waiting for service in the spreadsheet, managers may
visualize the decision with the lowest associated cost.
Following the guidelines above, it is noteworthy that

the application of the model is not restricted to the Bra-
zilian case, being easily adaptable to radiology facilities
in other countries. For that, the analyst must inform the
values of the model parameters that characterize the
system of interest (the list of parameters is available in
Table 1). Changes in parameter values tested in the
numerical analysis reported here demonstrated the ro-
bustness of the optimal policy, enabling it to be imple-
mented at any radiology facility, regardless of size and
demand for exams.

Implications of using our proposed model are mainly
associated with efficiency improvements in the use of
CT resources, costs and/or revenues. For example, con-
sidering the recommendation to use the optimal policy,
under a double overbooking rule, two resources in over-
time, and IPs and EPs arrival probabilities at baseline
levels, the average occupancy rate observed for the
system was 97.16%. Previous studies proposing similar
approaches and using real data from radiology services
in other countries reported resource utilization rates
close to those observed here. Patrick et al. [15] used data
from a radiology service in Canada. They observed that
the occupancy rate for CT resources ranged between
96.60 and 99.85% using the optimal policy, considering
various combinations of scenarios. Schütz and Kolisch
[17] reported an average utilization rate of 91.20% for

Fig. 5 (A) Histograms of total costs of 10,000 days of service simulated with flight overbooking, 1 (one) overtime resource and costs at baseline
level (probabilities of IPs and EPs – baseline level); (B) Histograms of total costs of 10,000 days of service simulated with “flight” overbooking, 2
(two) overtime resources and costs at baseline level (probabilities of IPs and EPs – baseline level)
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MRI resources in a radiology department of a university
hospital located in Germany.
The model proposed in this article may also be applied

to other types of radiology resources, such as X-ray,
ultrasound, and magnetic resonance, without demanding
significant changes in its structure. Further, our model
may be adapted to consider stochastic service times,
although the assumption of deterministic times is
aligned with similar studies focusing on Radiology
services listed in Table S1 (Additional file 1).
Extensions of this research may include the design of

overbooking rules that allows optimized scheduling of
overtime patients. In addition, the proposed model could
be extended to include other factors, such as OPs that
leave the system without being served after long waits
incurring a penalty cost for dropping out.

Conclusions
The optimal policy obtained by the proposed model
showed superior performance (lowest total daily cost)
compared to alternative policies when considering the
premises and parameters established in the present
work. Guidelines for the practical implementation of this
policy were provided with relative ease so that by ob-
serving the state of the system at any time (number of
patients waiting for the service), managers of the
radiology services can make a decision (number and
types of patients which must be admitted for service) so
that the cost of the system is minimized.
The alternative policy that prioritizes outpatients for

care in relation to inpatients (policy P2) was the one that
performed closest to the optimal policy and is also easy
to implement in practice.

Fig. 6 (A) Histograms of total costs of 10,000 days of service simulated with double overbooking, 1 (one) overtime resource and costs at baseline
level (probabilities of IPs and EPs – low levels); (B) Histograms of total costs of 10,000 days of service simulated with double overbooking, 2 (two)
overtime resources and costs at baseline level (probabilities of IPs and EPs – low level)
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Fig. 7 (A) Histograms of total costs of 10,000 days of service simulated with flight overbooking, 1 (one) overtime resource and costs at baseline
level (probabilities of IPs and EPs – low levels); (B) Histograms of total costs of 10,000 days of service simulated with “flight” overbooking, 2 (two)
overtime resources and costs at baseline level (probabilities of IPs and EPs – low level)
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Fig. 8 (A) Histograms of total costs of 10,000 days of service simulated with double overbooking, 1 (one) overtime resource and costs at baseline
level (probabilities of IPs and EPs – high levels); (B) Histograms of total costs of 10,000 days of service simulated with double overbooking, 2 (two)
overtime resources and costs at baseline level (probabilities of IPs and EPs – high level)
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Fig. 9 (A) Histograms of total costs of 10,000 days of service simulated with flight overbooking, 1 (one) overtime resource and costs at baseline
level (probabilities of IPs and EPs – high levels); (B) Histograms of total costs of 10,000 days of service simulated with “flight” overbooking, 2 (two)
overtime resources and costs at baseline level (probabilities of IPs and EPs – high level)
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Table 6 Number of IPs and OPs not served under each policy considering different scenarios, with IP and EP arrival probabilities at
baseline level

Type Policies

Optimal P1 P2 P3 P4 P5

Double overbooking

1 overtime resource

Costs: baseline IP 1.79 ± 1.37 0.11 ± 0.47 7.70 ± 3.89 – 7.22 ± 3.45 –

OP 5.68 ± 2.79 7.38 ± 3.86 – 7.44 ± 3.89 0.28 ± 0.91 7.77 ± 3.87

Costs: low IP 1.74 ± 1.37 0.14 ± 0.52 7.43 ± 3.86 – 7.39 ± 3.45 –

OP 5.61 ± 2.82 7.22 ± 3.82 – 7.68 ± 3.88 0.31 ± 0.95 7.61 ± 3.87

Costs: high IP 1.81 ± 1.40 0.14 ± 0.53 7.21 ± 3.90 – 7.31 ± 3.43 –

OP 5.77 ± 2.77 7.46 ± 3.77 – 7.39 ± 3.87 0.31 ± 0.96 7.48 ± 3.88

2 overtime resources

Costs: baseline IP 0.83 ± 1.05 0.03 ± 0.28 3.93 ± 3.37 – 3.85 ± 3.35 –

OP 2.93 ± 2.48 3.95 ± 3.32 – 3.91 ± 3.38 0.02 ± 0.25 3.94 ± 3.38

Costs: low IP 0.85 ± 1.05 0.02 ± 0.17 3.87 ± 3.34 – 4.13 ± 3.35 –

OP 3.10 ± 2.50 3.74 ± 3.31 – 3.96 ± 3.35 0.02 ± 0.20 3.73 ± 3.31

Costs: high IP 0.87 ± 1.09 0.01 ± 0.18 3.98 ± 3.38 – 3.74 ± 3.29 –

OP 3.13 ± 2.49 3.66 ± 3.31 – 3.95 ± 3.38 0.02 ± 0.22 4.16 ± 3.41

Flight overbooking

1 overtime resource

Costs: baseline IP 1.75 ± 1.40 0.19 ± 0.55 7.14 ± 3.99 – 7.01 ± 3.61 –

OP 5.38 ± 2.86 7.31 ± 3.99 – 7.42 ± 3.97 0.28 ± 0.91 7.05 ± 3.99

Costs: low IP 1.79 ± 1.43 0.16 ± 0.49 7.23 ± 3.99 – 7.12 ± 3.56 –

OP 5.54 ± 2.85 7.26 ± 3.94 – 7.30 ± 3.96 0.28 ± 0.90 7.52 ± 3.96

Costs: high IP 1.74 ± 1.41 0.24 ± 0.60 7.25 ± 3.97 – 7.00 ± 3.61 –

OP 5.32 ± 2.79 7.11 ± 3.87 – 7.08 ± 3.95 0.28 ± 0.89 7.00 ± 3.94

2 overtime resources

Costs: baseline IP 0.88 ± 1.10 0.06 ± 0.26 3.70 ± 3.40 – 3.74 ± 3.33 –

OP 3.01 ± 2.49 3.56 ± 3.29 – 3.66 ± 3.32 0.02 ± 0.21 3.67 ± 3.37

Costs: low IP 0.83 ± 1.07 0.08 ± 0.29 3.31 ± 3.24 – 3.55 ± 3.29 –

OP 2.79 ± 2.46 3.65 ± 3.39 – 3.71 ± 3.36 0.02 ± 0.22 3.48 ± 3.27

Costs: high IP 0.88 ± 1.11 0.02 ± 0.17 3.63 ± 3.36 – 3.79 ± 3.33 –

OP 2.97 ± 2.48 3.50 ± 3.28 – 3.60 ± 3.33 0.02 ± 0.22 3.43 ± 3.28
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Table 7 Number of IPs and OPs not served under each policy considering different scenarios, with IP and EP arrival probabilities at
the low level

Policies

Type Optimal P1 P2 P3 P4 P5

Double overbooking

1 overtime resource

Costs: baseline IP 0.14 ± 0.42 0.02 ± 0.16 1.02 ± 1.80 – 1.03 ± 1.79 –

OP 0.91 ± 1.53 1.01 ± 1.78 – 1.10 ± 1.89 – 0.87 ± 1.66

Costs: low IP 0.13 ± 0.41 0.02 ± 0.21 0.95 ± 1.75 – 0.97 ± 1.75 –

OP 0.86 ± 1.48 0.98 ± 1.72 – 0.89 ± 1.71 – 0.94 ± 1.72

Costs: high IP 0.14 ± 0.43 0.02 ± 0.16 0.96 ± 1.76 – 0.98 ± 1.77 –

OP 0.88 ± 1.51 0.80 ± 1.60 – 0.98 ± 1.79 – 0.91 ± 1.74

2 overtime resources

Costs: baseline IP 0.01 ± 0.12 0.00 ± 0.00 0.12 ± 0.61 – 0.13 ± 0.63 –

OP 0.12 ± 0.53 0.13 ± 0.64 – 0.13 ± 0.64 – 0.15 ± 0.66

Costs: low IP 0.01 ± 0.13 0.00 ± 0.00 0.12 ± 0.61 – 0.13 ± 0.62 –

OP 0.11 ± 0.52 0.16 ± 0.69 – 0.15 ± 0.67 – 0.11 ± 0.56

Costs: high IP 0.01 ± 0.14 0.00 ± 0.00 0.14 ± 0.66 – 0.13 ± 0.63 –

OP 0.13 ± 0.57 0.13 ± 0.64 – 0.15 ± 0.69 – 0.12 ± 0.58

Flight overbooking

1 overtime resource

Costs: baseline IP 0.11 ± 0.38 0.02 ± 0.18 0.79 ± 1.69 – 0.85 ± 1.71 –

OP 0.65 ± 1.34 0.83 ± 1.69 – 0.67 ± 1.55 – 0.78 ± 1.65

Costs: low IP 0.12 ± 0.40 0.01 ± 0.14 0.75 ± 1.62 – 0.83 ± 1.69 –

OP 0.70 ± 1.39 0.67 ± 1.51 – 0.72 ± 1.57 – 0.80 ± 1.67

Costs: high IP 0.10 ± 0.38 0.00 ± 0.00 0.73 ± 1.56 – 0.82 ± 1.69 –

OP 0.63 ± 1.30 0.79 ± 1.63 – 0.78 ± 1.63 – 0.74 ± 1.60

2 overtime resources

Costs: baseline IP 0.01 ± 0.11 0.00 ± 0.00 0.11 ± 0.58 – 0.10 ± 0.57 –

OP 0.08 ± 0.44 0.12 ± 0.61 – 0.10 ± 0.56 – 0.11 ± 0.59

Costs: low IP 0.01 ± 0.13 0.00 ± 0.00 0.11 ± 0.60 – 0.12 ± 0.63 –

OP 0.09 ± 0.48 0.09 ± 0.53 – 0.10 ± 0.57 – 0.09 ± 0.51

Costs: high IP 0.01 ± 0.11 0.00 ± 0.00 0.12 ± 0.60 – 0.10 ± 0.55 –

OP 0.09 ± 0.49 0.11 ± 0.57 – 0.10 ± 0.57 – 0.12 ± 0.63
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Table 8 Number of IPs and OPs not served under each policy considering different scenarios, with IP and EP arrival probabilities at
the high level

Type Policies

Optimal P1 P2 P3 P4 P5

Double overbooking

1 overtime resource

Costs: baseline IP 5.11 ± 1.69 0.43 ± 1.03 16.60 ± 3.88 – 13.75 ± 2.21 –

OP 11.56 ± 2.62 16.04 ± 3.81 – 16.56 ± 3.84 2.57 ± 2.66 16.61 ± 3.84

Costs: low IP 5.01 ± 1.69 0.60 ± 1.18 16.55 ± 3.89 – 13.83 ± 2.17 –

OP 11.49 ± 2.64 15.53 ± 3.95 – 16.54 ± 3.83 2.73 ± 2.71 16.34 ± 3.86

Costs: high IP 5.16 ± 1.70 0.24 ± 0.77 16.41 ± 3.89 – 13.81 ± 2.16 –

OP 11.32 ± 2.62 16.25 ± 3.79 – 16.98 ± 3.80 2.66 ± 2.69 16.43 ± 3.86

2 overtime resources

Costs: baseline IP 3.71 ± 1.61 0.08 ± 0.49 12.38 ± 3.88 – 11.87 ± 3.16 –

OP 8.67 ± 2.67 12.20 ± 3.86 – 12.26 ± 3.86 0.63 ± 1.39 12.52 ± 3.84

Costs: low IP 3.70 ± 1.59 0.25 ± 0.74 12.99 ± 3.83 – 11.83 ± 3.14 –

OP 8.67 ± 2.66 12.23 ± 3.83 – 12.68 ± 3.86 0.59 ± 1.32 12.35 ± 3.88

Costs: high IP 3.88 ± 1.62 0.12 ± 0.55 12.62 ± 3.82 – 11.73 ± 3.18 –

OP 8.73 ± 2.58 12.45 ± 3.93 – 12.80 ± 3.84 0.58 ± 1.34 12.58 ± 3.84

Flight overbooking

1 overtime resource

Costs: baseline IP 5.20 ± 1.76 0.36 ± 0.95 16.65 ± 3.89 – 13.77 ± 2.21 –

OP 11.17 ± 2.60 15.94 ± 3.87 – 16.47 ± 3.89 2.54 ± 2.64 15.96 ± 3.93

Costs: low IP 5.22 ± 1.77 0.57 ± 1.15 16.41 ± 3.91 – 13.83 ± 2.19 –

OP 11.32 ± 2.62 15.80 ± 3.97 – 16.26 ± 3.88 2.72 ± 2.70 16.39 ± 3.92

Costs: high IP 5.35 ± 1.78 0.31 ± 0.93 16.26 ± 3.96 – 13.82 ± 2.16 –

OP 11.28 ± 2.49 15.98 ± 3.99 – 16.53 ± 3.83 2.68 ± 2.69 16.45 ± 3.91

2 overtime resources

Costs: baseline IP 3.73 ± 1.68 0.14 ± 0.48 12.20 ± 3.88 – 11.91 ± 3.17 –

OP 8.32 ± 2.62 12.27 ± 3.96 – 12.42 ± 3.91 0.69 ± 1.46 12.76 ± 3.85

Costs: low IP 3.85 ± 1.69 0.29 ± 0.64 12.47 ± 3.94 – 11.74 ± 3.20 –

OP 8.49 ± 2.58 12.26 ± 3.89 – 12.67 ± 3.90 0.58 ± 1.32 12.36 ± 3.85

Costs: high IP 3.84 ± 1.69 0.06 ± 0.40 12.57 ± 3.90 – 11.86 ± 3.15 –

OP 8.28 ± 2.54 12.33 ± 3.83 – 12.42 ± 3.91 0.65 ± 1.42 12.54 ± 3.90
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