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Abstract

Background: The Oncology Care Model (OCM) was developed as a payment model to encourage participating
practices to provide better-quality care for cancer patients at a lower cost. The risk-adjustment model used in OCM
is a Gamma generalized linear model (Gamma GLM) with log-link. The predicted value of expense for the episodes
identified for our academic medical center (AMC), based on the model fitted to the national data, did not correlate
well with our observed expense. This motivated us to fit the Gamma GLM to our AMC data and compare it with
two other flexible modeling methods: Random Forest (RF) and Partially Linear Additive Quantile Regression
(PLAQR). We also performed a simulation study to assess comparative performance of these methods and
examined the impact of non-linearity and interaction effects, two understudied aspects in the field of cost
prediction.

Methods: The simulation was designed with an outcome of cost generated from four distributions: Gamma,
Weibull, Log-normal with a heteroscedastic error term, and heavy-tailed. Simulation parameters both similar to and
different from OCM data were considered. The performance metrics considered were the root mean square error
(RMSE), mean absolute prediction error (MAPE), and cost accuracy (CA). Bootstrap resampling was utilized to
estimate the operating characteristics of the performance metrics, which were described by boxplots.

Results: RF attained the best performance with lowest RMSE, MAPE, and highest CA for most of the scenarios.
When the models were misspecified, their performance was further differentiated. Model performance differed
more for non-exponential than exponential outcome distributions.
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Conclusions: RF outperformed Gamma GLM and PLAQR in predicting overall and top decile costs. RF
demonstrated improved prediction under various scenarios common in healthcare cost modeling. Additionally, RF
did not require prespecification of outcome distribution, nonlinearity effect, or interaction terms. Therefore, RF
appears to be the best tool to predict average cost. However, when the goal is to estimate extreme expenses, e.g.,
high cost episodes, the accuracy gained by RF versus its computational costs may need to be considered.

Keywords: Oncology care model, Risk-adjustment model, Machine learning, Quantile regression, Generalized linear
model

Background
Scientific progress in oncology in the past two decades
has led to new diagnostic tools and the development of
novel targeted therapies. These discoveries have directly
led to increased longevity in the setting of cancer.
Therefore, many more patients are living with cancer as
a chronic condition for longer periods of time and po-
tentially accruing more healthcare costs over a lifetime
[1]. It is estimated that the national cancer costs in the
US will increase to $173 billion in 2020, which repre-
sents a 39% increase from 2010 [2], and is as such un-
sustainable for our health care system.
The Centers of Medicare & Medicaid Services (CMS)

developed the Oncology Cancer Model (OCM) as an
episode-based payment model to encourage participating
practices to provide higher quality care at the same or
lower cost for Medicare fee-for-service beneficiaries with
cancer, in an effort to control healthcare costs related to
cancer [3]. Each episode was defined as a 6-month
period triggered by the receipt of outpatient non-topical
chemotherapy or hormonal therapy for treatment of
cancer. The OCM reimbursement model, initiated on
July 1, 2016 for an anticipated 5 years (completing June
30, 2021) offers participating providers the potential to
receive performance-based payments if they achieve cer-
tain quality outcomes and reduce their expenditures
below a target price during the 6-month performance
periods. A fundamental element of the OCM reimburse-
ment model involves accurate target price-setting, as
practices should only be held accountable for what they
can manage. Thus, it is necessary to adjust for factors
that drive expense over which a provider has no control
(e.g. age, gender, case mix). CMS determines a target
price based on historical utilization that is risk-adjusted,
trended to the current performance period, and adjusted
for new therapies that came into practice after model
development. Determining a practice’s success relies on
utilization of models that can reliably measure small sav-
ings improvements – on the order of 4 to 8% - above
the background variation.
Currently, the risk-adjustment model underlying OCM

is a Gamma generalized linear model with log link
(Gamma GLM). The model was originally developed

using a national sample of over 2.7 million cancer epi-
sodes with 13 covariates [4]. OCM provided the original
data on observed expenses, covariates, and predicted ex-
penses back to the participating practices for the pur-
pose of future planning. If the predicted expense
correlated well with the observed expenses in the na-
tional sample, then individual practices would know to
focus their performance improvement efforts in areas
where actual expenses were meaningfully greater than
expected. Unfortunately, the data for Mount Sinai OCM
during the baseline period revealed that the OCM
Gamma GLM model cost predictions did not correlate
well with our observed cost data (see Fig. 1). This obser-
vation implies that Mount Sinai cancer care is ineffi-
ciently delivered, the OCM model is inaccurate, or both.
To further understand potential reasons for this ob-
served discrepancy, we were motivated to first closely
examine the OCM data within a specific patient cohort
for whom full cost data were available [5].
In this earlier work, we expected that residual variation

(the difference between actual and expected expenses)
should remain after risk adjustment, but were unclear
whether what we observed in our data was valid. Several
factors remain unadjusted for within OCM’s model such
as the accurate capture of disease progression. While the
OCM prostate cancer model includes a factor for
castration-resistant prostate cancer, it does not further
account for whether a given patient’s condition warrants
particular 2nd line hormonal therapies [5]. These ther-
apies’ costs alone exceed the upper limit for OCM pros-
tate cancer episode price. Other OCM episodes, such as
those for Breast Cancer, exhibit similar issues. CMS is
working to improve the models’ factors to account for
disease progression, so our next area of focus was to find
whether there were better forms of predictive models for
OCM episode data.
Healthcare cost data is usually skewed and het-

eroscedastic, meaning the variability of cost is un-
equal across the range of values of a second
variable that predicts it. Gamma GLM is often
used in practice to capture these features [6, 7].
However, Gamma GLM would have poor predic-
tion accuracy when the underlying outcome
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distribution deviates somewhat from the Gamma
distribution, or the log link is not the most suit-
able link [8–11]. For example, a Veteran Affairs
study showed that prediction accuracy of a log link
Gamma GLM was the lowest compared to alterna-
tive methods such as log normal, square root nor-
mal, and Gamma GLM with square-root link
models [11]. Two other simulation studies also
demonstrated that the coefficient estimates of the
predictors from Gamma GLM were consistent but
imprecise when the outcome did not follow
Gamma distribution [9, 10]. Another general criti-
cism of Gamma GLM is that it may not converge
when the sample size is small to moderate [11].
Since it is impossible to know exactly if the out-
come distribution belongs to a specific family of
distribution, performance sensitivity at this level is
not desirable. To this end, finding semi-parametric
or nonparametric models, which are less sensitive
to the specification of outcome distribution, is ne-
cessary. In addition, when covariates impact out-
comes in a non-linear manner and when an
interaction effect exists between covariates, ignor-
ing these features in the specification or choice of
model could affect model fit [12, 13]. Therefore,
we searched for models that could incorporate
these features without pre-specification of the

functional form, or could approximate the relation-
ship without needing its correct specification. We
also examined the sensitivity of those results.
Two flexible modeling approaches, Partially Linear

Additive Quantile Regression (PLAQR) and Random
Forests (RF), emerged as strong candidates for compari-
son against the Gamma GLM model [6, 14]. The
PLAQR model is a semi-parametric model, which allows
the non-linear relationship of the outcome and covari-
ates and makes no assumptions about the distribution of
the error term. Thus, this approach has a greater flexibil-
ity than the Gamma GLM. The RF is a non-parametric
approach with high prediction accuracy, capable of de-
tecting interaction and nonlinearity without needing
pre-specified functional form [15]. It has been promoted
in clinical research, biomarker comparisons, and genom-
ics studies [16–19]. However, the literature has only fo-
cused on comparing parametric cost prediction models;
little is known about how these models perform on a
relative basis [8, 10, 11].
We conducted a simulation study to compare the pre-

dictive accuracy of Gamma GLM, PLAQR, RF under a
variety of scenarios regarding outcome distribution and
model specification. In particular, we compared model
performance in terms of the ability to predict average
overall episode cost, and estimate the expense of the
high-cost episodes. High-cost episodes were defined as

Fig. 1 Observed versus expected expenses for the OCM model
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episodes where costs exceeded the 90th percentile of the
cost distribution. We also fit these models using Mount
Sinai OCM payment data. Based on this information, we
provide recommendations on which method was optimal
for modeling healthcare cost data.

Methods
Overview of OCM data
Center for Medicare and Medicaid Innovations (CMMI)
provided OCM payment data to each participating prac-
tice for episodes of care that were attributed to the prac-
tice. An episode was triggered by the receipt of a
qualifying chemotherapy drug and included the sum of
all Medicare facility and professional (Part A, B) and
some pharmacy (Part D) expenses. The duration of the
episode was 6 months from the trigger event. The data
for the baseline period was provided at the episode level
with actual and predicted expenditures. The 13 covari-
ates used in the OCM risk adjustment model were 1)
Age/Sex (10 categories), 2) Cancer type, 3) Chemother-
apy drugs taken/administered during the episode (breast,
bladder and prostate cancers only), 4) Receipt of cancer-
related surgery, 5) Part D eligibility and dual eligibility
for Medicare and Medicaid, 6) Receipt of radiation ther-
apy, 7) Receipt of bone marrow transplant, 8) Clinical
trial participation, 9) Comorbidities, 10) History of prior
chemotherapy use, 11) Institutional status, 12) Episode
length, and 13) Geographic location/Hospital Referral
Region. Mount Sinai baseline data included 4205 epi-
sodes between January 1, 2012 and December 31, 2014,
with the last episode end date on June 30, 2015. Compu-
tational details on how the baseline episode expenditure,
target amount, and actual episode expenditure is avail-
able in the RTI International, 2017 and is constantly up-
dated on the OCM website (https://innovation.cms.gov/
initiatives/Oncology-Care/) [3, 4].

Overview of statistical methods
Gamma GLM with log-link is widely used for healthcare
cost prediction because it is amenable to the skewness
and heteroscedasticity often observed in cost data [7,

20]. However, it has been criticized for its poor perform-
ance if the underlying outcome distribution deviates
from Gamma distribution or the log link is not the most
suitable [8–11]. Recently, semi-parametric and nonpara-
metric models have been used in cost prediction due to
their flexibility and ease of implementation. For example,
Maidman et al. (2017) used PLAQR to predict future ex-
pense occurring at the upper (or lower) tail of the cost-
distribution in the Medical Expenditure Panel Survey, a
national survey that contains data from individuals’ med-
ical providers and employers [6]. Wang et al. (2017)
employed RF to stratify high-cost schizophrenia patients
using administrative data [21]. However, use of these
models is still limited. We briefly describe each method
below and summarize their features in Table 1.

Gamma generalized linear model with log link (gamma
GLM)
Generalized linear models (GLM) are an extension of
linear regression with similar assumptions of inde-
pendent and identically distributed data elements, a
correct specification of the outcome distribution, and
an appropriate link function (relationship between the
covariates and the outcome). GLM is shown to be
suitable for modeling the outcome distribution in the
exponential family such as normal, lognormal, Wei-
bull, and Gamma distribution. In other words, GLM
can accommodate a variety of outcome characteristics
such as skewness, heteroscedasticity, and being
bounded or categorical. It is also able to handle a
variety of links including inverse link, log link, and
identity link. GLM assuming Gamma distribution
(Gamma GLM) with a log link is appropriate for ana-
lyzing healthcare expense data, and is used for OCM
cost modeling [4, 22, 23].
The Gamma GLM with log link is expressed as

In E Yð Þð Þ¼Xβ;Y∼Gamma κ; θð Þ ð1Þ

where Y is the outcome, X denotes the covariate matrix,
β is a vector of coefficients, and κ, θ are the location and

Table 1 Model characteristics for Gamma GLM, PLAQR, and Random Forest (RF) models

Gamma GLM PLAQR Random Forest

Distribution assumption Parametric Semi-parametric Nonparametric

Estimate Mean Quantile Mean

Ability to model skewed
outcome

Yes Yes Yes

Non-linear effect Needs to be specified through model
diagnostics

Needs to be specified (B-spline) Data-driven detection; pre-specification
not needed

Interaction effect Needs to be specified through model
diagnostics

Needs to be specified through model
diagnostics

Data-driven detection; pre-specification
not needed

Software R, SAS, STATA R R, SAS
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rate parameters of the gamma distribution. While using
this parametric model, model diagnostics were employed
to find the functional form of non-linearity and inter-
action effects were pre-specified based on the subject
matter knowledge. Models were then fitted with these
specifications to make predictions. However, in simula-
tion studies, B-spline basis functions (a nonparametric
regression approach) were used for modeling the nonlin-
ear relationship, and multiplicative interaction effects
were specified. The latter was to match what was used
in OCM. To stratify a high-cost episode using Gamma
GLM, first the predicted cost for the episode from the
fitted model was noted. It was labeled as a high-cost epi-
sode if the predicted cost was greater than a pre-defined
threshold of the 90th percentile of the observed cost.

Partially linear additive quantile regression (PLAQR)
Quantile regression, which estimates the quantiles of the
outcome conditional on the predictors, is a semipara-
metric regression model that can address the skewness
and heteroscedasticity typical of cost data. Let QYijXi

ðτÞ
denote the τth (0 < τ < 1) quantile of outcome Yi for the
ith episode given the predictors Xi, and β(τ) is the vector
of coefficients for covariates X. The quantile regression
can then be specified as.

QYι Xιj τð Þ ¼ Xiβ τð Þ ð2Þ

Maidman et al. (2017) extended this to partially linear
additive quantile regression (PLAQR) by using the B-
spline function to approximate the non-linear relation-
ship [6]. The formula of PLAQR therefore changes to

QYι Xιj τð Þ¼Viβ
0 τð Þþ

Xq

k¼1
gk Zikð Þ ð3Þ

where β ′ (τ) is a vector of the coefficients for covari-
ates with linear effect, Vi, and gk(Zik) is the B-spline
function for a q-vector covariates with non-linear effect,
Zik (k = 1,2,3, …,q; i = 1, 2,…, n).
Similar to Gamma GLM, we stratified and labeled an

episode as a high-cost episode if the predicted cost from
PLAQR was greater than the 90th percentile of the ob-
served cost. To compare with other models, we fitted
PLAQR in the original scale of the outcome and with τ
= 50th percentile.

Random forests (RF)
The random forests (RF) is an ensemble learning tech-
nique that aggregates multiple decision trees. This aggre-
gation drastically reduces variance compared to fitting a
single decision tree. RF compares favorably with other
frequently used nonparametric prediction models and
can detect nonlinear covariate effects and interactions
without any pre-specification [14, 24–26]. Here we

consider Breiman’s original version of RF only, acknow-
ledging that other variants exist [14].
The core idea of the RF algorithm is “bagging”, or

bootstrap aggregating. In each bootstrap iteration, a sin-
gle classification and regression tree (CART) is fit on the
bootstrapped sample of the original data, excluding a
proportion of the sample, referred to as “out-of-bag”
(OOB) data. Then, predictions from each tree are ob-
tained for the OOB data by dropping it down the tree.
The average of OOB performance metrics can then be
used to gauge the predictive performance of the entire
ensemble. This value usually correlates well with the as-
sessment of predictive performance we can get with ei-
ther cross-validation or from a test set [27]. When
growing individual trees in the ensemble, only a random
subset of the covariates is used. This action saves run
time but results in more diverse predictions from indi-
vidual trees. The RF then bases predictions on the en-
semble of these trees. For continuous outcomes, the
predictions made by each tree are averaged. There are
four tuning parameters for the RF algorithm, the num-
ber of candidate predictors used at each node, the num-
ber of trees to grow, the minimum size of terminal
nodes and the maximum number of terminal nodes
trees in the forest can have. Breiman (2001) proved that
as the number of trees goes to infinity, there is a limit to
the generalization error; therefore, increasing the num-
ber of trees does not cause the RF sequence to overfit
the training data [24, 25]. However, an RF model can
overfit the data if the average of fully grown trees results
in too rich a model and incur unnecessary variance. Se-
gal (2004) demonstrates small gains in performance by
controlling the depths of the individual trees grown in
the forests [28]. Empirical evidence shows that using
full-grown trees seldom costs much [25]. All things con-
sidered, to avoid possible overfitting, we set the number
of trees at a large number 1000, used the default values
in the randomForest R package for the minimum size of
terminal nodes and the maximum number of terminal
nodes, allowing full-grown trees, and used cross valid-
ation to choose the optimal value of the number of can-
didate predictors, which is the number of covariates
corresponding to the minimum OOB prediction error.
In addition, we randomly split the OCM data into a
training and a test set, and checked the test error to en-
sure that it is not substantially greater than the training
error.

Criteria used for model comparison
We assessed overall accuracy of the predicted cost by
the root-mean-squared error (RMSE), the mean absolute
prediction error (MAPE), and cost accuracy (CA). These
three metrics are commonly used to compare different
cost-prediction models [11, 21, 29–31]. Let yi and ŷi de-
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note the observed and predicted expenditure for episode
i (i = 1, 2,…, n) respectively, RMSE, MAPE, and CA are
defined as,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ŷi−yið Þ2
n

s
ð4Þ

MAPE ¼
P j byi−yi j

n
ð5Þ

and

CA¼ actual cost of predicted high‐cost episodes
actual cost of true high‐cost episodes

�100% ð6Þ

where CA is the proportion of high-cost dollars cor-
rectly predicted. The threshold of high cost is defined as
the 90th percentile of the observed cost. Smaller values
are desired for RMSE and MAPE and 100% is preferred
for CA. A CA below one indicates that the model under-
predicts the cost of episodes, whereas a CA above one
means that the model overpredicts the cost of episodes.
A thousand bootstrap samples were generated, models

were fit using the bootstrap samples, and boxplots of
RMSE, MAPE, and CA are shown for model
comparison.

Simulation
Data generating process
Simulation was carried out using R 3.4.0 (Vienna,
Austria) [32]. We used the characteristics of the OCM
data as a guide when specifying outcome and covariate
distributions and their parameters.
We generated 4205 observations (to match the

amount of episodes from the Mount Sinai OCM data)
and 10 covariates: x1 and x2 ~ Binomial (n = 5, p = 0.5)
represented the ordinal variables; x3 and x4 ~ Binomial
(n = 1, p = 0.5) the binary variables; x5 and x6 ~ Normal
(0,1) the continuous variables with linear relationship
with the outcome; x7 ~ Binomial (n = 4,p = 0.5) the nom-
inal variable, and x8 ~ Normal(0,1), z1 ~ Uniform(0, 1),
z2 ~ Uniform (− 1,1) as continuous variables with non-
linear relationship with the outcome.
We then generated y′ as a function of the covariates

X,

y
0 ¼ 11:05þ 0:05x1−0:08x2 þ 0:25x3

þ0:15x4−0:02x5−0:002x6−2:3x71−1:3x72−0:4x73−0:1x74−0:75z1
2

þ0:15z2
3−0:35

x82

1þ x82
þ 0:2x3x5 ;

ð7Þ

where x71,x72,x73,x74 were dummy variables for x7 and
coefficients were guided by the Gamma GLM fit to the
Mount Sinai OCM data and chosen to match their sum-
mary statistics (e.g. mean, median, and 90th percentile
of the simulated cost). Although we generated the data
following the guidance of OCM data and kept a few

settings close to it, we also wanted to explore how the
model performed under different distributions. There-
fore, for the outcome y, we consider distributions com-
mon in the health economics and health services
research literature [10, 33]. Distributions considered
from exponential family were Gamma and Weibull dis-
tribution; from the non-exponential family, we generated
a log-normal distribution with a heteroscedastic error
term and a heavy-tailed distribution mimicking a mix-
ture of normal distributions. These distributions have
different skewness (measure of asymmetry of a fre-
quency distribution) and different kurtosis (the sharp-
ness of the peak of a frequency-distribution curve). All
are skewed to the right and take only non-negative
values.
For the outcome distribution generation, the following

specifications were used. For the Weibull distribution,
we generated y ~ Weibull (shape = 8, scale = 1.12 y′); for
the Gamma distribution y ~ Gamma (shape = 48,rate =
48/y′).
To construct the heteroscedastic log-normal data, we

considered y = y′ + ε × v(x),ε~N(0,0.1); v(x) = 0.5 + x1.
To generate skewed cost data with a heavy tail, we

considered a mixture of two log-normal distributions,
y = y′ + 0.9ε1 + 0.1ε2, where ε1~N(0, 1) and ε2~N(0, 2).
In Table 2, we summarize the final parameter esti-

mates of the distribution achieved. Figure 2 showed the
density plots of OCM data and the four simulated out-
come data distributions. Our goal was to match the
mean, median and the 90th percentile of some distribu-
tions to the OCM payment data, to find the best method
for cost data structures observed in the OCM data.

Model misspecification
To compare the performance of the three methods
when the model was misspecified, we considered sce-
narios where models are correctly specified with non-
linearity and interaction effects. Misspecification was
simulated by keeping only the linear forms of the co-
variates and by removing the interaction effect in the
model. This kind of mis-specification was only ex-
pected to affect GLM and PLAQR, since RF requires
only specification of the main effects (minimum user
input) and implicitly identifies non-linearity and
interactions.

Data analysis for Mount-Sinai OCM data
We then applied these methods (Gamma GLM, RF,
PLAQR) to the Mount Sinai OCM data. We used the
same 13 covariates as in the OCM model fit to the na-
tional data. All analyses were done using R 3.4.0
(Vienna, Austria) [32].
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Results
Results from the simulation study
The comparative performance metrics of all three
methods under correct and misspecified models are
shown in Fig. 3a, b, and c. Under correct model specifica-
tion when the outcome distribution was from the non-
exponential family (heteroscedastic log-normal or heavy
tail distribution), RF had the best performance by all three
metrics. The difference between RF and correctly specified
Gamma GLM was small for Gamma and Weibull out-
come distributions. Within each distribution, under condi-
tions of model misspecification, PLAQR and Gamma
GLM’s performance worsened. This situation was more
pronounced under the non-exponential models of log-
normal with heteroscedasticity and heavy tail distribution.

Results from analysis of OCM data
The comparative performance metrics for all three
methods are shown in Fig. 4 a, b, and c. RF performed
the best in the Mount Sinai OCM data setting. Table 3
shows RMSEs and MAPE for different percentiles of
costs. The RF model consistently produced the smallest
errors across all percentiles, while the 90th -100th and
80th–90th percentiles had the largest prediction errors.
Table S1 in Supplemental Materials shows that RF had
the smallest RMSE on the test data among the three
methods.

Discussion
In our simulation study and data application, RF outper-
formed other models for predicting average cost and

Table 2 Summary statistics for actual expenses from OCM data at Mount Sinai (N = 4205) and simulated distributions

Mean Median 90th percentile Skewness Kurtosis

OCM data $27,329 $20,552 $61,885 1.0 0.6

Gamma $27,023 $19,378 $59,058 1.5 2.3

Weibull $28,488 $20,498 $63,108 1.5 2.4

Heteroscedastic log-normal $28,653 $19,700 $62,159 2.8 21.5

Heavy tail $39,368 $18,844 $91,454 5.7 53.2

Fig. 2 Actual expenses in Mount Sinai OCM data versus simulated data. Simulated data included distribution from exponential (Gamma and
Weibull) and non-exponential families (Heteroscedastic log-normal and heavy-tailed). The red vertical line indicates the 90th percentile for
each distribution
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Fig. 3 a-c. Accuracy of predicted cost in correctly and incorrectly specified models for simulated data. 3A: RMSE, 3B: MAPE, 3C: CA; Performance
metrices estimated from 1000 bootstrapped samples. Gamma GLM, PLAQR estimating 50th percentile on original scale, and RF with original scale
of cost are shown
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identifying high-cost episodes in most scenarios. The su-
perior performance of RF was more pronounced when
the model was misspecified. Misspecification of non-
linear effects and interaction terms in models is com-
mon because knowing the exact outcome distribution or
the exact relationship within and between the covariates
is generally impossible. Therefore, this data-driven

characteristic of RF makes it suitable for modeling health
care costs, since non-linearity and interaction effects are
expected. We also compared the performance of models
in smaller samples (n = 200 and n = 500) (see Supple-
mentary Figs. S1A-S1D). RF performance was more sen-
sitive to sample size when the outcome distribution was
in the exponential family. With a large sample, the

Fig. 4 a-c. Accuracy of predicted cost in correctly specified models for Mount Sinai OCM data. 4A: RMSE, 4B: MAPE, 4C: CA; Performance metrics
estimated from the 1000 bootstrapped samples. Results using Gamma GLM, PLAQR estimating 50th percentile on original scale, and RF with
original scale of cost are shown
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advantage of RF was more pronounced even compared
to correctly specified Gamma GLM and PLAQR. With a
small sample, it was more advantageous than Gamma
GLM and the PLAQR main effects-only model.
When the models were compared across the various

outcome distributions, all behaved in a similar manner
when the distributions belonged to the exponential fam-
ily (Gamma and Weibull). However, all methods were
sensitive (with RF being least sensitive) to outliers in the
cost data, which were more frequently generated in
models of the non-exponential family (Log-normal with
heteroscedastic error term and Mixture normal [heavy-
tailed]). Therefore, RF is the better method for cost dis-
tribution with outliers. When the cost distribution is in
the exponential family, RF and Gamma GLM has similar
accuracy in classification. However, RF requires longer
computational time. Therefore, if the purpose of a study
is to identify the extremes, e.g., the high-cost episodes in
our case, the classification accuracy gained by RF must
be weighed versus the increased computational time.
A concern for Academic Medical Centers (AMCs)

such as Mount Sinai is that their patients are sicker than
average, and the associated costs for their care tend to
be the highest [34]. However, nearly all models under-
predict high-cost episodes, which does not favor AMCs
[35]. As a result, comparing AMCs to the entire country,
as in the OCM risk model, introduces some bias. Our
study showed that RF improved overall accuracy of cost
prediction compared to Gamma GLM and PLAQR, and
improved accuracy among high-cost episodes. Thus,
using RF could reduce bias against AMCs when their
cost of care is compared to a national sample.
All participants in the OCM are challenged by vari-

ance. It remains unclear whether risk adjustment models
can accurately detect changes in average episode ex-
penses enough to drive incentive payments. In best-case
scenarios, interventions that reduce episode costs, such
as lowering admissions and emergency room visits, may
reduce average episode costs by 10%. For Mount Sinai’s
episode distributions that corresponds to identifying
changes on the order of $2200. This is a measurement
challenge given that even our correctly specified models
applied against simulation data had accuracy metrics
well above 10% of the mean. This is further

compounded by the real-world challenge of small sam-
ple sizes: only very large practices may have enough epi-
sodes during a performance period to detect a 10%
episode cost change. How to develop models that can
reliably and accurately detect small changes in mean
cost based on sample sizes of 50–200 episodes requires
further study.

Conclusions
RF outperformed Gamma GLM and PLAQR in predict-
ing overall and top decile costs. RF demonstrated im-
proved prediction under most scenarios in this
simulation study. Additionally, RF did not require pre-
specification of outcome distribution, nonlinearity effect,
or interaction terms. Therefore, RF appears to be the
best tool to predict average cost. However, when the
goal is to estimate extreme expenses, e.g., high cost epi-
sodes, we may consider the accuracy gained by RF ver-
sus its computational costs.
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