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Abstract

Background: Acute diabetic emergencies are often managed by prehospital Emergency Medical Services (EMS).
The projected growth in prevalence of diabetes is likely to result in rising demand for prehospital EMS that are
already under pressure. The aims of this study were to model the temporal trends and provide forecasts of
prehospital attendances for diabetic emergencies.

Methods: A time series analysis on monthly cases of hypoglycemia and hyperglycemia was conducted using data
from the Ambulance Victoria (AV) electronic database between 2009 and 2015. Using the seasonal autoregressive
integrated moving average (SARIMA) modelling process, different models were evaluated. The most parsimonious
model with the highest accuracy was selected.

Results: Forty-one thousand four hundred fifty-four prehospital diabetic emergencies were attended over a seven-
year period with an increase in the annual median monthly caseload between 2009 (484.5) and 2015 (549.5).
Hypoglycemia (70%) and people with type 1 diabetes (48%) accounted for most attendances. The SARIMA (0,1,0,12)
model provided the best fit, with a MAPE of 4.2% and predicts a monthly caseload of approximately 740 by the
end of 2017.

Conclusions: Prehospital EMS demand for diabetic emergencies is increasing. SARIMA time series models are a
valuable tool to allow forecasting of future caseload with high accuracy and predict increasing cases of prehospital
diabetic emergencies into the future. The model generated by this study may be used by service providers to allow
appropriate planning and resource allocation of EMS for diabetic emergencies.
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Background
The prevalence of diabetes is increasing [1] and is be-
coming one of the most significant health issues of the
developed world [2]. In Australia 1.24 million people are
registered as having diabetes [3] and an additional
500,000 are estimated to have undiagnosed diabetes [4].
Between 2013 and 2016, this number increased by 4.3%
per year with the increase in the prevalence of type 2

diabetes greater (4.4% increase per year) than that of
type 1 diabetes (0.6% increase per year) [3]. The impact
of diabetes on the health system is widespread and in-
cludes both acute and chronic complications. Patients
experiencing acute glycemic complications, most fre-
quently severe hypoglycemia and hyperglycemic crises
(diabetic ketoacidosis and hyperglycemic hyperosmolar
state), will often seek emergency medical assistance in
the community from the prehospital Emergency Medical
Services (EMS) [5]. When combined with the rising de-
mand for prehospital EMS [6] [7], the increasing dia-
betes prevalence will require careful resource planning.
Health forecasting, the prediction of health or disease

episodes and signaling of future events, is increasingly
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recognized as a valuable tool to facilitate health ser-
vice provision and resource allocation. Health fore-
casting is often based on a time series, a sequence
of data points collected at successive, equally spaced
time intervals, which may be characterised by trend,
seasonality, cyclicality and randomness [8]. A time
series provides a statistical means of temporal trend
analysis and prediction of future events based on ob-
served values. There are various forecasting methods
in the health literature, including historical averaging
[9], smoothing techniques [10, 11], linear regression
[12] and autoregressive integrated moving average
(ARIMA) modelling [13, 14]. ARIMA modelling has
demonstrated successful prediction of a range of
specific health disease events [15, 16] as well as in
aggregate caseload, such as hospital emergency de-
partment [9–11, 13] and prehospital EMS [17] and
has been recognised for its simplicity and ease of ad-
ministration [18].
Temporal trends in diabetic emergencies have been

investigated at the hospital level [19] [20] but trends
of demand for prehospital EMS for acute diabetic
emergencies have not been reported. The aims of this
study were 1) to quantify the temporal trends in
utilization of prehospital EMS for acute diabetic
emergencies, 2) to model the temporal variation of
prehospital diabetic emergencies and 3) to use the
model to make short term predictions of future EMS
demand for diabetic emergencies.

Methods
A time series analysis on monthly case rates of dia-
betic emergencies attended by Ambulance Victoria
(AV) between January 2009 and December 2015 was
conducted. AV is a two-tiered, prehospital EMS sys-
tem and the sole provider of prehospital EMS for the
state of Victoria, Australia. Individuals of all ages re-
ceiving prehospital care from AV during the study
period with a documented final primary assessment of
“hyperglycemia” or “hypoglycemia” were included. The
final primary assessment, as assigned by the attending
paramedic, is defined as the main problem at the
time the patient is discharged from EMS care. No
blood glucose level threshold parameters were im-
posed, however AV uses a BGL < 4 mmol/L (<72 mg/
dl) to treat for hypoglycemia and does not specify a
glycemic threshold for hyperglycemia. Every case
attended by AV is recorded by the attending para-
medic, using the VACIS®, an electronic patient care
record and integrated data warehouse [21]. Diabetes
type, based on patient/bystander self-report, was clas-
sified as type 1 diabetes, type 2 diabetes or unspeci-
fied diabetes type/status. In this study de-identified
data was used with no ability to distinguish repeat

callers, thus repeat attendances were treated as indi-
vidual cases. Data spanning 4 calendar months (Sep-
tember 2014 – December 2014) were unavailable due
to lapse in electronic data collection linked to indus-
trial action. The Monash Health Human Research
Ethics Committee approved this study.
Descriptive analysis was conducted by tabulating

total annual case count and median monthly case
count for each year. Categorical variables (gender, dia-
betes type, emergency type) are reported as absolute
number and percentage, and differences between sub-
groups analysed using χ2 test. Age was summarised
as median with interquartile range (IQR), and differ-
ences between subgroups analysed using Kruskal-
Wallis test.
The autoregressive integrated moving average (ARIMA)

modelling process was conducted using monthly case
counts during the study period, initially with total case
count and then separately for hypoglycemia/hypergly-
cemia and for male/female. ARIMA models make use of
previous observations to make predictions of future values
using lag parameter values, under the assumption that the
pattern will persist. Lags of the differenced series, termed
Auto Regressive (AR), indicate the strength of relationship
between incidence rates in consecutive months and lags of
the forecast errors, termed Moving Average (MA), check
for dependence of monthly incidence on current and past
model residuals. A differencing term, D, is applied to
make the data stationary when the time series displays a
long term trend and a seasonal term, S, is incorporated
when the time series displays a seasonal pattern, and Sea-
sonal ARIMA (SARIMA) modelling is used.
The data was divided into two sets; training data

and validation data. This was because models are ex-
pected to perform well on the data from which they
were derived, so post sample validation on a pro-
spective ‘new’ dataset was performed. Model gener-
ation was based on the dataset; January 2009 -
August 2014 (training dataset) and model validation
was based on the dataset; January 2015 - December
2015 (validation dataset). The Box-Jenkins approach
was used to fit the models [22]. Annual seasonality
was apparent in the plotted monthly caseload (Fig. 2),
thus SARIMA modelling with a 12-month seasonal-
ity term was used. The Autocorrelation Function
(ACF) and Partial Autocorrelation Function (PACF)
were plotted to examine stationarity and lags and to
assist in identification of the order the MA and AR
terms of each model.
Different formulations of the AR and MA terms were

modelled. The following measures of prediction accuracy
were calculated; Mean Absolute Error (MAE), Mean
Square Error (MSE) and Mean Absolute Percentage Error
(MAPE), defined as:
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where Oi, Pi and n are the observed and predicted
counts for month “i” and the number of observations,
respectively and where a lower prediction error indicates
a better model fit. Each model was used to predict
values for the training dataset and the validation dataset.
The most parsimonious model with lower MAE, MSE
and MAPE values for each condition (overall caseload,
hypoglycaemia, hyperglycaemia, female and male) was
selected. The final selected model for each condition
was then used to generate predicted monthly caseload
values until the December 2017. The predicted values
for the training data were based on a one-step forecast
while the predicted values for the validation dataset and
the 2017 forecast were based on dynamic forecasting,
commencing on August 2014, the final month of train-
ing dataset. Compared to one-step forecasting, which
bases forecasts on observed values of the preceding
month, dynamic forecasts are based on predicted values
of the preceding month, thus are susceptible to errors
accumulating over time.
The chosen SARIMA model for overall caseload was

then used to generate 1-month forecasts, 3-month fore-
casts and 12-month forecasts, and the MAE, MSE and
MAPE were calculated for each, using dynamic forecast

predictions. In addition, the chosen SARIMA model was
compared to other modelling techniques for overall
caseload. The models generated for comparison were; a)
SARIMA, b) SARIMA + time trend, c) ARIMA + season-
ality, d) exponential smoothing and e) linear time trend
+ seasonality. Modelling was performed using one-step
forecasts and model accuracy was compared using the
three accuracy measures; MAE, MSE and MAPE. All
analyses were performed using Stata software version
14.0 (StataCorp, Texas, USA) and the level of signifi-
cance was set at 5%.

Results
During the 7-year study period 41,454 prehospital dia-
betic emergencies were attended by AV, equating to an
annual mean (±SD) of 5922 ± 508 cases. Table 1 displays

Table 1 Descriptive characteristics of prehospital diabetic emergencies
Year 2009 2010 2011 2012 2013 2014 2015 p-value

Annual cases (n) 5841 5873 6102 5911 6179 4938* 6610

Median [IQR] Monthly
cases

484.5 [447.5, 540.5] 487.5 [463, 510] 506.5 [485, 524.5] 492 [479. 508] 503 [496.5, 530] 521.5 [504, 539] 549.5 [513.5, 581.5]

Age

Median [IQR] 60 [40, 76] 60 [41, 76] 60 [40, 76] 59 [40, 76] 59 [41, 75] 59 [40, 75] 59 [39, 75] p = 0.11†

Gender

Male (n) (%) 3222 (55.2%) 3194 (54.45) 3355 (55.0%) 3378 (57.2%) 3454 (55.9%) 2677 (54.2%) 3675 (55.6%) p = 0.191•

Female (n) (%) 2615 (44.8%) 2675 (45.6%) 2743 (45.0%) 2527 (42.8%) 2721 (44.1%) 2258 (45.8%) 2929 (44.4%)

Diabetes type

Type 1(n) (%) 3125 (53.5%) 2962 (50.4%) 3026 (49.6%) 2737 (46.3%) 2872 (46.5%) 2264 (45.9%) 2906 (44.0%) p < 0.001•

Type 2(n) (%) 2040 (34.9%) 2171 (37.0%) 2291 (37.6%) 2334 (39.5%) 2528 (40.9%) 1984 (40.2%) 2779 (42.0%)

Unspec.(n) (%) 676 (11.6%) 740 (12.6%) 785 (12.9%) 840 (14.2%) 779 (12.6%) 690 (14.0%) 925 (14.0%)

Emergency type

Hyperglycemia (n) (%) 1452 (24.9%) 1488 (25.3%) 1616 (26.5%) 1722 (29.1%) 1966 (31.8%) 1701 (34.4%) 2455 (37.1%) p < 0.001•

Hypoglycemia(n) (%) 4389 (75.1%) 4385 (74.7%) 4486 (73.5%) 4189 (70.9%) 4213 (68.2%) 3237 (65.6%) 4155 (62.9%)

•Chi2 †KW test
*annual rate missing 4 months of data: September, October, November, December

Fig. 1 Median monthly EMS attendance for diabetic emergencies
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the total annual case load for each year, median age and
the proportional distribution of gender, type of diabetes
and type of emergency. The median [IQR] monthly at-
tendance over the study period was 506 [481, 534], with
an increasing trend in median monthly attendance per
year between 2009 (484.5 [447.5, 540.5]) and 2015 (549.5
[513.5, 581.5]) (Fig. 1). Gender distribution (approxi-
mately 55% male) remained relatively stable and median
[IQR] age decreased very slightly from 60 [40, 76] years
to 59 [39, 75] years over the study period (p = 0.11).
Overall, hypoglycemia accounted for 70% of attendances
however, over the study period, the proportion of atten-
dances for hypoglycemia decreased (75% to 63%) and
the proportion of hyperglycemia increased (25 to 37%)
(p < 0.001). Attendances to people with type 1 diabetes
and type 2 diabetes accounted for 48% and 39% of over-
all attendances, respectively. The relative proportion of

attendances to persons with type 1 diabetes and type
2 diabetes decreased (53% to 44%) and increased (35
to 42%), respectively (p < 0.001).

Overall model
The monthly caseload of prehospital diabetic emergen-
cies (Fig. 2) showed possible seasonality, with peaks ap-
parent around December-January and troughs around
April-May, as well as an overall increasing trend, sug-
gesting a differencing term be incorporated in the
model. The partial autocorrelation plot showed spikes at
approximately month 12 and month 24 and the autocor-
relation plot demonstrated an initial significant spike
with a rapid decline and a peak at 12 months, both indi-
cating the inclusion of a seasonality term (Fig. 3). The
modelling process (Table 2) found the SARIMA (0,1,0)
(0,1,0,12) term provided the best fit for the overall case
counts, generating a MAE of 23.0, a MSE of 758.4 and a
MAPE of 4.2% for the validation dataset. The predicted
values of the final model (Fig. 4a, heavy purple line)
demonstrate the increasing trend seen in the earlier data
and predict a monthly caseload of 743 by the end of
2017, representing a 17% increase in monthly caseload
from December 2015.

Hypoglycemia
The modelling process found the SARIMA (0,1,1)
(0,1,1,12) term provided the best fit for cases of
hypoglycemia, generating a MAE of 25.5, a MSE of
941.2 and a MAPE of 7.6% for the validation dataset.
The predicted values of the final model (Fig. 4a, heavy
blue line) suggest a stable trend of EMS-attended
hypoglycemia cases in the short-term.
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Fig. 3 Autocorrelation plot and Partial autocorrelation plots for overall caseload of diabetic emergencies
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Hyperglycemia
The modelling process found the SARIMA (0,1,1)
(0,1,1,12) provided the best fit for cases of hyperglycemia,
generating a MAE of 12.9, a MSE of 254.3 and a
MAPE of 6.3% for the validation dataset. The pre-
dicted values of the final model (Fig. 4a, heavy orange
line) suggest a rise in the number of EMS-attended
cases of hyperglycemia, with a monthly caseload of
290 predicted by the end of 2017, representing a 45%
increase from December 2015.

Female
The modelling process found the SARIMA (2,1,0)
(2,1,0,12) provided the best fit for female cases generat-
ing a MAE of 14.8%, a MSE of 360.3 and a MAPE of
6.1%. The predicted values of the final model (Fig. 4b,
green line) suggest a rise in caseload of 24% between De-
cember 2015 and December 2017.

Male
The modelling process found the SARIMA (1,1,1)
(1,1,1,12) provided the best fit for male cases of diabetic
emergencies generating a MAE of 18.9%, a MSE of 618.4
and a MAPE of 6.0%. The predicted values of the final
model (Fig. 4b, golden line) suggest a very small rise in
caseload of less than 1% between December 2015 and
December 2017.

Comparison of forecast horizon
The SARIMA (0,1,0,12) model was used to generate 1-
month, 3-month and 12-month forecasts (Table 3). The
shorter forecast horizon (1 month) demonstrated greatest
accuracy (MAPE of 7.1%), and the 12-month projection
demonstrated slightly greater accuracy than the 3-month
projection, with a MAPE of 8.6% and 9.0%, respectively.

Comparison of time series models
When compared to other types of time series models,
SARIMA (0,1,0,12) (one-step) generated a MAPE of 7.3%,
out-performing b) SARIMA+ time trend (MAPE = 9.1%),
d) exponential smoothing (MAPE = 8.8%) and e) linear
time trend + seasonality (MAPE = 7.6%), and was compar-
able to c) ARIMA+ seasonality (MAPE = 7.2%) (Table 4).

Discussion
Utilization of prehospital EMS for acute diabetic emer-
gencies is increasing with increased prevalence of dia-
betes. After separate analysis of the type of emergency,
the majority of this increase appears to be due to cases
of hyperglycemia. The SARIMA modelling process was
able to model the monthly incidence of prehospital dia-
betic emergencies with good accuracy and predicts an
increased caseload in the short term.

Table 2 Forecast errors for the various SARIMA models
Model MAE MSE MAPE

Overall

(0,1,0,12) 22.96 758.39 4.23%

(0,1,1,12) 24.88 870.29 4.63%

(1,1,0,12) 25.94 942.60 4.79%

(1,1,1,12) 24.54 862.56 4.56%

(0,1,2,12) 24.33 849.05 4.52%

(2,1,0,12) 23.79 794.36 4.41%

(2,1,1,12) 26.31 866.99 4.81%

(1,1,2,12) 26.09 909.21 4.81%

Hypoglycaemia

(0,1,0,12) 38.12 2026.34 11.58%

(0,1,1,12) 25.50 941.22 7.57%

(1,1,0,12) 26.85 1055.83 8.04%

(1,1,1,12) 26.63 951.10 7.75%

(0,1,2,12) 27.34 994.96 7.90%

(2,1,0,12) 25.17 906.32 7.35%

(2,1,1,12) 27.84 1037.25 7.90%

(1,1,2,12) 27.73 1063.02 8.06%

Hyperglycaemia

(0,1,0,12) 31.26 1412.35 14.74%

(0,1,1,12) 12.94 254.31 6.26%

(1,1,0,12) 15.49 321.36 7.43%

(1,1,1,12) 13.22 269.20 6.40%

(0,1,2,12) 13.38 281.07 6.49%

(2,1,0,12) 15.35 337.68 7.41%

(2,1,1,12) 15.24 348.73 7.41%

(1,1,2,12) 13.78 300.21 6.67%

Female

(0,1,0,12) 26.21 918.92 10.81%

(0,1,1,12) 20.68 536.97 8.64%

(1,1,0,12) 22.40 632.35 9.31%

(1,1,1,12) 21.45 582.90 9.04%

(0,1,2,12) 20.76 547.93 8.75%

(2,1,0,12) 14.78 360.32 6.12%

(2,1,1,12) 17.93 414.51 7.47%

(1,1,2,12) 19.72 482.18 8.25%

Male

(0,1,0,12) 24.97 872.20 7.97%

(0,1,1,12) 20.12 590.74 6.38%

(1,1,0,12) 22.34 746.52 7.03%

(1,1,1,12) 18.85 618.37 5.99%

(0,1,2,12) 18.97 634.50 6.03%

(2,1,0,12) 18.78 437.23 6.11%

(2,1,1,12) 20.70 605.84 6.56%

(1,1,2,12) 20.54 706.99 6.51%

MAE (Mean Absolute Error), MSE (Mean Square Error), MAPE (Mean Absolute
Percentage Error)
Bold text indicates chosen model
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The temporal pattern of EMS demand for diabetic
emergencies exhibited a long term rising trend with a
seasonal component, where peaks were apparent around
December-January (summer months) and troughs
around April-May (autumn months). This is consistent
with documented seasonal fluctuation in HbA1c levels
showing lower levels in the summer months [23, 24].
Lower HbA1c levels are associated with an increased
risk of severe hypoglycemia in people with type 1 [25]
and type 2 diabetes [26]. Seasonal fluctuation has also
been reported in hospital attendance and admission for
hyperglycemia in people with type 2 diabetes [20]. The
recognition of these season-related patterns may assist
short-term organizational resource allocation, such as
the increased service provision in the peak months.
While knowledge of seasonal fluctuations are useful for

short-term service provision and rostering, the underlying
increase of EMS use for diabetic emergencies throughout
the study period demonstrates a need to address service

provision longer-term. Cases of hypoglycemia and people
with type 1 diabetes accounted for the majority of atten-
dances, however, their relative proportions declined, with
greater increases in attendances to cases of hyperglycemia
and people with type 2 diabetes. This shifting demo-
graphic in demand for prehospital EMS has significant im-
plications for the system in light of the types of patients
who require transport to hospital. Local transport rates
for people presenting with hyperglycemia are approxi-
mately 90%, much higher than those presenting with
hypoglycemia (40%) [5]. Given transport to hospital con-
sumes EMS resources for longer periods of time, and the
types of patients who generally require hospital transport
is increasing, consideration to long-term resource plan-
ning and sustainable alternatives to hospital transport are
warranted. The forecast increases in EMS-attended dia-
betic emergencies highlights the importance of increasing
routine detection of diabetes at the primary-care level and
before emergency intervention is required as well as
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Fig. 4 a: Time series plot of EMS attendance for diabetic emergencies (combined, hypoglycemia and hyperglycemia): observed, one-month fore-
cast and dynamic forecast. b: Time series plot of EMS attendance for diabetic emergencies females and males): observed, one-month forecast
and dynamic forecast

Table 3 1 month, 3 month and 12 month forecasts for overall
caseload SARIMA (0,1,0,12)

Model MAE MSE MAPE

SARIMA (0,1,0,12)

12 month projection 44.75 2195.23 8.57%

3 month projection 46.19 3173.26 9.00%

1 month projection 39.25 2031.35 7.14%

MAE (Mean Absolute Error), MSE (Mean Square Error), MAPE (Mean Absolute
Percentage Error)
Generated using dynamic forecasting

Table 4 Comparisons across models

Model MAE MSE MAPE

a) SARIMA 37.75 1883.29 7.32%

b) SARIMA + time trend 49.00 2792.45 9.11%

c) ARIMA + seasonality 38.63 1581.40 7.23%

d) Exponential smoothing 47.25 2384.75 8.78%

e) Linear time trend + seasonality 43.22 2964.31 7.57%

MAE (Mean Absolute Error), MSE (Mean Square Error), MAPE (Mean Absolute
Percentage Error)
Please note that measures of prediction accuracy across-model comparisons
were generated using one-step forecasting
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improved community-based management of diabetes, to
avert some of the future caseload.
The International Diabetes Federation [27] reports that

for the Western Pacific region (which includes Australia),
the number of people with diabetes is estimated to in-
crease from 153 million in 2015 to 215 million in 2040,
representing a 1.6% annual increase in community preva-
lence of diabetes over the time period. Our model predicts
a monthly caseload of 743 by the end of 2017, represent-
ing a 17% increase from December 2015, and an annual
increase of approximately 8%, which far outweighs the
predicted increase in community diabetes prevalence.
Furthermore, between 2013 and 2015, the Australian Na-
tional Diabetes Services Scheme register reported annual
increases of prevalence of people with type 1 and type 2
diabetes of 0.6% and 4.4%, respectively. Over this same
time period, there was an increase in EMS attendances for
diabetic emergencies to people with type 1 and type 2
diabetes, suggesting the increases in EMS caseload may be
partially explained by the increasing prevalence of
diabetes, with the future predicted health burden likely to
extend to prehospital EMS.
As predicted, using the 1-month forecast horizon

resulted in greater accuracy than the 3-month and
12-month forecast horizon, however, the 12-month
horizon performed better than the 3-month horizon.
This could be explained by the inclusion of the 12-
month seasonality term to the SARIMA models.
Across model comparison showed that the selected
SARIMA model resulted in a lower MAPE than
SARIMA+ time trend, d) exponential smoothing and
linear time trend + seasonality and a MAPE compar-
able to ARIMA + seasonality. While both SARIMA
and ARIMA + seasonality are conceptually similar,
SARIMA was selected due to simplicity in formula-
tion and execution. It should be highlighted, how-
ever, that this is not a formal comparison of various
time series models but rather a selection of the most
appropriate model for the dataset.
The SARIMA (0,1,0) (0,1,0,12) provided the best fit for

the overall caseload, generating a MAPE of 4.2%. Given
the lack of published health forecast models in the
prehospital field, and the variability of modelling ap-
proaches and methods of evaluation, comparison of our
model’s performance is difficult. The MAE, MSE and
MAPE were used in this study, however various other
indices, such as route mean squared error (RMSE) [11]
or goodness of fit criterion [9] have been used to evalu-
ate performance of SARIMA models of emergency de-
partment caseloads. One study [13] developed an
ARIMA model for forecast of daily rates of attendance
at an emergency department and found a seasonal
ARIMA (0,1,1)(1,0,1) yielded a MAPE of 4.8%, compar-
able to our results.

The use of time series modelling in health care to pre-
dict future events is increasing. Although there are many
methods of time series prediction modelling, the
ARIMA/SARIMA method has some distinct advantages.
A study [28] comparing simple regression methods with
ARIMA methods to predict acute hospital presentations
argued that in the acute hospital environment, where
trends can change suddenly and unpredictably, simple
regression methods were not as effective forecasting
tools as ARIMA, which can accommodate for autocorre-
lated data. In disease surveillance, ARIMA modelling
was found to be favorable when compared to Bayesian
processes to predict weekly incidence of Dengue fever
[18]. Prediction models were based on weekly data from
2001–2006, and validated models on data between 2007
and 2008. Authors found that while the Bayesian K-H
model provided marginally better prediction perform-
ance, this was outweighed by the relative ease of execu-
tion of ARIMA modelling.
The VACIS dataset captures all prehospital cases in

the state of Victoria, Australia. The study is further
strengthened by the prolonged timeframe of the data
capture period (84 months), considered to be in the
range of required observations for optimization (n = 50–
100) [16]. Limitations of this study include the four
months of missing data (Sept-Dec 2014), which im-
pacted ability to generate 12-month forecasts for the val-
idation period (2015) as well as the inherent limitations
of forecast modelling. ARIMA models reflect and extend
on past patterns. Thus, forecast accuracy is inversely re-
lated to the length of time of the forecast, whereby ac-
curacy decreases with increasing length of forecast
horizon as vulnerability to environmental or resourcing
changes not accounted for in the model increases. Fore-
casting is also reliant on the reliability of the health data
and robustness of the forecasting technique and accur-
acy is improved by updating the models as more data
becomes available. A further limitation is that only cases
listing hypoglycemia or hyperglycemia in the primary as-
sessment were included, possibly underestimating the
magnitude of the issue (as cases listing hypoglycemia or
hyperglycemia as a secondary assessment were not in-
cluded). The generalizability of the findings to other re-
gions of the world may also be impacted by the local
health care model and the socioeconomic and cultural
background of those regions.

Conclusions
In conclusion, ARIMA time series models forecast future
prehospital caseload of diabetic emergencies with high ac-
curacy. The results of this study demonstrate the require-
ment of appropriate health services planning and resource
provision into the future with increases in both diabetes
prevalence and pressures on prehospital emergency
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medical services anticipated. Further research regarding
the effects of specific variables such as community preva-
lence of diabetes and climate factors, possible precipitants
of diabetic emergencies and potential preventative mea-
sures to ease demand are required.
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