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Abstract

Background: Analysis of patient mobility in a country not only gives an idea of how the health-care system works, but
also can be a guideline to determine the quality of health care and health disparity among regions. Even though
determination of patient movement is important, it is not often realized that patient mobility could have a unique
pattern beyond health-related endowments (e.g., facilities, medical staff). This study therefore addresses the following
research question: Is there a way to identify regions with similar patterns using spatio-temporal distribution of patient
mobility? The aim of the paper is to answer this question and improve a classification method that is useful for
populous countries like Turkey that have many administrative areas.

Methods: The data used in the study consist of spatio-temporal information on patient mobility for the period
between 2009 and 2013. Patient mobility patterns based on the number of patients attracted/escaping across 81
provinces of Turkey are illustrated graphically. The hierarchical clustering method is used to group provinces in terms of
the mobility characteristics revealed by the patterns. Clustered groups of provinces are analyzed using non-parametric
statistical tests to identify potential correlations between clustered groups and the selected basic health indicators.

Results: Ineffective health-care delivery in certain regions of Turkey was determined through identifying patient
mobility patterns. High escape values obtained for a large number of provinces suggest poor health-care accessibility.
On the other hand, over the period of time studied, visualization of temporal mobility revealed a considerable decrease
in the escape ratio for inadequately equipped provinces. Among four of twelve clusters created using the hierarchical
clustering method, which include 64 of 81 Turkish provinces, there was a statistically significant relationship between
the patterns and the selected basic health indicators of the clusters. The remaining eight clusters included 17 provinces
and showed anomalies.

Conclusions: The most important contribution of this study is the development of a way to identify patient mobility
patterns by analyzing patient movements across the clusters. These results are strong evidence that patient mobility
patterns provide a useful tool for decisions concerning the distribution of health-care services and the provision of
health care equipment to the provinces.
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Background
As basic human rights, medical care and necessary social
services must be accessible for people [1]. The principle
of territoriality has become essential to the organization
and consumption of health care to improve health-care
access and utilization management [2]. However,
regional disparities can still arise from geographic differ-
ences, limited human and financial resources, and other
constraints that make for unequal distribution of
resources among health administrative areas. Regional
disparities in the quality of health-care services eventu-
ally lead to patient mobility.
Today, people can access health information more

quickly than ever before and have higher expectations of
quality and performance from health-care services. Social
security systems providing many alternatives also give pa-
tients the opportunity to move across regions, countries,
and even continents. For instance, in Europe several
rulings made by the EU Court of Justice extended the
cross-border care right of EU citizens [3, 4]. In 2011 the
EU Parliament adopted a directive that allows EU citizens
to be treated in any other EU country [5].
Analysis of patient mobility can play a key role toward

better understanding of health-care systems by decision
makers and can offer additional insight into identifying
medical and management areas that need capacity im-
provement to satisfy health-care needs. Patient mobility
can also be considered as an important parameter to ob-
serve the impact of reforms, legislative changes, and
other developments in a health-care system.
Given the importance of patient mobility, the aim of

this paper is not only to analyze patient mobility across
Turkey, but also to develop a method that improves the
ability of decision makers to access these mobility pat-
terns. The paper will focus on the classification of mo-
bility characteristics of different health-care areas (e.g.,
provinces, regions, or states) to identify patient mobility
patterns. Thus, one can statistically test for a significant
relationship between clusters that are based on patient
mobility patterns with a comprehensive spatial and tem-
poral perspective. Other research questions are as
follows:

� Are there any meaningful differences in patient
mobility across health-service areas with respect to
spatial and temporal variations?

� Can the clustering of health-service units based on
patient mobility be independently explained using
basic health-care indicators?

Patient mobility is usually categorized as intra-regional
(within a region) or extra-regional (out of a region) for
study of mobility within a certain region, or interregional
(between regions) for study on a national scale [6, 7].

International mobility, cross-border mobility, or health
tourism are some of the terms used for country-to-
country health travel [3, 8, 9]. This study covers the
range of interregional patient mobility previously studied
in Spain and Italy to improve the understanding of
health economics [6, 7, 10–15]. In these countries, as in
Turkey, local health departments have gained more
autonomy in the past few decades, while central govern-
ments still maintain regulatory roles.
In 2011 the Turkish Ministry of Health (TMoH)

released a new region-centered planning document for
required health services [16]. In this regulation, 81 prov-
inces were partitioned into 29 health regions with one
province from each region identified as the regional
health-care center. According to the policy adopted in
this document, patients in each region should first seek
medical care from their regional health-care center
before considering other centers. Under these new
arrangements and the previously adopted health trans-
formation program, the number of patient admissions to
hospitals has increased dramatically. Turkey has a three-
level health system – primary care (family physicians),
public and private hospitals (specialist physicians), and
training and research hospitals – and in this study, we
are mainly going to consider the second two.
Some studies have addressed patient mobility in gen-

eral using different sampling units, parameters chosen,
and methods employed (e.g., panel data analysis, econo-
metric regression models, and gravity models). Most
have confirmed the relationship between patient mobil-
ity and health-care service delivery (quality, productivity,
infrastructure, location). For instance, using panel data
analysis Mafrolla and D’Amico [15] found a strong cor-
relation between patient mobility behavior and health-
care efficiency. In addition, certain studies have been
conducted on specific issues, such as pediatric diseases
[6], aortic valve substitution [7], percutaneous translumi-
nal coronary angioplasty (PTCA) [10], or cardiac surger-
ies stratified according to severity levels [11], using
patient-mobility parameters.
Unlike studies that focus on examining the motives

leading to patient mobility, this paper analyzes the simi-
larities and differences between cluster patterns based
on patient mobility across Turkish provinces and will
contribute to the literature by suggesting a way for iden-
tifying patient mobility patterns that indicate quality and
accessibility of health-care services. Furthermore, this
paper is unique in considering patient mobility patterns
among all provinces of Turkey. Other papers have con-
sidered health-care authorities in a certain region [15],
or at most 21 regions on a national scale [14].
As a practical analytical tool for comparing access

across many geographical areas in a single presentation,
Gandy’s nomogram (the Nomogramma di Gandy: NdiG)
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can be used to explore clusters related to access to
health-service areas [17, 18]. NdiG is a special graph that
plots mobility parameters of service areas (i.e., pairs of
attraction and escape values) in a Cartesian space. In this
study, NdiG will be used to create a tool that identifies
patient mobility patterns and clusters.
The paper is organized as follows: The following head-

ing briefly reviews the Turkish health-care system. Then,
we presented methods on mobility parameters, data de-
scription and preparation, Gandy’s graphic demonstra-
tion, and clustering mobility patterns. In the Results and
Discussions heading, we discussed results of clustering
and statistical tests along with examples of temporal mo-
bility patterns identified. Lastly, we provided conclusions
and ideas for future work.

The Turkish health-care system
Health services in Turkey are organized across the 81
provinces under the control of the Provincial Health
Directorates (PHDs), which are managed by the Turkish
Ministry of Health. At the local level, PHDs plan and
provide health services, coordinating with the newly
established Public Health Directorate (PuHD) and the
Association of Public Hospitals (APH). As supervisor of
community health centers (CHCs) and family health cen-
ters (FHCs), the PuHD provides primary health services.
The APH is the management organization for public hos-
pitals in a province. The PHDs are also responsible to their
provincial governors, who represent the government [19].
Health providers in Turkey are organized into three

levels. At the first level are the primary health centers
staffed by family physicians, at the second level are pub-
lic and private hospitals, and at the third level are train-
ing and research hospitals (TRHs) managed by APH and
independent university hospitals.
The Turkish Healthcare System (THS) has changed

radically in the past decade following the initiation of
the Turkey Health Transformation Program (THTP) in
2003. This governmental program aimed to improve
governance, efficiency, and quality in the health-care
sector [20]. THTP has been active in the health system
through significant investment in the hospital sector and
the establishment of a family-physician system [21].
Public- and private-sector employees were combined

under the newly created Turkish Social Security Institu-
tion (TSSI), and almost the entire population is covered
by social insurance with universal health coverage. After
many legislative changes, TSSI has become the sole
buyer of health-care services, while the TMoH has be-
come the main health-care service provider in the coun-
try [22]. With the implementation of THTP in Turkey,
citizens are now free to choose treatment in either a pri-
vate or a public health center, without any referral
requirement. According to an OECD health-care report,

THTP has been successful in prioritizing coverage, ac-
cess, and activity, and the focus of the THS should now
shift to quality and outcomes [21].

Methods
Mobility parameters
Patient mobility can be defined as the movement of a
patient to another region/place to seek better health-
care service. The key variable is whether patients receive
treatment in the place in which they reside or in another
place. The number of patients “attracted to” and “escap-
ing from” provinces is extracted from the data and used
to explain patient mobility relationships among the
provinces. These indicators have been employed in dif-
ferent formats in previous studies, for instance by nor-
malizing them according to population or intra-regional
mobility [7, 11–15]. Attraction is determined by the
number of patients coming from other provinces to re-
ceive health-care services; escape measures the number
of patients traveling to other provinces for the same pur-
pose. Patient mobility variables used in this study are
shown below:
Attract: Number of patients coming from other

provinces.
Escape: Number of patients traveling to other

provinces.
Resident Admissions: Number of patients admitted

from the same province as the center.
TPA: Total patient admission in a province (Resident

Admissions + Attract)
TRP: Total resident patient population in a province

(Resident Admissions + Escape)

Data
The data were obtained from the TSSI, following re-
quired legal procedures and protecting patient and insti-
tutional privacy. The data contain the number of
patients admitted to health-care centers on a yearly
basis. The study covered the 4 years beginning Decem-
ber 2009 and ending December 2013.The data set con-
tains information on more than 1.2 billion hospital
admissions occurring during this time period. The ad-
mission records were summarized with respect to
provinces.
Yearly mobility ratios in Table 1 suggest that the pa-

tient mobility ratio is declining year by year in Turkey.

Table 1 Hospital admission and mobility by year

Term Total Hospital Admissions Mobility Mob. Ratio

Dec.2009-Nov.2010 251,630,100 32,843,706 13.05%

Dec.2010-Nov.2011 292,626,833 36,407,051 12.44%

Dec.2011-Nov.2012 355,843,020 41,755,845 11.73%

Dec.2012-Nov.2013 372,586,211 43,772,750 11.75%
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Location information was not available for 11% of pa-
tients, whose citizenship ID was not available in the Na-
tional Address Database or who were non-citizens
coming for cross-border medical tourism. These records
were taken into account when calculating attract ratios
for each province, as patient origin is not relevant for
computing the attract ratio.
This study focuses mainly on secondary and tertiary

care and ignores primary care. Owing to recent improve-
ments in the Turkish health-care system almost all pa-
tients in Turkey can now receive quality primary care in
their home town. In additional, emergency admissions
and some medical-specialties such as environmental
health, army medicine, and occupational medicine have
also been ignored, as these types of admissions can bias
general mobility information.

Gandy’s graphic demonstration
To compare mobility characteristics and seasonal fluctu-
ations for provinces, NdiG graphic demonstrations are
used as a practical analytic tool that allows comparison
of regions in terms of attract and escape values to show
accessibility of public services [17]. The NdiG was en-
hanced by adding visualization properties and an auto-
matic timeline view. A graphic interface developed in
Tableau software [23] can automatically calculate mobil-
ity parameters with respect to time. In this graphic

interface, nodes represent provinces and the diagonal
line represents equality between escape and attract ratios
(Fig. 1).
While different studies use different formulations to

calculate the NdiG axes, the following formulas were
employed to produce normalized attract and escape ra-
tios for each province:

Attract ratio X axisð Þ ¼ Attract
TPA

� 100

Escape ratio ðY axisÞ ¼ Escape
TRP

� 100

On the coordinate plane, increase in attract ratio is
measured along the X axis, increase in escape ratio along
the Y axis.

Clustering mobility patterns
In order to identify similarities and differences among
provinces, the patient mobility data involving attract/es-
cape pairs were clustered using the agglomerative hier-
archical (linkage) clustering method [24]. This method
calculates the distance between every pair of feature
vectors in the data set and moves up the hierarchy by
merging pairs of clusters. Compared to other clustering
algorithms, hierarchical clustering is more suitable for
our task as one can choose a cut-off level by dynamically

Fig. 1 Plotting patient mobility with Gandy nomogram (average of 2010–2013)
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observing the hierarchy being formed, in this case
among provinces.
For each of the 81 provinces, quarterly attract/escape

values were computed and averaged over 4 years to ob-
tain an 8-dimensional feature vector (two features for
each quarter). The agglomerative hierarchical clustering
algorithm was executed on the resulting 81-by-8 feature
matrix. Several different distance metrics (Manhattan,
Cosine, Euclidean) were used to test the calculation of
distance between observations. After the distance
between objects is computed, a linkage function is calcu-
lated to group objects into clusters. Three popular link-
age methods (single, complete, average) were used with
the agglomerative hierarchical clustering algorithm. The
cophenetic correlation coefficient [24, 25] was calculated
to compare the linkage distances between clusters to the
original distance matrix. This coefficient determines
correlation between two distances. Table 2 includes
correlation coefficient results for all combinations of
distance metrics and linkage methods.
These results suggest that the Euclidean distance

metric with an average linkage method produces the
highest correlated coefficient (r = 0.7863). The Euclidean
method measures the distance between two observations
by the length of the path directly connecting them.
Given that X is an n × d –dimensional data matrix in

which each row corresponds to a d-dimensional point in
Euclidean space for each observation, to calculate the
distance between two points Xa and Xb the following
equations are used:

Xa ¼ a1 a2 :: ad½ �
Xb ¼ ½b1 b2 :: bd�

deuclidean Xa;Xbð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1−b1ð Þ2 þ a2−b2ð Þ2 þ…þ ad−bdð Þ2
q

Results and Discussions
Both demand-side (e.g., regional income disparities, pa-
tient preferences, health status, beliefs) and supply-side

(e.g., health-provider financial incentives, ability or prac-
tice norms) factors can cause regional variations among
health-care service areas [26]. On the other hand, as we
mentioned in the first section, correlation between pa-
tient mobility and health-care service parameters (e.g.,
quality, efficiency, infrastructure, location) have previ-
ously been confirmed in many studies [6, 7, 10, 11, 15].
Therefore, we consider the changes in patient mobility
parameters (attract/escape) as proxies for availability and
accessibility of health-care services.

General mobility patterns on the NdiG
Figure 1 shows the distribution of 4-year (2010–2013)
average mobility pairs for each province. This figure
shows that escape rates spread out more than attraction
rates. No province has an attraction rate greater than 23,
whereas 18 provinces have escape rates exceeding this
value. This distribution of attract/escape pairs can be
considered as a confirmation of specialized regional
health-care service delivery [16] and reflects the inevit-
able geographic location disadvantage of some eastern
settlements in Turkey. However, a high escape value for
a large number of provinces might be an indication of
poor health-care accessibility arising from unequal dis-
tributions of central health-service locations among
provinces of Turkey.
Another interesting observation is that provinces with

high TPA values (node sizes are adjusted according to
the TPA) are grouped at the bottom left corner of the
graphic (i.e., between 5 and 10 escape, and 8 and 17 at-
tract intervals). Provinces with high escape values lie on
the upper left side of the diagonal line. These results are
further discussed in Clustering results.

Analysis of temporal patient mobility patterns
Temporal mobility visualization can provide valuable
insight on how patients react to changes in the health-
care system, especially when we look at the yearly
changes. The temporal patterns generated based on
yearly changes of attract/escape values were analyzed on
NdiG graphs to show mobility trends (Figs. 2, 3 and 4).
To observe temporal patterns, a broken-line graph was
drawn for each sequence of data points (i.e., a 4-year
time series for the mobility pairs of each province). To
follow fluctuations and mobility direction on each line-
graph, observation history (e.g., the first 3 years) was col-
ored with an orange hue, and the last node was colored
with blue. The first orange node on each line-graph indi-
cates the starting point of the time-series, which is 2010,
and the blue node at the end of the line represents the
most recent year (i.e., in Fig. 2 2013, in Fig. 3 2012).
Figure 2 shows the general landscape over the 4-year

period studied and Fig. 3 shows selected patterns in the
shaded region of Fig. 2. It can be observed from Fig. 2

Table 2 Cophenetic correlation coefficient results

Distance Metric Linkage Method Cophenetic Correlation Coefficient

Manhattan
(Cityblock)

Single 0.7333

Complete 0.6830

Average 0.7693

Cosine Single 0.7016

Complete 0.6887

Average 0.7551

Euclidean Single 0.7016

Complete 0.6783

Average 0.7863
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that yearly mobility pairs seem to have similar trends,
especially for provinces with high escape values. When
we look more closely at the selected patterns in Fig. 3,
most of the broken-line graphs drawn between observa-
tions have positive slope, indicating a considerable
decrease in both attract and escape parameters corre-
sponding to these provinces. This means that the more
recent years have lower escape and attract ratios at the
same time. This movement on the graph matches well
with considerable improvements in THS for this period.
At the end of 2010, the Family Medicine Programme,

assigning each patient to a specific doctor, was estab-
lished throughout the country [20] and a considerable
number of physicians in different specialties were
assigned to the disadvantaged provinces in this period.
To confirm the observation on the graph, statistical

tests were performed to determine if these changes in
attract/escape parameters over the years are statistically
significant. We tested whether the mean of the differ-
ences between two paired samples differs. The param-
eter values corresponding to the first (2010) and last
(2013) years were compared for each province. The

Fig. 2 General landscape of yearly mobility patterns (2010–2013)
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attract/escape pairs were tested by a paired t-test and
demonstrated a statistically significant (Esc. p-value = 0.000,
Att. p-value = 0.000) relationship between pairs. Descrip-
tive statistics and test results are summarized in Table 3.
A decreasing escape ratio, which generally occurs for

ratios that are high to begin with, would seem to indi-
cate improving health-care opportunities for a disadvan-
taged region. Although patients continue to travel for
specialized treatments owing to the fact that new facil-
ities may not offer secondary and tertiary care or might
not have sufficient health staff, proportionally they travel

less compared to the past. The fact that the attract ratios
for these points are decreasing simultaneously confirms
the general positive trend throughout THS under imple-
mentation of the THTP program. As mentioned previ-
ously, one consequence of developments in health
policies in the THS (e.g., universal health coverage) has
been a dramatic increase in patient admissions. This
could also affect mobility indicators by scaling down
their proportion to total admissions (i.e., TPA).
Patient mobility in Van, a major province in Eastern

Anatolia, exhibits a unique pattern and deserves

Fig. 3 Selected trend patterns of yearly mobility patterns
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Fig. 4 Temporal escape: Van earthquake (Oct. 2011)

Table 3 Statistical test for mobility variations

Esc2010 Esc2013 Att2010 Att2013

Min. 0.0652 0.0518 0.0763 0.0484

Max. 0.4818 0.4748 0.237 0.224

Median 0.1737 0.1644 0.1385 0.1129

Mean 0.1881 0.1705 0.1473 0.121

Var. 0.00814 0.0075 0.00142 0.00147

Std.dev. 0.09026 0.08665 0.03774 0.03835

Paired T-Test Results t = 7.4165, df = 80, p-value = 1.113e-10 t = 8.659, df = 80, p-value = 4.11e-13
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examination (Fig. 4). In 2011, a major earthquake hit the
city of Van, killed over 500 people, and caused thousands
to flee to other cities. Although all demolished infrastruc-
ture, including hospitals, was mostly rebuilt in less than a
year, the results suggest that attraction lost owing to the
earthquake had not been fully recovered as of 2013.

Clustering results
Figure 5 shows a dendrogram generated using the re-
sults obtained by the agglomerative hierarchical cluster-
ing algorithm. The cut-off level is chosen in an empirical
way so that general knowledge about provinces can be
incorporated into the clustering process. Various cut-off
values were tested and a value of 12 was chosen after
consideration of cluster members and cluster size distri-
butions in each case. This cut-off is selected so as to rec-
oncile the output of the automated clustering with the
domain knowledge the authors have about the 81 prov-
inces– the economic welfare of the provinces is taken
into account together with the distances in the dendro-
gram to determine an empirical cut-off height to
produce the clusters.
Provinces that fall into each cluster are shown in

Table 4. Twelve clusters were established, four of
which (G1-G4) contain 64 of the 81 provinces. Color

labeling was used for these clusters on the NdiG
graph in Fig. 6. It is no surprise to see that the most-
populated provinces, including Istanbul, Ankara, and
Izmir, are in the same cluster at the bottom of the
diagram (G1), while the least-populated provinces
with high escape ratios generally show in clusters
above the diagonal line and away from the bottom
left-hand corner of the graph (e.g., G2, G4, G7).
However, some provinces do not fit into any of these
easily identifiable groups. Edirne, Erzurum, and Is-
parta, which have the highest attract values among
the 81 provinces as well as moderately low escape
values, are grouped together (G6), suggesting that
these three provinces have similar patient mobility
characteristics that differ from other dominant
groups.
Additionally, Batman, Rize, Bolu, and Usak, all of

which are moderately populated provinces with con-
siderable attract ratios, are grouped in the same clus-
ter. Furthermore, abnormal provinces such as Sırnak
(G11) were identified and presented as isolated clus-
ters. Although Sırnak is in an economically disadvan-
taged part of Turkey, it has had considerable
development in its health-service infrastructure and
capacity, which resulted in a significant increase in

Fig. 5 Dendrogram plotting for linkage clustering
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the number of hospital beds (both public and private)
available and specialist physicians practicing during the
period studied [27].

Statistical analysis of clustering results
After clustering provinces by their patient mobility
characteristics, the next step is to identify independent
parameters associated with individual provinces that
would best explain these clustering results. The statis-
tical tests can provide further confirmation of the
clustering output using independent health-care pa-
rameters and their population-adjusted versions and
offer a more convincing case as to the predictive power
of mobility features (attract and escape) in explaining
health-care service quality and health infrastructure.
For this purpose, the following variables were con-

sidered: province population, number of health
personnel in the province (physicians, specialists, total
number of physicians/specialists, and other health
personnel), number of beds (public, private, and uni-
versity), and their population-adjusted versions. The
related health indicators for each province were de-
rived using data released by the TSI [27] for the period
2010–2013. Four-year average values for each province
were used and these values were averaged over all
provinces within each cluster to obtain health indica-
tors for each cluster (Table 5).
Non-parametric statistical tests were performed to de-

termine if these parameters are significantly correlated
with the clustering results. Descriptions of parameters
used in statistical tests are included in Table 6. Kruskal-
Wallis (rank-based) [28] statistics were used to explain
mean differences between groups. The Kruskal-Wallis
(K-W) is considered the non-parametric equivalent of
the analysis of variance (ANOVA) test. This test is most
appropriate when the response variable is categorical
and the level of measurement is continuous. Small clus-
ters (G5-G12) were excluded from statistical tests mainly
because the K-W statistical test requires at least six sam-
ples for each group. However, all clusters were included
in the overall analysis of the results in the prior section.

The p-values in Table 7 suggest that there is a statis-
tically significant difference between groups with re-
spect to all but one parameter (T_Physi_Pop). The
results imply that the major clusters of provinces iden-
tified based on patient mobility data have statistically
significant correlation with the corresponding basic
health indicators of each cluster, with the population-
adjusted total number of physicians being the only ex-
ception. These results suggest that patient mobility can
be used as a proxy for health-care parameters to evalu-
ate overall effectiveness of health-service delivery in a
country, with the additional advantage of identifying
anomalies or gaps in the system that would otherwise
go undetected using health parameters alone.

Conclusions
Considering the research questions emphasized in the
first section, this study shows the importance of ana-
lysis of patient mobility for comprehensive under-
standing of service-delivery differences across different
geographical regions of a country. Furthermore, this
paper fills the research gap in the literature on classifi-
cation of regions based on patient mobility, especially
when an increasing numbers of health administrative
areas (as is the case in Turkey) and temporal trends
are taken into consideration.
In this study, provinces with similar patterns of

patient mobility were identified using the agglomera-
tive hierarchical clustering algorithm. Four major clus-
ters were obtained plus several smaller and isolated
ones. Statistical tests show that groups identified by
clustering patient mobility data correlate, in a statisti-
cally significant manner, with all but one of the basic
health-care indicators considered. Furthermore, inef-
fective health-care delivery in certain regions of
Turkey was determined through identifying patient
mobility patterns.
The primary contribution of the study is the method-

ology that allows decision makers to identify patient
mobility patterns and determine inequality in the distri-
bution of health-care services. Although Turkish patient

Table 4 Cluster memberships of 81 provinces

Grp:01
(n: 16)

Grp:02
(n: 28)

Grp:03
(n: 11)

Grp:04
(n: 9)

Grp:05
(n: 4)

Adana, Ankara, Antalya, Bursa,
Denizli, Diyarbakır, Elazığ, Eskişehir,
Gaziantep, İstanbul, İzmir, Kayseri,
Konya, Malatya, Samsun, Trabzon

Adıyaman, Afyonkarahisar, Aksaray,
Amasya, Bartın, Bitlis, Çorum,
Düzce, Giresun, Karabük, Karaman,
Kars, Kırıkkale, Kırklareli, Kırşehir,
Kütahya, Mardin, Muğla, Muş,
Nevşehir, Niğde, Ordu, Osmaniye,
Siirt, Sivas, Tekirdağ, Tokat, Van

Aydin, Balıkesir, Çanakkale,
Hatay, Kahramanmaraş,
Kocaeli, Manisa, Mersin,
Sakarya, Şanlıurfa, Zonguldak

Ağrı, Bilecik, Bingöl,
Burdur, Hakkari,
Iğdır, Kastamonu,
Kilis, Yozgat

Batman, Bolu,
Rize, Uşak

Grp:06
(n: 3)

Grp:07
(n: 3)

Grp:08
(n: 3)

Grp: 09 - Artvin
Grp: 10 - Sinop
Grp: 11 - Şırnak
Grp: 12 -TunceliEdirne, Erzurum, Isparta Bayburt, Erzincan, Yalova Ardahan, Çankırı, Gümüşhane
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mobility data were used in the paper, this type of ana-
lysis of the patterns between clusters can be applied to
other countries. The methodology used can be a guide-
line for administrators to identify potential gaps in
existing health-care services and can play an important
role in future planning decisions concerning improve-
ment in the quality of health-care delivery in disadvan-
taged provinces as well.
Multiple groups of disadvantaged provinces with high

escape ratio were identified; patients in these provinces
have to make considerable effort to reach centralized

health services. On the other hand, there were also
groups of provinces with close to ideal balance (i.e.,
they are close to the bottom left-hand corner) in terms
of patient mobility. For possible future planning deci-
sions, those disadvantaged provinces can receive more
investment in health infrastructure to provide ideal
public service delivery, while the others can advance in
specialized health services.
Moreover, the results of clustering show that the at-

traction ratio of certain provinces in terms of patient
mobility does not depend on health-related services and

Fig. 6 Plotting of clustering results on large layout
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socioeconomic characteristics alone. Even though
provinces such as Batman, Usak and Bolu have fewer
health-related facilities and lower socioeconomic sta-
tus, their attraction levels are comparatively higher
than usual among small and medium-sized provinces.
Non-health-related variables such as kinship among
province populations or the recognition of specialists
in these provinces must also be considered. Further
studies should analyze the relationship between patient
mobility and non-health-related variables.

In this research, analysis of patient mobility was lim-
ited to Turkish health-care delivery at the national
level irrespective of any medical specialty. However,
the clustering approach in patient mobility analysis
can also be applied at the medical-specialty level to
identify clusters of health-service regions relatively
more (or less) attractive for a given medical specialty.
This will provide an opportunity to better understand
regional accessibility of health-care service for a spe-
cific branch that would not be possible from the

Table 6 Description of variables for statistical analysis

Variablea Description Types of Variable

Cluster Groups Clustering results of patient mobility data Categorical

Population Population of the cities Continuous

S_Physi Number of specialist physicians (medical residents are considered as specialists) Continuous

Physi Number of medical practitioners Continuous

T_Physi Total number of physicians Continuous

Other_Per Total number of other health-care personnel in the city Continuous

T_B Total number of hospital beds in the city Continuous

Prv_B Number of hospital beds in private health centers in the city Continuous

Univ_B Number of hospital beds in university health centers in the city Continuous

S_Physi_Pop (S_Physi / Population) a 100,000 Continuous (Ratio)

T_Physi_Pop (T_Physi / Population) a 100,000 Continuous (Ratio)

Other_Per_Pop (Other_Per / Population) a 100,000 Continuous (Ratio)

Prv_B_Pop (Prv_B / Population) a 100,000 Continuous (Ratio)

Univ_B_Pop (Univ_B / Population) a 100,000 Continuous (Ratio)

TB_Pop (T_B / Population) a 100,000 Continuous (Ratio)
aAll variables are averages over 4 years except the cluster groups

Table 5 Average values for selected health indicators

Clusters No. of
Members

Population Specialist
Physicians

Physicians Total
Physicians

Other Health
Personnel

Total Hospital
Beds

University
Beds

Private
Beds

A A B A B A B A B A B A B A B

1 16 2,575,993 3069 114 1058 46 4127 160 8582 396 6850 296 1562 78 1368 44

2 28 474,626 649 133 337 73 986 206 2685 589 1069 228 96 17 119 22

3 11 1,190,143 832 73 525 46 1358 118 3879 342 2420 215 291 26 289 23

4 9 298,027 278 106 218 81 496 188 1684 642 556 184 6 1 43 12

6 3 531,406 930 187 378 71 1308 259 3332 664 2409 462 862 166 137 29

5 4 368,144 512 156 292 85 804 241 2496 737 1069 312 61 22 190 46

7 3 168,572 243 138 186 111 429 249 1464 891 342 201 0 0 44 20

8 3 141,046 183 150 147 116 330 266 1126 878 311 215 0 0 26 14

9 1 166,892 357 214 214 128 572 342 1915 1147 471 282 0 0 0 0

10 1 202,912 273 135 239 118 512 252 1602 790 531 262 0 0 0 0

11 1 457,586 149 33 204 45 353 77 915 200 490 107 0 0 0 0

12 1 83,366 325 389 261 313 586 702 1418 1700 177 212 0 0 0 0

Total 81 928,218 1063 125 473 73 1537 197 3752 574 2300 246 417 32 372 26

A: Cluster Average for Total Number
B: Cluster Average per 100,000 Population
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overall analysis of the data. For further studies, a
graphical user interface for visualizing spatio-temporal
relationships among regions would be more efficient
for identifying correlations between health indicators
and patient mobility.
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