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Abstract

Background: Unhealthy alcohol consumption exacerbates the HIV epidemic in East Africa. Potential benefits of new
trials that test the effectiveness of alcohol interventions could not be evaluated by traditional sampling methods. Given
the competition for health care resources in East Africa, this study aims to determine the optimal sample size given the
opportunity cost of potentially re-allocating trial funds towards cost-effective alcohol treatments.

Methods: We used value of information methods to determine the optimal sample size by maximizing the expected net
benefit of sampling for a hypothetical 2-arm intervention vs. control randomized trial, across ranges of policymaker’s
willingness-to-pay for the health benefit of an intervention. Probability distributions describing the relative likelihood of
alternative trial results were imputed based on prior studies. In the base case, policymaker’s willingness-to-pay was based
on a simultaneously resource-constrained priority (routine HIV virological testing). Sensitivity analysis was performed for
various willingness-to-pay thresholds and intervention durations.

Results: A new effectiveness trial accounting for the benefit of more precise decision-making on alcohol intervention
implementation would benefit East Africa $67,000 with the optimal sample size of 100 persons per arm under the base
case willingness-to-pay threshold and intervention duration of 20 years. At both a conservative willingness-to-pay of 1 x
GDP/capita and a high willingness-to-pay of 3 x GDP/capita for an additional health gain added by an alcohol intervention,
a new trial was not recommended due to limited decision uncertainty. When intervention duration was 10 or 5 years,
there was no return on investment across suggested willingness-to-pay thresholds.

Conclusions: Value of information methods could be used as an alternative approach to assist the efficient design of
alcohol trials. If reducing unhealthy alcohol use is a long-term goal for HIV programs in East Africa, additional new trials
with optimal sample sizes ranging from 100 to 250 persons per arm could save the opportunity cost of implementing
less cost-effective alcohol strategies in HIV prevention. Otherwise, conducting a new trial is not recommended.

Keywords: Value of information, Optimal sample size, Alcohol intervention, HIV, East Africa

* Correspondence: kimberly.nucifora@nyumc.org
1Department of Population Health, New York University School of Medicine,
227 East 30th Street, Floor 6, New York, NY 10016, USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Li et al. BMC Health Services Research  (2018) 18:590 
https://doi.org/10.1186/s12913-018-3356-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12913-018-3356-7&domain=pdf
mailto:kimberly.nucifora@nyumc.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Unhealthy alcohol consumption is common in East Africa
[1] and multiple studies have shown that unhealthy alco-
hol consumption has exacerbated the HIV epidemic [2, 3].
For example, binge drinking and heavy alcohol consump-
tion are associated with increased quantity of sexual part-
ners, less likelihood of condom use, and increased
commercial sex trade participation [4–8]. Furthermore,
alcohol consumption also has a negative impact on adher-
ence to antiretroviral therapies (ART) [7, 9–19]. There-
fore, it is recommended that alcohol interventions that
reduce harmful alcohol use among HIV infected patients
in East Africa should be developed [3, 18], tested [19], and
integrated as a part of HIV prevention and treatment pro-
grams [2, 6, 7, 20, 21], especially considering the fact that
sub-Saharan African countries still account for almost
70% of new infections in the global HIV epidemic [22].
Even though a few alcohol interventions, such as brief in-
terventions [23–27] and cognitive-behavioral therapy [28],
have shown positive results in reducing alcohol consump-
tion or increasing alcohol abstinence in prior studies, the
prior evidence on the effectiveness of alcohol interven-
tions may not be sufficient to eliminate decision uncer-
tainty with regard to the implementation of such
interventions among HIV-infected patients. Therefore,
new trials to gain additional information/evidence on the
effectiveness of alcohol interventions are likely necessary.
Note that we define prior information or prior evidence as
the effectiveness of an alcohol intervention studied in
prior trials and define additional information or additional
evidence as the information that will be concluded from
new trials.
A new trial could benefit HIV prevention and treatment

programs in East Africa by providing additional evidence
on alcohol interventions and thereby reducing decision un-
certainty regarding the implementation of alcohol interven-
tions. However, traditional sampling approaches do not
account for the potential benefit of such trials since they
are primarily based on determining the minimum sample
size required to detect the desired intervention efficacy for
given Type I and Type II error probabilities [29, 30]. Value
of information (VOI) methodology was introduced as an al-
ternative to the traditional sampling methods based on the
notion that new trial information is valuable because the
benefit of generating additional evidence may exceed the
opportunity cost of potentially re-allocating trial funds to-
wards treatments with uncertain cost-effectiveness [31, 32],
which is critical in resource-limited settings. Specifically,
VOI estimates optimal sample size by maximizing the ex-
pected net benefit of sampling (ENBS), which is the differ-
ence between the expected value of sample information
(EVSI) from a new trial and the cost of sampling. Applying
the VOI method to identify optimal sample size is more fa-
vorable in literature when trial information could yield

clinical actionable inferences, and this method should be
considered in the early phase of trial design [29, 30, 33, 34].
For example, VOI calculations have been previously applied
to determine the optimal sample size for future trials on
catheter securement devices to inform the decision-making
on the adoption of the devices [30]. Another advantage of
VOI is that it could pre-determine the necessity of conduct-
ing a new trial before the sample size calculation for a new
trial. VOI could provide an upper bound estimation on the
potential benefit of a new trial by determining the expected
value of perfect information (EVPI) [33, 35]. Therefore,
conducting a new trial would be necessary only when EVPI
is positive. For example, Micieli et al. used EVPI to quantify
the uncertainty on the adoption of left atrial appendage oc-
clusion devices over dabigatran or warfarin in atrial fibrilla-
tion and concluded that additional trials on the relative
efficacy of stroke reduction between the two strategies
would be necessary due to high EVPI [34].
Accordingly, the objective of this study was to use VOI

methods to determine the necessity of a new clinical
trial that aims to address the effectiveness of alcohol in-
terventions for HIV-infected patients in East Africa and
to identify the optimal sample size for such trials if the
necessary condition is met.

Methods
Assumptions regarding hypothetical RCT
To be concordant with a prior high evidence level alcohol
study among HIV-infected patients in East Africa [36] and
four recent National Institute of Health(NIH) funded RCTs
in East Africa [37–40], we studied a hypothetical
randomized-controlled trial (RCT) that aimed to investigate
the effect size of an alcohol intervention for HIV infected
patients in East Africa with following assumptions: (1)
Participants will be equally randomized to an intervention
arm and a control arm; (2) Participant eligibility criteria are
hazardous or binge drinkers (score ≥ 3 on the Alcohol Use
Disorders Identification Test (AUDIT-C), a brief screening
for heavy drinking and/or active alcohol abuse or depend-
ence [36, 41–43]) and being ART-eligible or ART-initiated
in the past 12 months; (3) The trial could be funded for 6–
36 months; (4) Baseline trial costs, including program costs,
marginal treatment costs, and reporting costs, were aggre-
gated into a marginal cost per sample that was also based
on the four RCTs (Table 1). Note that the primary interest
of this work was to investigate evidence necessary to reduce
uncertainty regarding the effect size of an alcohol interven-
tion. The effect size was measured as the relative risk
reduction of unhealthy alcohol consumption.

Integrating prior information with new trial information: a
Bayesian procedure
Prior information provided by the alcohol trials that test
the effect size of an alcohol intervention is defined as
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the information already available before a new trial,
which may not be sufficient to support optimal deci-
sion-making. We specified the certitude regarding an al-
cohol intervention’s effect size prior to additional
information (e.g., “prior distribution”) based on results
of Papas and colleagues who evaluated a cognitive
behavioral therapy-based intervention for HIV-positive
outpatients with unhealthy alcohol use in Kenya [28, 36].
The intervention was based on social cognitive theory
[44], and was designed to increase alcohol abstinence by
teaching skills to mitigate substance use circumstances
caused by stress or other problems. The intervention had
been proven effective during the treatment and
follow-up phases in Papas’ study, and effect size infor-
mation reported in the study was used to estimate
the prior distribution below. Specifically, in prior dis-
tribution, e0 is the intervention effect size sampled
from the prior beta distribution; e is the expected
prior effect size; and n0 is sample size of the prior
study (Table 1).
Prior distribution: e0 � Betaðn0e; n0ð1−eÞÞ:
If a new trial with sample size n is initiated to gain

additional information about the intervention effect size,
in order to predict the sample statistics αD for the new
trial, we used a conjugate pair of the prior distribution
to construct a predictive distribution. The predictive dis-
tribution is summarized below.
Predictive distribution: αD~Binomial(e0, n)
In order to utilize both of the prior and the new infor-

mation on intervention effect sizes, an updated distribu-
tion was obtained by integrating the prior distribution
and the predictive distribution through Bayesian Updat-
ing. e1 is updated effect size.
Updated distribution: e1 � Betaðn0eþ αD; n0 þ n−n0e

−αDÞ

Given a specific simple size n for the new trial, we ran

I iterations to generate statistics αðiÞD ði ¼ 1;…; IÞ . For
each αðiÞD , we ran J iterations to generate eð jÞ1 j αðiÞD ð j ¼ 1;
…; JÞ. We used a total number of one million (I × J) iter-
ations to output a set of updated effect sizes to ensure
the robustness of our VOI results. More details about
the approach can be found elsewhere [31, 32].

Incorporating the integrated information into a decision
model of HIV treatment and prevention strategies
As previously discussed, alcohol interventions among HIV
infected patients might reduce HIV transmission and im-
prove health, and additional information on the effective-
ness of such interventions comes with the opportunity cost
of not spending those funds on the interventions them-
selves, which are potentially cost-effective. We used a pre-
viously published and validated HIV model to test the
impact of the updated distribution of intervention effect
size e1 on the decision of adopting (s = 1) versus not adopt-
ing (s = 0) the alcohol intervention [45, 46]. The model out-
comes necessary for the subsequent cost-effectiveness
evaluations and VOI calculations were quality-adjusted life
years QALY(s, e1) and costs cost(s, e1) for the intervention
scenario (s = 1) and the null scenario (s = 0) respectively. A
detailed description of the HIV model is reported else-
where [45, 46]. Briefly, the HIV model contains an HIV
progression module and an HIV transmission module. The
HIV progression module approximates the health out-
comes by evaluating the change of CD4 cell counts and
HIV-1 viral load for each HIV-infected individual. This
module also simulates the effect of ART and takes the
major causes of ART failure into account, such as ART
non-adherence, non-adherence related genotypic resist-
ance, and medication toxicity [46]. The individual-based
HIV progression module interacts with a population-based
compartmental HIV transmission module which simulates
heterosexual transmission among the population in East
Africa. The model compartments are differentiated based
on health characteristics as well as behavioral risk charac-
teristics. A hypothetical population switches compartments
based on change to their health and behavior status. Prob-
ability of transmission is a function of multiple factors, in-
cluding rate of acquiring new partners, duration of
partnership, frequency of sexual contact within a partner-
ship, and likelihood of condom use. The people who are in
the compartments of unhealthy alcohol consumption were
modeled as having these three major factors: increased risk
of condom nonuse, increased risk of ART non-adherence,
and increased STI prevalence (Table 1). The alcohol
intervention reduces the HIV infection rate by trans-
ferring people from the compartments representing
unhealthy alcohol consumption to those without un-
healthy alcohol consumption.

Table 1 Key model inputs

Variables Baseline values Sources

VOI variables

Expected prior effect sizea, e 45% [28, 36, 45]

Sample size for the prior study, n0 75 [28, 36]

Marginal cost per sampleb, c $1140 [37–40]

HIV transmission variables

Relative risk of unhealthy alcohol
use on risky sex

1.29 [45]

Relative risk of unhealthy alcohol
use on STIs

1.72 [45]

Relative risk of unhealthy alcohol
use on ART non-adherence

2.33 [45]

STIs Sexually Transmitted Infections
aEffect size was measured as relative risk reduction due to the implementation
of an alcohol intervention for unhealthy alcohol drinkers in population
bThis summarizes program cost, treatment cost, and other costs
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Assessing the value of information (VOI) added by a RCT
In value of information (VOI) methods, expected value
of perfect information (EVPI) represents an upper bound
estimate on the potential benefit of a new trial if we as-
sume new trial information would be perfect to help pol-
icymakers eliminate all decision uncertainty. Therefore,
EVPI is used in economic evacuation to determine the
necessity of conducting a new trial. Mathematically, it is
the difference between the value of the decision made
based on perfect information (e.g., after an RCT without
bias and with infinite sample size) and the value of the
decision made based on prior information (e.g., before a
RCT) [31, 32]:

EVPI ¼ Ee1 maxrNB s; e1ð Þ− maxrEe1NB s; e1ð Þ
A positive EVPI is a necessary condition for conduct-

ing a new RCT. Net benefit was calculated using the
QALYs (s, e1) and costs (s, e1) generated by the HIV
model using the following equation [31, 32]:

NB s; e1ð Þ ¼ QALY s; e1ð Þ �WTP−cost s; e1ð Þ
WTP is the decision maker’s willingness-to-pay for

incremental health benefit. The World Health Organi-
zation’s (WHO) Choosing Interventions that are
Cost-Effective (CHOICE) program recommends bench-
marking willingness-to-pay (WTP) based on gross domes-
tic product (GDP) per capita [47], in particular between 1
and 3 times the annual GDP per capita. Alternatively and
in greater accord with economic theory, WTP may be in-
ferred from a desired program that is not fully imple-
mented because of resource constraints (e.g., routine viral
load testing).
While EVPI estimates an upper bound benefit when

information is perfectly known after a new trial (i.e.,
sample size of the new trial approaches infinity), ex-
pected value of sample information (EVSI) estimates the
potential benefit of a new trial with a finite sample size.
We then calculated the expected value of sample infor-
mation (EVSI) which compares the net monetary benefit
of a decision made with the updated information (e.g.
after the RCT) and the benefit of a decision made with
the prior information (e.g., before the RCT):

EVSI ¼ EαD maxEe1jαDNB s; e1ð Þ− maxEe1NB s; e1ð Þ
EαD maxEe1jαDNBðs; e1Þ is the expected net benefit of

the decision made based on the updated information
(e.g., after the RCT), and maxEe1NBðs; e1Þ is the ex-
pected net benefit of the decision made with the prior
information (e.g., before the RCT) [31, 32].
In additional to evaluating expected trial benefit, costs

associated with conducting such a trial should be weighed
against potential benefit in trial design. Expected net bene-
fit of sampling (ENBS) values the expected net benefit of a

new trial as the difference between the monetized
expected value of sample information (EVSI) and the
marginal investment of such a trial [31, 32]:

ENBS ¼ EVSI−CS ¼ EVSI−c∙n

In the ENBS equation, CS is cost of sampling; c is mar-
ginal cost per sample (Table 1); and n is the sample size
of a trial. As sample size grows larger, the incremental
certitude from information represented by EVSI grows
smaller (i.e., diminishing returns) whereas the incremen-
tal cost of conducting the trial may not. As long as EVSI,
or the value of conducting the new RCT, exceeds the
corresponding study cost (ENBS > 0), the return on in-
vestment would be positive. An optimal sample size
could be obtained at which the expected net benefit of
sampling (ENBS) is maximized.

Sensitivity analysis
Since ENBS is greatly influenced by policymakers’
willingness-to-pay (WTP), we performed a sensitivity
analysis to evaluate how optimal results change over a
series of WTP benchmarks, where WTP was measured
using the standard metric of US$ per additional
quality-adjusted life year (QALY), where QALY is a
measure that aggregates additional quality and quantity
of life. We also performed a sensitivity analysis across
three intervention duration scenarios: long, medium,
and short (20 years, 10 years, and 5 years respectively).

Results
Cost-effectiveness acceptability based on prior
information
Given QALY and cost outcomes estimated by the HIV
model, we applied cost-effectiveness acceptability curves
[48] to identify where the decision uncertainty was
greatest and how it varied by willingness-to-pay thresh-
old. In Fig. 1a, when WTP threshold was greater than
$3200/QALY or smaller than $900/QALY (shaded area),
there would be no decision uncertainty with regard to
choosing a more cost-effective strategy: prior evidence
suggested that policymakers should adopt the interven-
tion when WTP > $3200/QALY or should not adopt the
intervention when WTP < $900/QALY. In Fig. 1a, deci-
sion uncertainty existed in the unshaded area, and the
greatest decision uncertainty arose when WTP = $1710/
QALY. In this case, additional evidence from a new trial
might be necessary to increase the certitude. Similarly, if
we implement a study for 10 or 5 years (Fig. 1b and c),
the greatest uncertainty exists when WTP = $8000/
QALY or $31,000/QALY respectively. Given the distri-
butions of decision uncertainty in unshaded areas in
Fig. 1, EVPI can be used to quantify the consequence of
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the decision uncertainty (or the health benefit of ad-
dressing the uncertainty) in a monetary format.

Expected value of perfect information
We used EVPI (Fig. 2) to quantify the uncertainties
in Fig. 1, and the EVPI varied substantially over dif-
ferent WTPs and different durations of intervention
implementation. When implementation duration was
assumed to be 20 years, EVPI was maximized ($14.8
million) at a WTP of $1710/QALY, well within the
suggested range of WTPs for East Africa ($1014/
QALY to $3042/QALY), suggesting that a new RCT
could yield valuable information. However, at shorter
durations, the minimum WTP required to produce a
positive EVSI fell outside the recommended range
rendering the prospect of conducting a trial too ex-
pensive and not a good return on investment. For a
duration of 10-years, EVPI was positive when WTP
was greater than $4500/QALY and maximized ($5.8
million) at a WTP of $8000/QALY. For a duration of
5-years EVPI was positive when WTP was greater
than $18,000/QALY and maximized ($3.4 million) at a
WTP of $31,000/QALY. Since EVPI is the upper
bound estimate on the potential benefit of conducing
a new trial, our EVPI results in Fig. 2 indicated that

it might be worthwhile to conduct a new trial when
the intervention implementation duration is 20 years.
However, when intervention duration was set to 10 or
5 years, EVPI was zero across the WHO recom-
mended range of WTPs for East Africa ($1014/QALY
to $3042/QALY) [47], suggesting that a RCT should
not be conducted under these two scenarios.

Optimal sample size estimation - base case
EVSI and ENBS were calculated to estimate an optimal
sample size for a new study after the necessary condition
was satisfied (EVPI > 0). At baseline intervention dur-
ation of 20 years and baseline WTP equal to $2473/
QALY, the incremental cost per QALY of implementing
routine viral load testing for HIV-infected patients in
East Africa, incremental cost of sampling for the trial
grew larger whereas EVSI produced by the trial was
diminished as the sample size of the trial grew larger in
Fig. 3. Thus, the optimal sample size was found at the
place where ENBS was maximized in Fig. 3. Specifically,
the optimal sample size for the new RCT was 200
(100 per arm) and the corresponding maximum ENBS
was $67 thousand US dollars (Fig. 3) for the base
case scenario.

a

c

b

Fig. 1 Cost-effectiveness acceptability curves when strategy implementation durations were 20 (a), 10 (b), and 5 years (c)
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Optimal sample size estimation - sensitivity analysis
For a scenario of using a conservative WTP (1 X GDP/
capita of East Africa, $1014/QALY) and assuming an im-
plementation duration of 20 years (Table 2), conducting a
new trial was not recommended since the return on in-
vestment was negative (ENBS < 0). Conducting a new trial
was also not suggested even when policymakers were will-
ing to pay more for an additional health gain and thereby
using an upper bound WTP of 3 X GDP/capita ($3042/
QALY) and also assuming an implementation duration of
20 years (Table 2). However, setting WTP equal to the in-
cremental cost-effectiveness ratio (ICER) of the alcohol

intervention ($1710/QALY, within the lower and upper
WTP bounds but distinct from our base case assumption),
ENBS rose to more than $11 million and corresponding
optimal sample size reached 500 (250 per arm).

Discussion
Our results suggest that new RCTs to test interventions
aimed at increasing alcohol abstinence among HIV-infected
patients in East Africa are worthwhile investments assum-
ing that policymakers intend to implement the intervention
for a longer duration. Under such circumstances and as-
suming a WTP of a simultaneously resource-constrained

Fig. 2 EVPI curves when the alcohol intervention durations were 20, 10, and 5 years

Fig. 3 EVSI, ENBS, and cost of sampling curves for the base case
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priority (routine virological testing for HIV-infected pa-
tients), a new RCT with the optimal sample size of 200
(100 per arm) would yield an expected net benefit of $67
thousand for East Africa.
When the alcohol intervention was assumed to be im-

plemented for 10 or 5 years, an additional RCT would
not yield information of favorable value across a plaus-
ible range of WTPs, and therefore our analyses suggest
that it should not be conducted. In these scenarios,
decision uncertainty was limited and standard care was
always more cost-effective than the alcohol intervention
given resource constraints in East Africa.
Notably, WTPs higher than the plausible range would

result in RCTs having favorable value even with imple-
mentation durations of 10 years or 5 years. It is import-
ant to be mindful of this because even though the
intervention duration is shorter, the opportunity cost of
choosing a less cost-effective decision could still be high
if decision makers are willing to pay a higher price for a
QALY gain from the intervention.
The maximum ENBS for the intervention durations of

20 years, 10 years, and 5 years are $11 million, $5 mil-
lion, and $3 million respectively (Table 2), illustrating
that the longer implementation of the alcohol interven-
tion could result in far greater health gains. This is be-
cause (1) The benefit of the alcohol intervention is
unlikely to be fully captured at a population level if the
intervention implementation duration is short; and (2)
The selection of other HIV strategies, other than the
alcohol intervention, could result in more health gains
in an East African population given the same healthcare
research budget.
This study has several limitations. First, even

though our VOI analyses and HIV simulation model
are robust, there is still a stochastic noise that can-
not be eliminated due to the considerable computa-
tional complexity. Second, due to lack of evidence on

the effectiveness of alcohol intervention among
HIV-infected patients in East Africa, the prior
information was primarily based on one study [36], how-
ever, our VOI model structure allows for it to be updated
if additional evidence becomes available. Third, decision
uncertainty caused by cost variables was not addressed in
this study.
In summary, we identified distributions of decision

uncertainty regarding the adoption of alcohol
interventions for HIV-infected patients in East Africa
over a range of willingness-to-pay thresholds, quanti-
fied that uncertainty, and specified optimal sample
sizes using a VOI approach rather than based on the
minimum statistical power that is required to detect
a pre-specified effect size. In situations in which trial
information is likely to yield clinically actionable in-
ferences with health importance, the VOI approach
leads to larger sample sizes compared to power-based esti-
mates, equivalent to requiring p-values below 0.05. In situ-
ations in which trial information is unlikely to yield
clinically actionable inferences with health importance,
the approach leads to smaller sample sizes compared to
power-based estimates, equivalent to allowing p-values
above 0.05. Systematic application of this approach to trial
design questions would be expected to produce increased
health benefit from available resources for conducting
research.

Conclusions
Value of information methods can be used to deter-
mine the optimal sample sizes of alcohol trials by
reducing the risk of implementing less cost-effective
alcohol strategies for HIV programs in East Africa,
and they can be used as alternative approaches for
the design of new trials when health care resources
are limited. If reducing unhealthy alcohol use is a
long-term goal for HIV programs in East Africa, additional

Table 2 Optimal sample sizes and maximum ENBS values for WTP benchmarks

Scenarios Outcomes

WTP value ($/QALY) WTP benchmark Source Intervention
duration (years)

Optimal sample size
(each arm)

Maximum ENBS

$1014 1 x GDP/capita [49] 20 NAa < 0

$1124 HIV laboratory monitory strategy if two ART
regimens are available

[46] 20 NAa < 0

$1770 ICER of 20 year alcohol intervention – 20 500 $11,309,000

$2473 HIV laboratory monitory strategy if three ART
regimens are available (base case)

[46] 20 200 $ 67,400

$3042 3 x GDP/capita [49] 20 NAa < 0

$8000 ICER of 10 year alcohol intervention – 10 500 $5,108,000

$31,000 ICER of 5 year alcohol intervention – 5 240 $2,949,000
aSince return on investment for a new trial was negative (ENBS < 0), conducting a new trial was not recommended for this scenario
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new trials with optimal sample sizes ranging from 100 to
250 could save the opportunity cost of implementing less
cost-effective alcohol strategies. Otherwise, conducting a
new trial is not recommended.
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