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Validating an algorithm to identify
metastatic gastric cancer in the absence of
routinely collected TNM staging data
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Abstract

Background: Accurate TNM stage information is essential for cancer health services research, but is often
impractical and expensive to collect at the population-level. We evaluated algorithms using administrative
healthcare data to identify patients with metastatic gastric cancer.

Methods: A population-based cohort of gastric cancer patients diagnosed between 2005 and 2007 identified from the
Ontario Cancer Registry were linked to routinely collected healthcare data. Reference standard data identifying metastatic
disease were obtained from a province-wide chart review, according to the Collaborative Staging method. Algorithms to
identify metastatic gastric cancer were created using administrative healthcare data from hospitalization, emergency
department, and physician billing records. Time frames of data collection in the peri-diagnosis period, and the diagnosis
codes used to identify metastatic disease were varied. Algorithm sensitivity, specificity, and accuracy were evaluated.

Results: Of 2366 gastric cancer patients, included within the chart review, 54.3% had metastatic disease. Algorithm
sensitivity ranged from 50.0- 90%, specificity ranged from 27.6 - 92.5%, and accuracy from 61.5 - 73.4%. Sensitivity and
specificity were maximized when the most conservative list of diagnosis codes from hospitalization and outpatient
records in the six months prior to and the six months following diagnosis were included.

Conclusion: Algorithms identifying metastatic gastric cancer can be used for research purposes using administrative
healthcare data, although they are imperfect measures. The properties of these algorithms may be generalizable to other
high fatality cancers and other healthcare systems. This study provides further support for the collection of population-
based, TNM stage data.
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Background
Stage data is needed to define clinically homogenous co-
horts, adjust for the extent of disease spread, study real-
world treatment effectiveness and costs, and inform re-
gional decision-making [1]. Accurate staging, when
linked to treatment and outcome data, informs the ef-
fectiveness and quality of cancer treatments, and guides
healthcare planning for resource mobilization or imple-
mentation [1]. The absence of stage data increases the
complexity of maintaining representativeness of the can-
cer cohort, minimizing bias caused by excluding patients

with unknown stage data, and achieving adequate sam-
ple size to perform robust statistical analyses [2].
Capturing population-based stage data in ‘big data’ is

often limited by practical and financial constraints. For
example, the International Cancer Benchmarking Project
used multiple national cancer registries to understand
cancer stage and survival patterns [3]. The registries
contained varying levels of complete stage data across
primary cancer sites; upwards of 50% of patients were
excluded due to missing stage data in this international
comparison of cancer survival [4, 5]. As a result, many
countries are aiming to improve their population-based
stage data collection using a number of methods and
data sources [1, 2, 6–8].* Correspondence: alyson_mahar@cpe.umanitoba.ca
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Validated algorithms to identify metastatic disease
using routinely collected healthcare data may provide
one solution to missing stage data in studies using
population-based, administrative data [9, 10]. Benchimol
et al. have published general guidelines for algorithm de-
velopment and validation using administrative health-
care data to assign disease status [9]. Overall, many
studies do not appropriate report on the performance of
the algorithm, including revalidation, present at least
four metrics to assess diagnostic accuracy (e.g. sensitiv-
ity, specificity, agreement), or confidence intervals [9].
Little published research has evaluated algorithm per-
formance across cancer sites; developing high quality al-
gorithms requires gold standard staging data to properly
validate and ensure accuracy prior to use. Whyte et al.
evaluated 28 algorithms to identify metastatic disease
status in three administrative data cohorts of treated
colorectal, breast, and lung cancer patients in the United
States [11]. The algorithms had varying properties de-
pending on cancer site, the underlying prevalence of
metastatic disease, the choice of timeframe, and diagno-
sis codes [11]. This is consistent with the properties of
other diagnostic algorithms, where there is also evidence
that algorithm performance is dependent on the data
sources used.
Gastric cancer (GC) is the third leading cause of

cancer-related mortality worldwide [12, 13]. Most pa-
tients in North America present with metastatic disease
at diagnosis [14, 15], with similar stage distributions re-
ported in the United Kingdom [16–18]. Although not all
countries capture this information routinely, the ability
to identify stage IV patients in population-based regis-
tries is crucial. Therefore, this study linked detailed
TNM staging data from a province-wide chart review
with routinely collected healthcare data, to develop an
algorithm to identify individuals with metastatic disease
in a cohort of GC patients.

Methods
Study population
GC patients aged 19 and older and diagnosed be-
tween April 1, 2005 and March 31, 2008 were identi-
fied in the Ontario Cancer Registry. Patients with
multiple cancers, no corresponding hospital chart,
tumour located primarily in the oesophagus, or non-
adenocarcinoma tumours were excluded. The project
received the Research Ethics Boards approval at the
Sunnybrook Health Sciences Centre and adhered to
all privacy and confidentiality regulations of ICES. In-
dividual patient consent was not required. ICES is an
s. Forty five Prescribed Entity under Ontario’s privacy
law (PHIPA), enabling us to study the health and
health outcomes of individuals for the purpose of
analysis or compiling statistical information with

respect to the management of, evaluation or monitor-
ing of, the allocation of resources to or planning for
all or part of the health system.

Data sources
A province-wide chart review was conducted at over 100
institutions between November 2009 and November
2011. Information from multiple endoscopy, radiology,
and pathology reports per patient were aggregated. Data
abstraction from operative reports was completed by a
surgical resident in 2013. Chart review data were linked
to routinely collected healthcare and vital status data at
ICES in 2013. All hospitalizations, emergency depart-
ment (ED) visits, and physician visits were captured
from the Canadian Institute of Health Information-
Discharge Abstract Database and the Same Day Surgery
Database, the National Ambulatory Care Reporting Sys-
tem, and the Ontario Health Insurance Plan database.

Metastatic disease
Reference standard
The 7th Edition American Joint Committee on Can-
cer/Union International Cancer Control TNM staging
system was used [19]. TNM stage data from patient
hospital charts were used as the reference standard.
Stage data were collected in the 180 days prior to the
diagnosis date registered in the Ontario Cancer Regis-
try and in the 180 days following diagnosis up until
the date of surgical resection (whichever came last)
using a modified Collaborative Staging system ap-
proach. Clinic, diagnostic imaging, endoscopy, surgery,
and pathology records were used to identify meta-
static disease. Patients were considered stage IV,
otherwise defined as M1 or positive for metastatic
disease, if evidence of metastatic disease was identi-
fied in any portion of the medical record and M0
otherwise (stage I-III).

Algorithms
Three sets of administrative data algorithms to identify
stage IV gastric cancer [19], otherwise defined as the
presence of metastatic disease at diagnosis, were created
using a combination of information from hospitalization
records, ED visits, and outpatient physician visits. A
positive diagnosis of metastatic GC was determined
using three sets of eligible International Classification of
Disease (ICD) system version 9 and 10 diagnosis codes
(a complete list is provided in Additional file 1: Table S1).
The included diagnoses ranged from conservative (sec-
ondary malignancy codes only, e.g. ICD-9 code 196) to in-
clusive (any non-gastric malignancy diagnosis (e.g., ICD
10 C codes excluding digestive organs). In the first set of
algorithms, patients were identified as being metastatic if
they had a hospitalization. In the second set of algorithms,
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patients with metastases were identified using
hospitalization records (one or more) and outpatient re-
cords (two or more). In the third set of algorithms, pa-
tients with metastases were identified if they had one or
more hospitalizations or outpatient records. Three
different time periods were also considered for each
algorithm: three months pre- and post-diagnosis, six
months pre- and post-diagnosis, and three months
pre-diagnosis with no end to follow-up post-diagnosis.
These specific criteria were chosen based on the types
of data in our administrative data holdings, as well as
previous studies defining metastatic disease using
similar data, and based on the properties of diagnos-
tic algorithms using administrative data in other set-
tings. We performed a sensitivity analysis restricting
the cohort to those who received a surgical resection.
In total, 45 algorithms were evaluated.

Statistical analysis
Sensitivity, specificity, positive predictive value, negative
predictive value, and accuracy were calculated for each
algorithm. Accuracy was measured using the following
equation: Accuracy = (TP + TN) / (TP + TN + FP + FN)
[9]. Ninety five percent confidence limits on the esti-
mates of sensitivity, specificity, PPV, NPV and accuracy
were calculated using percentiles of a distribution of
5000 bootstrap replicates with replacement. Demo-
graphic characteristics and the tumour stage, lymph
node status, and TNM stage of true positives, false posi-
tives, true negatives, and false negatives were described
for each algorithm. Content validity was evaluated by
comparing the percentage of patients who died in year
following diagnosis.

Results
Overall, 2366 patients were included; 54.3% had metas-
tasis at diagnosis according to the chart review (Table 1).
Sensitivity, specificity, and accuracy of the algorithms
are reported in Table 2. Sensitivity ranged from 50.0 -
90%, specificity ranged from 27.6 - 92.5%, and accuracy
from 61.5 - 73.4%. Sensitivity and specificity were maxi-
mized when the algorithm used the most conservative
list of metastatic disease diagnosis codes, hospitalization
and outpatient records as the data source, and when the
algorithm was run on administrative data from the six
months prior to and following diagnosis. The sensitivity
of the algorithms all decreased and the specificity of the
algorithms increased slightly, when the cohort was re-
stricted to patients who received surgical resection
(Additional file 2: Table S2). Excluding patients with un-
known metastatic disease status (4.3%) did not change
the results (data not shown). Concordant and discordant
classifications between the algorithms and the reference
standard are reported in Additional file 3: Table S3.

Table 3 describes the algorithm that maximized sensi-
tivity and specificity (algorithm # 12). According to this
algorithm, the prevalence of metastatic GC was 45%. Of
the 1285 true positives using the reference standard,
31% were misclassified using this administrative health-
care data algorithm; 20% of the metastatic group identi-
fied by the algorithm were false positives and 32% of the
M0 were false negatives. One third of the false positives
and false negatives had an unknown stage at diagnosis
according to the reference standard. Correctly classified
metastatic patients were more likely to have died within
a year of diagnosis, than those incorrectly classified.
Using the algorithm with the highest positive predict-

ive value (algorithm # 1), 11% of those identified as hav-
ing metastatic disease were misclassified. Ninety percent
of patients misclassified using this algorithm were
stage III (55.5%) or unknown stage (34.6%), 66% had
a T4a or T4b tumour. Overall, as the positive predict-
ive value of the algorithm decreased, the proportion
of node-negative patients with smaller tumours, and
earlier stage disease, misclassified as metastatic in-
creased (data not shown).

Table 1 A description of the reference standard M1 and non-
M1 cohort

Characteristic Reference Standard M1

1 (n = 1285) 0 (n = 1081)

Age

< 50 10.9 6.8

50–54 6.9 5.9

55–59 8.9 8.6

60–64 10.4 10.5

65–69 13.3 11.8

70+ 49.6 56.2

Female 35 35.5

Charlson Category

No Prev Hosp 56.9 47.8

0 28.6 30.6

1 12.5 4.7

2+ 6.9 11

Tumour Location

Distal 32.9 43.8

Entire 9.8 5.1

GEJ 27.3 23.5

Middle 15.6 17.1

Proximal 9.8 6.9

Unknown 4.7 3.6

Deaths

One year 71.9 32.5

Five years 94.6 64.7
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Discussion
This study evaluated 45 algorithms using routinely col-
lected healthcare data to identify metastatic disease in a
population-based cohort of GC patients. None of the

algorithms did an excellent job of classifying patients
based on the reference standard. The algorithm that
maximized sensitivity and specificity identified meta-
static disease through one or more hospitalization or

Table 2 Properties of evaluated algorithms

Algorithm Se (95% CI) Sp (95% CI) PPV (95% CI) NPV (95% CI) A (95% CI)

+/− 3 Months Diagnosis Date

Conservative Diagnosis Codes

1. 1+ hospitalization 50 (47.2–52.8) 92.5 (90.9–94.0) 88.8 (86.4–91.0) 60.9 (58.5–63.3) 69.4 (67.6–71.3)

2. 1+ hospitalization or 2+ outpatient 57.8 (55.1–60.5) 86.9 (84.8–88.8) 84 (81.4–86.3) 63.4 (60.9–65.9) 71 (69.2–72.9)

3. 1+ hospitalization or 1+ outpatient 61.2 (58.5–63.9) 84.2 (82.0–86.3) 82.1 (79.6–84.6) 64.6 (62.1–67.1) 71.7 (69.8–73.5)

Less Conservative Diagnosis Codes

4. 1+ hospitalization 52.9 (50.2–55.7) 87.9 (85.9–89.8) 83.8 (81.2–86.3) 61.1 (58.6–63.5) 68.9 (67.0–70.8)

5. 1+ hospitalization or 2+ outpatient 60.4 (57.7–63.2) 82.2 (79.9–84.4) 80.1 (77.6–82.6) 63.6 (61.0–66.1) 70.3 (68.5–72.1)

6. 1+ hospitalization or 1+ outpatient 64.2 (61.5–66.8) 79.7 (77.4–82.2) 79 (76.5–81.4) 65.2 (62.5–67.8) 71.3 (69.5–73.1)

Most Inclusive Diagnosis Codes

7. 1+ hospitalization 53.6 (50.9–56.4) 86.9 (84.8–88.9) 82.9 (80.3–85.5) 61.2 (58.7–63.7) 68.8 (66.9–70.7)

8. 1+ hospitalization or 2+ outpatient 69.5 (66.9–72.0) 68 (65.2–70.8) 72.1 (69.4–74.5) 65.2 (62.4–68.0) 68.8 (66.9–70.6)

9. 1+ hospitalization or 1+ outpatient 76.3 (73.9–78.6) 58.7 (55.8–61.7) 68.7 (66.2–71.1) 67.5 (64.4–70.5) 68.2 (66.3–70.1)

+/− 6 months Diagnosis Date

Conservative Diagnosis Codes

10. 1+ hospitalization 57.5 (54.7–60.3) 90.1 (88.3–91.8) 87.4 (85.0–89.5) 64.1 (61.7–66.6) 72.4 (70.6–74.2)

11. 1+ hospitalization or 2+ outpatient 65.8 (63.2–68.4) 82.3 (80.0–84.6) 81.6 (79.2–83.9) 66.9 (64.4–69.5) 73.3 (71.6–75.1)

12. 1+ hospitalization or 1+ outpatient 68.6 (66.1–71.2) 79.1 (76.7–81.6) 79.6 (77.2–82.0) 67.9 (65.3–70.5) 73.4 (71.6–75.1)

Less Conservative Diagnosis Codes

13. 1+ hospitalization 60.1 (57.4) 84.4 (82.2–86.5) 82.1 (79.6–84.5) 64 (61.5–66.5) 71.2 (69.4–73.0)

14. 1+ hospitalization or 2+ outpatient 68.1 (65.6–70.6) 77.1 (74.5–79.6) 77.9 (75.4–80.3) 67 (64.4–69.7) 72.2 (70.4–74.0)

15. 1+ hospitalization or 1+ outpatient 71 (68.6–73.5) 73.8 (71.2–76.4) 76.3 (73.9–78.7) 68.2 (65.5–70.9) 72.3 (70.5–74.0)

Most Inclusive Diagnosis Codes

16. 1+ hospitalization 61.1 (58.4–63.8) 83 (80.7–85.2) 81 (78.5–83.4) 64.2 (61.7–66.8) 71.1 (69.3–73.0)

17. 1+ hospitalization or 2+ outpatient 77.4 (75.1–79.7) 57.8 (54.8–60.6) 68.5 (66.0–70.9) 68.2 (65.3–71.3) 68.4 (66.6–70.2)

18. 1+ hospitalization or 1+ outpatient 82.7 (80.6–84.8) 48.2 (45.2–51.2 65.5 (63.1–67.8) 70.1 (66.7–73.5) 66.9 (65.0–68.9)

−3 months Diagnosis, No Time Limit

Conservative Diagnosis Codes

19. 1+ hospitalization 70.7 (68.1–73.2) 69.9 (67.1–72.6) 73.6 (71.0–76.0) 66.7 (63.9–69.5) 70.3 (68.4–72.1)

20. 1+ hospitalization or 2+ outpatient 77.4 (75.1–79.6) 60.4 (57.5–63.3) 69.9 (67.5–72.3) 69.2 (66.2–72.2) 69.6 (67.8–71.5)

21. 1+ hospitalization or 1+ outpatient 80.2 (78.0–82.4) 55.6 (52.7–58.6) 68.2 (65.8–70.6) 70.2 (67.1–73.3) 68.9 (67.1–70.9)

Less Conservative Diagnosis Codes

22. 1+ hospitalization 72.9 (70.5–75.3) 63.9 (61.1–66.8) 70.6 (68.1–72.9) 66.6 (63.6–69.4) 68.8 (66.9–70.6)

23. 1+ hospitalization or 2+ outpatient 79.3 (77.1–81.5) 55 (52.1–58.0) 67.7 (65.3–70.0) 69.1 (66.0–72.2) 68.3 (66.4–70.1)

24. 1+ hospitalization or 1+ outpatient 82.2 (80.1–84.3) 50.4 (47.5–53.4) 66.3 (64.0–68.6) 70.4 (67.2–73.7) 67.7 (65.8–69.6)

Most Inclusive Diagnosis Codes

25. 1+ hospitalization 74 (71.6–76.4) 62 (59.2–64.9) 69.8 (67.4–72.2) 66.8 (63.9–69.7) 68.6 (66.6–70.4)

26. 1+ hospitalization or 2+ outpatient 86.5 (84.7–88.4) 35.3 (32.5–38.2) 61.4 (59.1–63.6) 68.8 (65.1–72.6) 63.2 (61.2–65.1)

27. 1+ hospitalization or 1+ outpatient 90.1 (88.4–91.7) 27.6 (24.9–30.2) 59.7 (57.4–61.8) 70 (65.7–74.4) 61.5 (59.6–63.5)

95% CI bootstrapped 95% confidence intervals, Se sensitivity, Sp specificity, PPV positive predictive value, NPV negative predictive value, A accuracy
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outpatient records with a diagnosis from the conserva-
tive list, in the six months before and after diagnosis.
Our algorithm accuracy differed from the few others

present in the literature as the result of study design or
the underlying prevalence of metastatic disease. We ob-
served lower accuracy than a study of colorectal cancer
algorithms by Brooks et al. [20]. Whyte et al. reported
better accuracy for their algorithms identifying meta-
static disease in breast cancer, and similar accuracy for
algorithms in lung and colorectal cancer [11]. Whyte et
al. reported sensitivity and specificity estimates ranging
from 46 to 77 and 83–99% for breast cancer, 50–67 and
68–83% for lung cancer, and 54–77 and 70–91% for
colorectal cancer [11]. Whyte et al. did not define the
length of their follow-up period, or explain why the total
number of patients varied across algorithms, and only
included patients treated within a private healthcare sys-
tem [11]. Both Whyte et al. and Brooks et al. studied
only patients who received treatment. Both breast and
colorectal cancer have a much lower prevalence of meta-
static disease at diagnosis, compared to GC which may
impact accuracy. We concluded similar findings to an al-
gorithm developed by Lash et al. to identify colorectal
cancer recurrence, in which patients correctly identified
by the algorithm were more likely to be younger and to
die in a shorter timeframe [21].
The best algorithm choice is dependent on the re-

search purpose [22]. For example, maximizing accuracy
may be the priority when estimating the prevalence of

Table 3 A description of concordant and discordant
classifications for algorithm 12, the algorithm that maximized
sensitivity and specificity

Variable M1 (n = 1107) Mnot (n = 1259)

+/+ +/− −/+ −/−

80% 20% 32% 68%

Age (years)

< 50 12.5 10.6 7.4 5.8

50–54 7.6 8.8 5.4 5.1

55–59 8.9 8.8 9.2 8.5

60–64 11.1 10.2 8.7 10.6

65–69 13.2 11.9 13.6 11.8

70-high 46.8 49.6 55.7 58

Female 35.9 39.4 33.2 34.5

Tumour Location

Distal 30.4 37.2 37.6 37.7

Entire 9.9 5.8 9.7 7.7

GEJ 27.4 30.5 27.2 25.6

Middle 17 14.2 12.6 16.3

Proximal 10.6 6.6 8.2 8.5

Unknown 4.8 5.8 4.7 4.2

Charlson Score

No Prev Hosp 56.4 49.6 57.9 47.4

0 29.7 33.2 26.2 29.9

1 7.6 8.8 7.7 11

2+ 6.2 8.4 12.9 10

Urban Residence 89.2 89.4 87.6 87.7

Community Income

Lowest 20.2 23 22.5 20

2 22.9 17.7 23.3 21.6

3 20 23 18.3 20

4 20.3 17.7 16.6 20.1

Highest 16.5 18.6 19.3 17.9

T stage

Tis/T0/T1 1 4.8 2.4 16

T2 1 7.1 3.2 13.8

T3 3.2 20.8 7.7 15.3

T4A 6.2 22.6 15.6 18.9

T4B 27.7 20.8 26.7 11.6

T1-T4A 4 1.8 4.5 3.3

TX 56.9 22.1 39.9 21.2

N status

N0 18.2 25.2 21.3 38.6

N1 3.2 11.1 6.7 14.3

N2 4.1 20.4 8.4 13

N3A 6.2 14.6 9.9 10.8

N3B 3.2 5.8 5.9 4.4

Table 3 A description of concordant and discordant
classifications for algorithm 12, the algorithm that maximized
sensitivity and specificity (Continued)

Variable M1 (n = 1107) Mnot (n = 1259)

+/+ +/− −/+ −/−

80% 20% 32% 68%

N1–3 50.7 11.1 34.6 7.5

NX 15.3 11.9 13.1 11.5

AJCC Stage

0/IA 0 2.7 0 11.9

IB 0 4 0 9.8

IIA 0 7.5 0 8.9

IIB 0 8 0 8.2

IIIA 0 9.7 0 8.5

IIIB 0 17.7 0 12.2

IIIC 0 17.7 0 11.6

IV 100 0 100 0

Unknown 0 32.3 0 29.2

Death within 1 year 79.7 42.9 55 29.7

Death within 5 years 96.9 74.3 89.6 62.1

+/+ = true positive, +/− false positive, −/+ false negative, −/− true negative
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metastatic disease, when representativeness of the identi-
fied cohort is not important. Maximizing specificity may
be the priority to ensure patients included in a study of
metastatic patients are not metastatic. We recommend
using a conservative approach with relevant diagnosis
codes reported close to the diagnosis date. This ap-
proach, and the other algorithms reported in this study
should be tested in an additional, external cohort, in-
cluding one that better reflects current clinical popula-
tions and treatment. The properties of algorithms in this
study may be generalizable to similar high fatality cancer
cohorts such as pancreas and esophagus. The algorithms
may be used by other investigators and policy-makers to
estimate the extent of misclassification, and in formal
bias analyses to adjust effect estimates [23]. Alterna-
tively, given that none of the algorithms demonstrated
exemplary accuracy, integrating multiple algorithms
using methods such as majority vote and Boolean opera-
tions may be another way these algorithms may be im-
plemented in practice [24].
Our study is limited by our choice of a reference

standard, which may have resulted in misclassification of
metastatic disease across patients. The prevalence of
metastatic disease was 54% in our study, with a median
survival of six months, which matches the literature dis-
tribution [14, 25]. We performed a sensitivity analysis
restricting to the cohort of patients with a surgical resec-
tion, who would have better quality pathologic staging
data available in their charts. The true prevalence of
metastatic disease was lower and the positive predictive
value of the algorithms decreased. We also attempted to
address administrative data quality issues by creating
three sets of algorithms based on the data reliability
(hospitalization data being most reliable) and using three
sets of diagnosis codes.

Conclusions
We suggest that algorithms using administrative health-
care data are imperfect replacements for population-based
staging data and support the need for system level data
collection. However, they do yield moderately accurate re-
sults. In cases where population-based data collection is
infeasible, a global understanding of misclassified patients
and administrative algorithm properties is important to
assessing potential selection bias.
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algorithm, The breakdown of the number of true positive, true negatives,
false positives and false negatives for each algorithm. (DOCX 19 kb)

Abbreviations
ED: Emergency department; FN: False negative; FP: False positive; GC: Gastric
cancer; ICD: International Classification of Disease; OCR: Ontario Cancer
Registry; PHIPA: Personal Health Information Privacy Act; TN: True negative;
TNM: Tumour, node, metastasis; TP: True positive

Acknowledgements
We would like to acknowledge the tireless, persistent, and important chart
abstraction efforts of Dr. Jovanka Vasilevska-Ristovska and Dr. Matthew Dixon.

Funding
The authors have no financial interests to disclose. This research was funded
by the Canadian Cancer Society (Grant #019325). Dr. Coburn is supported by
the Hanna Family Research Chair in Surgical Oncology. This study was
additionally supported by ICES, which is funded by an annual grant from the
MOHLTC. The opinions, results and conclusions reported in this paper are
those of the authors and are independent from the funding sources. No
endorsement by ICES or the Ontario MOHLTC is intended or should be
inferred. Parts of this material are based on data and information provided
by Cancer Care Ontario (CCO). The opinions, results, view, and conclusions
reported in this paper are those of the authors and do not necessarily reflect
those of CCO. No endorsement by CCO is intended or should be inferred.
Parts of this material are also based on data and/or information compiled
and provided by CIHI. However, the analyses, conclusions, opinions and
statements expressed in the material are those of the author(s), and not
necessarily those of CIHI.

Availability of data and materials
The dataset used in this study is held securely in coded format at ICES.
Although data sharing agreements prohibit ICES from making the dataset
publicly available, access may be granted to those who meet the conditions
for confidential access, available at https://www.ices.on.ca.

Author’s contributions
AM and YJ conceived the study. AM and BZ participated in the design of
the study. AM and NC participated in data acquisition. AM and YJ made
substantial contributions to the interpretation of the data and drafted the
manuscript. BZ performed the statistical analyses for the study and
participated in manuscript revisions. NC made substantial contributions to
the interpretation of the data and participated in manuscript revisions. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
The project received the Research Ethics Boards approval at the Sunnybrook
Health Sciences Centre and adhered to all privacy and confidentiality
regulations of ICES. Individual patient consent was not required. ICES is a s.
Forty five Prescribed Entity under Ontario’s privacy law (PHIPA) enabling us
to study the health and health outcomes of individuals for the purpose of
analysis or compiling statistical information with respect to the management
of, evaluation or monitoring of, the allocation of resources to or planning for
all or part of the health system.

Competing interests
The authors declare they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Community Health Sciences, University of Manitoba, Winnipeg MB; 727
McDermot Ave, Winnipeg, MB R3P 3P5, Canada. 2Division of General Surgery,
Department of Surgery & Institute of Health Policy, Management and

Mahar et al. BMC Health Services Research  (2018) 18:309 Page 6 of 7

https://doi.org/10.1186/s12913-018-3125-7
https://doi.org/10.1186/s12913-018-3125-7
https://doi.org/10.1186/s12913-018-3125-7
https://www.ices.on.ca


Evaluation, University of Toronto, K3W-15, Sunnybrook Health Sciences
Centre 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada. 3Institute of
Health Policy, Management, and Evaluation, University of Toronto, 4th Floor,
155 College St, Toronto, ON M5T 3M6, Canada. 4Department of Surgery &
Institute of Health Policy, Management, and Evaluation, University of Toronto,
T2-11, Odette Cancer Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5,
Canada.

Received: 4 October 2017 Accepted: 16 April 2018

References
1. Brierley JD, Srigley JR, Yurcan M, Li B, Rahal R, Ross J, King MJ, Sherar M,

Skinner R, Sawka C. The value of collecting population-based cancer stage
data to support decision-making at organizational, regional and population
levels. Healthcare quarterly (Toronto, Ont). 2013;16(3):27–33.

2. Falcaro M, Carpenter JR. Correcting bias due to missing stage data in the
non-parametric estimation of stage-specific net survival for colorectal cancer
using multiple imputation. Cancer Epidemiol. 2017;48:16–21.

3. Butler J, Foot C, Bomb M, Hiom S, Coleman M, Bryant H, Vedsted P, Hanson
J, Richards M. The international Cancer benchmarking partnership: an
international collaboration to inform cancer policy in Australia, Canada,
Denmark, Norway, Sweden and the United Kingdom. Health Policy. 2013;
112(1–2):148–55.

4. Maringe C, Walters S, Rachet B, Butler J, Fields T, Finan P, Maxwell R,
Nedrebo B, Pahlman L, Sjovall A, et al. Stage at diagnosis and colorectal
cancer survival in six high-income countries: a population-based study of
patients diagnosed during 2000-2007. Acta oncologica. 2013;52(5):919–32.

5. Walters S, Maringe C, Coleman MP, Peake MD, Butler J, Young N, Bergstrom
S, Hanna L, Jakobsen E, Kolbeck K, et al. Lung cancer survival and stage at
diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: a
population-based study, 2004-2007. Thorax. 2013;68(6):551–64.

6. Benitez-Majano S, Fowler H, Maringe C, Di Girolamo C, Rachet B. Deriving
stage at diagnosis from multiple population-based sources: colorectal and
lung cancer in England. Br J Cancer. 2016;115(3):391–400.

7. Luo Q, Egger S, Yu XQ, Smith DP, O'Connell DL. Validity of using multiple
imputation for "unknown" stage at diagnosis in population-based cancer
registry data. PLoS One. 2017;12(6):e0180033.

8. Ostenfeld EB, Froslev T, Friis S, Gandrup P, Madsen MR, Sogaard M.
Completeness of colon and rectal cancer staging in the Danish Cancer
registry, 2004-2009. Clinical epidemiology. 2012;4(Suppl 2):33–8.

9. Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I,
Sorensen HT, von Elm E, Langan SM. The REporting of studies conducted
using observational routinely-collected health data (RECORD) statement.
PLoS Med. 2015;12(10):e1001885.

10. van Walraven C, Bennett C, Forster AJ. Administrative database research
infrequently used validated diagnostic or procedural codes. J Clin
Epidemiol. 2011;64(10):1054–9.

11. Whyte JL, Engel-Nitz NM, Teitelbaum A, Gomez Rey G, Kallich JD. An
evaluation of algorithms for identifying metastatic breast, lung, or colorectal
Cancer in administrative claims data. Med Care. 2015;53(7):e49–57.

12. Brenkman HJ, Haverkamp L, Ruurda JP, van Hillegersberg R. Worldwide
practice in gastric cancer surgery. World J Gastroenterol. 2016;22(15):4041.

13. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM,
Forman D, Bray F. Cancer incidence and mortality worldwide: sources,
methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):
E359–86.

14. Dixon M, Mahar AL, Helyer LK, Vasilevska-Ristovska J, Law C, Coburn NG.
Prognostic factors in metastatic gastric cancer: results of a population-based,
retrospective cohort study in Ontario. Gastric Cancer. 2016;19(1):150–9.

15. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M,
Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA
(eds). Bethesda: SEER Cancer Statistics Review, 1975-2014, National Cancer
Institute. 2016. https://seer.cancer.gov/csr/1975_2014/.

16. National Cancer Registration and Analysis Service. Stage Breakdown by CCG
2014. London: NCRAS; 2016.

17. Northern Ireland Cancer Registry. Incidence by stage 2010–2014. Belfast:
Queens University Belfast; 2016.

18. ISD Scotland. Detect Cancer early staging data. Scotland: ISD; 2016.
19. American Joint Committee on Cancer. AJCC staging manual. 7th ed.

Chicago: Spring; 2012.

20. Brooks GA, Landrum MB, Keating NL. An administrative stage inference
algorithm for use in patients receiving chemotherapy for colorectal cancer.
J Clin Oncol. 2017;35:e18121.

21. Lash TL, Riis AH, Ostenfeld EB, Erichsen R, Vyberg M, Thorlacius-Ussing O. A
validated algorithm to ascertain colorectal cancer recurrence using registry
resources in Denmark. Int J Cancer. 2015;136(9):2210–5.

22. Chubak J, Pocobelli G, Weiss NS. Tradeoffs between accuracy measures for
electronic health care data algorithms. J Clin Epidemiol. 2012;65(3):343–349.e342.

23. Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless LC, Greenland S.
Good practices for quantitative bias analysis. Int J Epidemiol. 2014;43(6):
1969–85.

24. Murphree D, Ngufor C, Upadhyaya S, Madde N, Clifford L, Kor DJ, Pathak J.
Ensemble learning approaches to predicting complications of blood
transfusion. Conf Proc IEEE Eng Med Biol Soc Ann Conf. 2015;2015:7222–5.

25. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary
CL, Yu M, Ruhl J, Tatalovich Z, et al. SEER Cancer statistics review, 1975-2011,
based on November 2013 SEER data submission. Bethesda: National Cancer
Institute; 2014.

Mahar et al. BMC Health Services Research  (2018) 18:309 Page 7 of 7

https://seer.cancer.gov/csr/1975_2014/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Study population
	Data sources
	Metastatic disease
	Reference standard
	Algorithms

	Statistical analysis

	Results
	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Author’s contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	Author details
	References

