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Abstract

Background: One aspect to consider when reporting results of observational studies in epidemiology is how
quantitative risk factors are analysed. The STROBE (Strengthening the Reporting of Observational Studies in
Epidemiology) guidelines recommend that researchers describe how they handle quantitative variables when
analysing data. For categorised quantitative variables, the authors are required to provide reasons and justifications
informing their practice. We investigated and assessed the practices and reporting of categorised quantitative

variables in epidemiology.

Methods: The assessment was based on five medical journals that publish epidemiological research. Observational
studies published between April and June 2015 and investigating the relationships between quantitative exposures
(or risk factors) and the outcomes were considered for assessment. A standard form was used to collect the data,
and the reporting patterns amongst eligible studies were quantified and described.

Results: Out of 61 articles assessed for eligibility, 23 observational studies were included in the assessment.
Categorisation of quantitative exposures occurred in 61% of these studies and reasons informing the practice were
rarely provided. Only one article explained the choice of categorisation in the analysis. Transformation of
quantitative exposures into four or five groups was common and dominant amongst studies using equally spaced
categories. Dichotomisation was not popular; the practice featured in one article. Overall, the majority (86%) of the
studies preferred ordered or arbitrary group categories. Other criterions used to decide categorical boundaries were

based on established guidelines such as consensus statements and WHO standards.

Conclusion: Categorisation of continuous variables remains a dominant practice in epidemiological studies. The
reasons informing the practice of categorisation within published work are limited and remain unknown in most
articles. The existing STROBE guidelines could provide stronger recommendations on reporting quantitative risk

factors in epidemiology.
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Background

Most studies in medicine exhibit serious weaknesses
due to issues of reporting [1, 2]. Inadequate and poor
reporting practices restrict generalisability and imple-
mentation of results and subsequently the clinical and
scientific utility of such studies is lost [2—-4]. To aid
reporting in epidemiology, the STROBE (Strengthening
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the Reporting of Observational Studies in Epidemiology)
[4] and STRATOS (Strengthening Analytical Thinking for
Observational Studies) [1] guidelines were developed to
guide researchers working on observational studies.
Realising the benefits of research might be achieved
slowly without sufficient clarity on reporting; in 2004,
researchers, methodologist and journal editors met in a
2-day workshop under the STROBE initiative and devel-
oped recommendations (checklist of 22 items) necessary
for an accurate and complete observational study [4].
The established recommendations aim at contributing to
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the improvement of reporting in three main study
designs of analytical epidemiology: cohort, case-control
designs and cross-sectional studies [4]. One aspect to
consider when presenting results of observational studies
in epidemiology is how quantitative or continuous risk
factors are analysed and reported. The STROBE guide-
lines recommend authors describe how they handle
quantitative variables when analysing the data; for
categorised quantitative variables, the guidelines require
researchers to explain and justify the methods of
categorisation. However, reviews in 2004 and 2010
suggest that few studies at that time were reporting the
issues of categorisation in epidemiology appropriately
[5, 6]. These suggested that most continuous variables
were categorised for analysis and presentation and that
the basis for categorisation was rarely described. To
investigate whether the analysis and presentation have
improved in this area in the past 6 years, we aimed to
assess the practice of categorisation in the field of
epidemiology.

Categorisation is defined as the practice of converting
quantitative or continuous exposures or risk factors such
as age, body mass index (BMI) and blood pressure (BP)
into two or more groups by splitting them at some
points and designating individuals above or below the
points as separate groups [7]. For example, age could be
divided into several age groups such as 1-5, 6-10, and
10+ or below/above 25%, 50™ or 75" percentiles or
based on quantiles (e.g., tertiles, quartiles, quintiles or
deciles). Exposure or risk factors assuming any two
distinct values such as gender (coded 0 or 1 for male or
females respectively) and medication use (coded 0 or 1
for No and Yes respectively) are known as binary
variables. Consequences of categorisation include pos-
sible loss of information and statistical power [8],
efficiency [9], reliability [7] and higher type I [10] and
type II [11] errors, leading to potential misleading
estimates and clinical interpretations [8, 12—20].

This study highlights key issues necessary for improve-
ment when reporting and analysing continuous variables
in observational studies. The results have relevance to
authors and readers working with observational studies
in epidemiology. Improved reporting is necessary to
promote and preserve scientific knowledge for synthesis
and clinical decision making.

Methods

We based our assessment on five journals we would
anticipate to be examples of current best practice in
clinical epidemiology, using the highest impact factor
(IF) ratings from the Web of Science citation report of
July 2015 [21]. Three journals were selected in the area
of epidemiology and two general medical journals that
publish epidemiological research. Journals selected were
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the International Journal of Epidemiology, Epidemiology,
Journal of Clinical Epidemiology, the New England
Journal of Medicine and Lancet. The rationale behind
the selection of the five journals was based on impact
factor to include journals with high levels of influence in
the literature. The common use of categorisation in
these leading journals would suggest the method is also
widely applied in other journals with lower impact
factors or more in specialist journals.

Study selection

For eligible articles, we considered observational studies
published between 1°* April and 30™ June 2015. Articles
published between this time intervals were selected to
reflect current practice. Consideration was given to all
publications with at least one independent continuous
variable in the analysis. Specific eligibility criteria are as
follows:

i. Publications based on individual’s data quantifying
the risk or association between quantitative
exposures and outcomes.

ii. The reported data should be from the original study.
The study should not report pooled estimates in the
form of systematic reviews and meta-analysis

ili. The study should be based on observational designs
such as cohort, case-control and cross-sectional
(a requirement in the STROBE guidelines).

Exclusion criteria

We excluded all systematic reviews or meta-analyses,
clinical trials or experimental studies and genetic epi-
demiology studies. Epidemiological studies other than
cohort, cross-sectional and case-control studies such as
ecological studies were also excluded because they are
not covered by the STROBE recommendations. Addition-
ally, non-related articles (e.g., comments, correspondence,
editorials, non-full text abstracts) and non-related original
(full text) publications (e.g., simulations, methodological
papers) were also excluded. Details are provided in
Fig. 1.

Search strategy
The search for eligible articles was done amongst all
publications obtained in the five journals. We reviewed
all publications to identify those investigating associa-
tions between risk factors and disease outcomes or any
measures in individuals. The search was done electronic-
ally, and the identified articles were later reviewed in
more detail. Figure 1 presents a summary of the identifi-
cation and selection process for eligible articles.

As shown in Fig. 1, we identified 1005 articles from
the five Journals: Lancet (540), NEJM (272), IJE (102),
Epidemiology (28) and Journal of Clinical Epidemiology
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1005 - Articles identified
Lancet (540)
New England Journal of Medicine (272)
International Journal of Epidemiology (102)
Epidemiology (28)

Journal of Clinical Epidemiology (63)
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h

45 - Systematic reviews, meta-analyses or

pooled analyses

648 - Non-related articles
(E.g. comments, reviews, editorials, letters,
correspondences, non-full text abstracts,

briefs, seminars, reports etc.)

60 - Non-related original articles
(Includes; simulations, methodological and

ecological studies)

30 - Cohort or profile updates

121 - Clinical trials and other

experimental studies

v

61 - Full text articles assessed for

eligibility

40 - Genetic studies

y

23 - Observational studies

38 - Non eligible studies

!

22 — Non related original articles
4 - Clinical trials and other experimental
studies
1 — Genetic studies
1 — Systematic reviews, meta-analyses or
pooled analyses
10 — The main exposure or risk factor studied

not quantitative or continuous

Fig. 1 A detailed flow chart summarising the selection and identification process of eligible articles
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(63). From the 1005 publications identified, 944 articles
were excluded after screening through their abstracts and
titles. Reasons for excluding an article’s title or abstract
were based on studies identified and classified as follows;
systematic reviews, meta-analyses or pooled analyses (45),
non-related articles (648), non-related original articles (60)
and cohort or profile update studies (30), clinical trials and
other experimental studies (121) and genetic studies (40).
The screening resulted in 61 articles which were
retrieved and reviewed as full-text for inclusion in the
analysis; 23 observational studies met the eligibility criteria,
and 38 were excluded (see Fig. 1). Amongst the 38 studies
which were excluded, 22 were not related to the objective
of the review, four were clinical trials and other experimen-
tal studies, two were meta-analyses and genetic studies and
the other ten studies investigated exposures or risk
factors which were not quantitative or continuous.

Data extraction

We used a modified data collection form prepared by
Turner et al. [6] in their previous survey (see Additional
file 1). The study variables and characteristics collected
through this form are as follows: title of the study, lead
author surname, date of publication, journal name, type of
study design, sample size or number of participants, out-
comes and exposures or risk factor characteristics (e.g.,
specialty, types, and whether they are categorised), details
of grouping or categorisation, details of other adjusted var-
iables included in the study, presentation and types of stat-
istical results used in reporting, type of effect estimates (e.g.,
odds ratios, relative risks, confidence intervals, p-values).

Statistical analysis

The data collected was captured in a Microsoft Access
database and exported to Stata 13 for analysis [22]. The
patterns of reporting for observational studies were quanti-
fied and reported using proportions. Where possible,
examples from the data are provided for illustration. Only
predominant findings or issues and practices of categorisa-
tion are reported.

Results

General characteristics

In this section, we provide a summary of results describ-
ing general characteristics of 23 observational studies in-
cluded in the study. Overall, the three epidemiological
journals produced 57% (CI =34%, 77%) of total articles
included in the study. The other articles - 43% (CI=
23%, 66%) were obtained from the New England Journal
of Medicine and Lancet. The International Journal of
Epidemiology (IJE) and Lancet contributed more articles
in the study than the other journals. The IJE contributed
39% (CI =20%, 61%) of the total articles whilst from the
Lancet we obtained 35% (CI=16%, 57%) of the total
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articles. Amongst these articles, cohort or follow-up
studies were common. We obtained 74% (CI =52%,
90%) of cohort or follow-up studies. The other study
designs included; cross-sectional and case-control with
17% (CIL=5%, 39%) and 9% (CI = 1%, 28%) respectively.

Non-communicable diseases such as diabetes, cancer,
heart diseases and mental illness were commonly studied
contributing 35% (CI=16%, 57%) amongst principal
diseases or outcomes being investigated and mortality
followed with 30% (CI=13%, 53%). HIV, physiological or
biochemical markers such as anti-mullerian hormone
(AMH) concentration levels, body mass index (BMI) and
other conditions contributed 35% (CI =16%, 57%). These
outcome variables were commonly analysed as binary
variables (44%, CI =23%, 66%), continuous variables (30%,
CI =13%, 53%) and time-to-event variables (26%, CI = 10%,
48%). For binary and time-to-event studies, mortality was
more predominant compared to other outcome variables.

Considering the exposures or main risk factor variables,
socioeconomic exposures were commonly investigated;
30% (CI =13%, 53%) of studies with such exposures were
obtained. For example, Zhang and colleagues [23] investi-
gated the associations between neighborhood deprivation
index (socioeconomic exposure) and BMI (outcome). The
neighborhood deprivation index in this study was derived
from the 2000 US Census housing and population data
using variables such as income, poverty, housing, educa-
tion, and employment and occupation status. The other
exposures found included; diet and lifestyle exposures
(17%, CI =5%, 39%), environmental exposures (13%, CI =
3%, 34%) physiological or biochemical markers (9%, CI =
1%, 28%) pre-existing conditions (4%, CI=0%, 22%) and
other varied risk factors (26%, CI = 10%, 48%).

Incidence of categorisation amongst the exposures or
main risk factors

Amongst the 23 studies, 61% (CI=39%, 80%) trans-
formed the continuous exposures or the main risk factor
variables into categorical or grouped measures for ana-
lysis. The other 39% (CI =20%, 61%) kept the exposures
or the main risk factor variables continuous. For ex-
ample, Li and colleagues [24] investigated the association
between BMI trajectories and adult BP across two gener-
ations keeping the exposure (BMI) continuous. Linear
spline function with one knot was used to summarise
longitudinal changes of the BMI curves in the two gen-
erations. In another example, Victora and colleagues
[25] investigated the association between intelligence
quotient (IQ) and breastfeeding duration (measured in
months) and categorised the exposure (breastfeeding
duration). The assumed categories for the exposure were
varied, defined according to the total duration of breast-
feeding and predominant breastfeeding duration (breast-
feeding as the main form of nutrition with some other
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foods). The total duration of breastfeeding (in months)
was categorised using five interval groups; <1, 1-2.9, 3—
5.9, 6-11.9 and = 12 which differed to the predominant
breastfeeding categories defined as; <1, 1-1.9, 2-2.9, 3—
3.9 and 24. In most articles, whenever categorical ana-
lysis was deployed as in the latter example, the categor-
ies were assigned ordinal values or scores to depict
distinct levels amongst the categorised groups. Further
details on the practices of categorisation considering
only articles where continuous exposures or the main
risk factors were transformed into categorical or group
measures (7 = 14) are discussed in the next sub-sections.

Decisions informing categorisation

Amongst all studies which employed categorisation (n =
14), one (7%, CIL = 0%, 34%) article explained their choice
for reported categories. Categorical groupings adopted in
the study were explained as hypothetically driven.
Hypothesis-driven categories were then used to construct
a cut-off or dichotomised model which was tested against
the non-categorical (continuous) model. Otherwise, the
rest of the studies, 93% (CI =66%, 100%) did not explain
or state reasons informing their choices of categorisation.

Criteria used for categorisation
Criteria used in establishing categorical boundaries for
the exposure variables were varied with 21% (CI=5%,

Table 1 Key findings showing the characteristics of
categorisation amongst the exposure variables in
epidemiological studies

% of articles & Cl
regions

61% (Cl =39%, 80%)

Characteristics of categorisation

Prevalence of categorisation
Decision informing categorisation
7% (Cl= 0%, 34%)
93% (Cl =66%, 100%)

Hypothesis-driven categories

Unknown (reasons not provided in the
articles)

Criteria used for categorisation

Established external criteria (e.g, WHO
standards)

14% (Cl = 2%, 43%)

29% (Cl = 8%, 58%)
36% (Cl=13%, 65)
219% (Cl=5%, 51%)

Arbitrary grouping
Equally spaced interval grouping
Quantile grouping

Number of categories used amongst grouped exposures

2 7% (Cl = 0%, 34%)

3 7% (Cl'= 0%, 34%)

4 29% (Cl = 8%, 58%)

5 29% (Cl = 8%, 58%)

6 14% (Cl = 2%, 34%)

10 14% (Cl = 2%, 34%)
(

57% (Cl=29%, 82%)

Proportion of trend testing
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51%) of the studies using quantiles (e.g., median, quartiles,
quintiles, and deciles). Equally spaced intervals or arbitrary
groupings (which does not appear to be data or clinically
driven) were very popular criterion for deciding categorical
boundaries. Both equally spaced interval and arbitrary
grouping criterions were observed in 65% (CI = 35%, 87%)
of studies were categorisation occurred (see Table 1).
Altogether, a combination of articles consisting ordered
categories (equally spaced intervals and quantiles) and arbi-
trary grouping produced 86% (CI = 57%, 98%) of studies.

Otherwise, the other 14% (CI=2%, 43%) of articles
selected their categories based on established guidelines.
For example, Gardner and colleagues [26] used the WHO
standards to categorise BMI into four categories; under-
weight (BMI < 18.5), normal (18.5 < BMI < 25), overweight
(25 < BMI <30), and obese (BMI > 30) and Kaukonen and
colleagues [27] defined systemic inflammatory response
syndrome (SIRS) status (present/absent) based on consen-
sus statement of the American College of Chest Physicians
and Society of Critical Care of Medicine.

Number of categories
When transforming continuous exposure variables for
categorical analyses, the number of categories used
across the studies varied between two and ten categories
(see Table 1). Studies employing four or five categories were
common. For example, Gauffin and colleagues [28] investi-
gated the association between school performance (expos-
ure) and alcohol-related disorders (outcome) in early
adulthood population by dividing the population into five
categories: high school marks (> mean + 1 SD); high average
(between mean and mean + 1 SD); lower average (between
mean and mean -1 SD); low (< mean - 1 SD) and missing.
The practice of categorisation with four or five categories
was found in 57% (CI =29%, 82%) of the articles. Dichoto-
misation (or grouping into two categories) was observed in
one (7%, CI=0%, 34%) article whilst ten categories
appeared in two (14%, CI = 2%, 43%) articles (see Table 1).
When comparing the practice of categorisation using
quantiles against equally spaced interval grouping, four
or five categories were more likely to occur with the lat-
ter practice. Amongst studies with four or five categor-
ies, equally spaced interval grouping occurred in 38%
(CI=9%, 76%) of the articles compared to 25% (CI = 3%,
65%) of quantiles.

Trend testing and analysis

Trend tests are often performed to assess the strength of
any exposure-outcome relationships that may exist in an
investigation [29]. The results show that 57% (CI =29%,
82%) of the studies which employed categorisation, per-
formed the trend tests. For example, Wang and col-
leagues [30] performed a trend test in risk estimates
using the median values of the heart rate quintile
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categories. The five values were treated as a continuous
measure and were used to evaluate the risk trend; p-
values were presented as part of the trend testing. In an-
other example, Victora et al. [25] performed the linear
trend test based on mean categories for months of
breastfeeding.

Amongst all studies were trend testing was performed,
various significance trend values ranging between 0.0001
and 0.001 were obtained and interpreted as significant.
However, there was variation across studies on how
these values were obtained. Guertin and colleagues [31]
obtained the overall trend value from the pairwise esti-
mates comparing coffee drinkers (number of cups/day)
against non-drinkers (reference group). Moreover, in
some studies, floating estimates (where no reference
group is assumed) were used to attain the trend values.

Covariate adjustment

Considerations were also made to establish the number
of confounders or other variables often adjusted for in
studies investigating exposure-outcome relationships.
Amongst studies where the exposure or main risk factor
was categorised, the number of confounders or adjusted
variables ranged between 3 and 20 with an average of 10
variables. Cohort or follow-up studies tends to report
large numbers of variables or confounders compared to
cross-sectional and case-control studies.

Summary of key findings

Table 1 provides summary statistics of key findings emerging
from the study results. The proportions and confidence
intervals of main findings explaining the characteristics of
categorisation are presented in the table.

Discussion

The present study indicates a high occurrence of
categorisation in epidemiological studies. Amongst the
articles investigating the associations between the con-
tinuous exposures and disease outcomes, 61% of them
transformed the exposure variables into categorical
measures for analysis. The results are consistent with
those obtained in previous reviews. Pocock et al. [5] and
Turner et al. [6] respectively reported 84% and 86% of
categorisation in epidemiological studies. However, com-
pared to these studies, we recorded the lowest propor-
tions of categorisation. This could be attributed to the
numbers and journals selected for assessment. For in-
stance, the American Journal of Epidemiology (AJE)
which was not considered here, contributed more arti-
cles (about 53% of articles) in Turner’s study. There is
also a possibility of under-representation from other
specialist areas since we only used high-ranking journals.
High ranking journals may be strict and particular with
the quality of work they wish to publish. Thus, this
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could limit the number of articles considered in our
study. However, there are advantages to evaluating high
impact journals. They offer us the opportunity to report
on practices from leading researchers.

Amongst the transformed continuous exposures, nearly
60% of the articles reported ordered categories (using ei-
ther equally spaced intervals or quantiles). This kind of
categorisation when investigating the exposure-outcome
relationship has some disadvantages [14]. Quantiles pro-
duce estimates which are data dependent. On the other
hand, equally spaced interval groupings produce categor-
ies which can be statistically inefficient and unjustifiable.
With normally distributed data, it will be ideal to have
more categories at the center and few at the tails [14].
One would expect this to be a justification for arbitrary
grouping however none was provided for all articles where
such criterion was used. Justifications informing categor-
isation or grouping were explained in 7% of the studies.
This is beside the call to describe why quantitative group-
ings are chosen in the studies (recommendation 11 of the
STROBE guidelines). Hence, high proportions of articles
not explaining their choice for categorisation could be an
indication that authors are not aware of existing guide-
lines. Otherwise, authors are ignoring the guidelines or
simply underestimating the consequences of categorising
data when analysing continuous variables.

The assessment also shows that researchers use differ-
ent categories when categorising exposures or risk fac-
tors. However, four and five categorical groupings were
common amongst studies categorising quantitative ex-
posure variables. Approximately, 60% of the studies used
four or five categories when transforming the exposures
for analysis. The finding is consistent with what other
researchers view as a common practice in epidemiology
[19, 32]. According to Royston [19] and Becher [32],
four or five categories are often created in the field of
epidemiology. Dichotomisation was not popular; the
practice featured in one article only.

Of particular interest was also how the confounders and
other variables were adjusted when investigating the
exposure-outcome relationships. There are no clear proce-
dures to decide on the choice and number of confounders
and other variables when investigating exposures and out-
come relationships [33]. Quite often we rely on evidence
from other studies, subject knowledge, statistical packages
and correlations to choose the variables we wish to in-
clude as confounders in our analysis. In this study, we ob-
served large numbers of unrelated confounders and
variables being investigated. This could result in false posi-
tive claims. Careful consideration is needed to establish
what true confounders are in our investigations. In one
article in this assessment [31], we observed a multivariable
model being adjusted for 20 variables. Such models are
hard to interpret and can be misleading. Variables might



Mabikwa et al. BMC Health Services Research (2017) 17:201

be dependent on each other making it difficult to explain
their associations. The use of directed acrylic graphics (or
DAGs) [34] offers a better solution to identify and estab-
lish relations. DAGs provides graphical models explaining
causal relationships amongst variables of interest [34].
Furthermore, studies with a large number of confounders
and variables should also be accompanied by large sam-
ples. The samples should also incorporate the study de-
signs. Otherwise, studies with small samples, categorising
exposures and having too many variables are likely to be
underpowered [19].

Taking into consideration trend testing and analysis,
57% of the articles performed the tests after categorising
the exposure variables. Trend values such as ordinal
scores, mean and median of categories were often used
in fitting and evaluating the overall trends. In all the
studies reviewed, the null hypothesis was not clearly pro-
vided. However, indications from the studies suggest the
hypothesis of no exposure-disease association was
always assumed. We found that small significance values
for trend statistics were in some studies interpreted as
the existence of a monotonic (continuously increasing or
decreasing) relationship between the exposures and risk
outcomes. For example, after obtaining a trend value of
0.0006, Liu and colleagues [35] concluded that the risk
between nasopharyngeal carcinoma (NPC) and cate-
gorised sibling size was continuously increasing. Such
interpretations could be misleading. Sometimes a signifi-
cant trend statistic value does not imply a continuously
increasing risk of exposure on the outcome. Trend tests
are not tests for monotonic exposure-outcome relation-
ships [36, 37]. If the exposure-outcome relationship is
unknown, the trend test may obscure rather than reveal
the relationship [36]. Trend or slope estimation methods
such as polynomial regression and non-parametric
models should supplement trend testing when investi-
gating relationships which are unknown.

Conclusions

In epidemiology, studies evaluating issues of categorisa-
tion according to the STROBE guideline are lacking.
Based on recommendation 11 of the STOBE guidelines,
our study highlights current practices for analysing
quantitative variables focusing on issues of categorisa-
tion. Findings obtained using five medical journals
indicates high proportions of categorisation within epi-
demiological studies. Categorisation of continuous
exposure or risk factors was found in 61% of articles
assessed. Reasons and justifications informing the
choices and practices of categorisation are rarely pro-
vided and remain unknown. The findings confirm the
presence and claims of categorisation viewed by some
researchers as a dominant feature for analysing continu-
ous data in medicine.
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Clearly, these findings raise concerns about the ad-
equacies of analysis and quality of reporting. Categorisa-
tion enables researchers to assume simple relationships
between the outcome and exposures and in the process
the information is lost. How much information is lost
will depend on cut points or categories used [38]. In our
study, we have seen four or five group categories being
dominant. However, we cannot be certain on how much
of the information is lost when four or five group cat-
egories are assumed under different exposure - outcome
associations.

The majority of researchers also preferred to use
equally spaced intervals or arbitrary grouping. In medi-
cine, biologically meaningful cut points are necessary to
inform decisions which relate to the pattern of the data.
Establishing meaningful cut points where complex rela-
tionships or associations are present may not be easy.
Alternative approaches such as fractional polynomials
[39, 40] and splines [41, 42] are available. However, the
precision and performance of these approaches in the
presence of complex associations are also not well
known [43]. Further research evaluating these ap-
proaches, their performance and precision under differ-
ent complex associations is required.

Other existing guidelines available for medical re-
searchers can be found on online resources including
the Enhancing the QUAlity and Transparency Of health
Research (EQUATOR) network website (www.equator-
network.org) which have the aim of improving the
reporting of epidemiological and clinical studies.
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(DOCX 74 kb)

Acknowledgement
Not applicable.

Funding
The study was funded by the Botswana International University of Science
and Technology (BIUST) and the Government of Botswana.

Availability of data and materials
A list of articles used in the study is available from the corresponding author
on reasonable request.

Authors’ contributions
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethical approval and consent to participate
Not applicable.


http://www.equator-network.org/
http://www.equator-network.org/
dx.doi.org/10.1186/s12913-017-2137-z

Mabikwa et al. BMC Health Services Research (2017) 17:201

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Division of Epidemiology and Biostatistics, LICAMM, School of Medicine,
University of Leeds, Leeds, UK. *Section of Epidemiology and Biostatistics,
LICAP, School of Medicine, University of Leeds, Leeds, UK.

Received: 22 October 2016 Accepted: 7 March 2017
Published online: 14 March 2017

References

1. Sauerbrei W, Abrahamowicz M, Altman DG, le Cessie S, Carpenter J.
Strengthening analytical thinking for observational studies: The STRATOS initiative.
Stat Med. 2014;33:5413-32.

2. Little J, Higgins JP, loannidis JP, Moher D, Gagnon F, von EIm E, et al.
Strengthening the reporting of genetic association studies (STREGA)-An
extension of the STROBE statement. Genet Epidemiol. 2009;33:581-98.

3. Langan S, Schmitt J, Coenraads PJ, Svensson A, von Elm E, Williams H.

The reporting of observational research studies in dermatology journals a
literature-based study(EDEN). Arch Dermatol. 2010;146:534-41.

4. Von EIm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke
JP. The strengthening the reporting of observational studies in
epidemiology (STROBE) statement: Guidelines for reporting observational
studies. Epidemiology. 2007;18:800-4.

5. Pocock SJ, Collier TJ, Dandreo KJ, de Stavola BL, Goldman MB, Kalish LA,
et al. Issues in the reporting of epidemiological studies: a survey of recent
practice. Br Med J. 2004;329:883-7.

6. Tumer EL, Dobson JE, Pocock SJ. Categorisation of continuous risk factors in
epidemiological publications: a survey of current practice. Epidemiol Perspect
Innov. 2010;79.

7. MacCallum RC, Zhang SB, Preacher KJ, Rucker DD. On the practice of
dichotomization of quantitative variables. Psychol Methods. 2002;7:19-40.

8. Fedorov V, Mannino F, Zhang R. Consequences of dichotomization.

Pharm Stat. 2009,8:50-61.

9. Zhao LP, Kolonel LN. Efficiency loss from categorizing quantitative exposures into
qualitative exposures in case-control studies. Am J Epidemiol. 1992;136:464-74.

10.  Austin PC, Brunner LJ. Inflation of the type | error rate when a continuous
confounding variable is categorized in logistic regression analyses. Stat Med.
2004;23:1159-78.

11, Streiner DL. Breaking up is hard to do: the heartbreak of dichotomizing
continuous data. Can J Psychiatr. 2002;47:262-6.

12. Altman DG, Royston P. Statistics notes - The cost of dichotomising
continuous variables. Br Med J. 2006;332:1080.

13.  Bakhshi E, McArdle B, Mohammad K, Seifi B, Biglarian A. Let continuous
outcome variables remain continuous. Comput Math Methods Med.
2012;2012:639124.

4. Bennette C, Vickers A. Against quantiles: categorization of continuous
variables in epidemiologic research, and its discontents. BMC Med Res Methodol.
2012,12.

15. Chen H, Cohen P, Chen S. Biased odds ratios from dichotomization of age.
Stat Med. 2007,26:3487-97.

16.  Cumsille F, Bangdiwala SI, Sen PK, Kupper LL. Effect of dichotomizing a
continuous variable on the model structure in multiple linear regression
models. Commun Stat Theory Methods. 2000;29:643-54.

17. Greenland S. Dose-response and trend analysis in epidemiology: alternatives
to categorical analysis. Epidemiology. 1995;6:356-65.

18.  Lagakos SW. Effects of mismodeling and mismeasuring explanatory variables
on tests of their association with a response variable. Stat Med. 1988;7:257-74.

19.  Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in
multiple regression: a bad idea. Stat Med. 2006;25:127-41.

20.  Taylor JMG, Yu MG. Bias and efficiency loss due to categorizing an
explanatory variable. J Multivar Anal. 2002;83:248-63.

21. Web of Science. Journal Citation Reports. Thomson Reuters. 2015.

22. StataCorp LP. Stata: release 13 - statistical software. 13th ed. College Station:
Stata Press; 2013.

23. Zhang YT, Laraia BA, Mujahid MS, Tamayo A, Blanchard SD, Warton EM,
et al. Does food vendor density mediate the association between
neighborhood deprivation and BMI?: A G-computation mediation analysis.
Epidemiology. 2015;26:344-52.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Page 8 of 8

Li L, Hardy R, Kuh D, Power C. Life-course body mass index trajectories and
blood pressure in mid life in two British birth cohorts: stronger associations
in the later-born generation. Int J Epidemiol. 201544:1018-26.

Victora CG, Horta BL, de Mola CL, Quevedo L, Pinheiro RT, Gigante DP, et al.
Association between breastfeeding and intelligence, educational
attainment, and income at 30 years of age: a prospective birth cohort study
from Brazil. Lancet Glob Health. 2015;3:2199-205.

Gardner RM, Lee BK, Magnusson C, Rai D, Frisell T, Karlsson H, et al.
Maternal body mass index during early pregnancy, gestational weight gain,
and risk of autism spectrum disorders: results from a swedish total
population and discordant sibling study. Int J Epidemiol. 2015;44:870-83.
Kaukonen K, Bailey M, Pilcher D, Cooper DJ, Bellomo R. Systemic inflammatory
response syndrome criteria in defining severe sepsis. N Engl J Med.
2015;372:1629-38.

Gauffin K, Vinnerljung B, Hjern A. School performance and alcohol-related
disorders in early adulthood: a Swedish national cohort study. Int J Epidemiol.
2015:44:919-27.

Kodell RL, Chen JJ. Characterization of dose-response relationships inferred
by statistically significant trend tests. Biometrics. 1991;47:139-46.

Wang L, Cui L, Wang Y, Vaidya A, Chen S, Zhang C, et al. Resting heart rate
and the risk of developing impaired fasting glucose and diabetes: the
Kailuan prospective study. Int J Epidemiol. 2015;44:689-99.

Guertin KA, Freedman ND, Loftfield E, Graubard BI, Caporaso NE, Sinha R.
Coffee consumption and incidence of lung cancer in the NIH-AARP Diet
and Health Study. Int J Epidemiol. 2015;45:929-939.

Becher H. The concept of residual confounding in regression models and
some applications. Stat Med. 1992;11:1747-58.

Sauerbrei W, Royston P, Binder H. Selection of important variables and
determination of functional form for continuous predictors in multivariable
model building. Stat Med. 2007;26:5512-28.

Textor J. Drawing and analyzing causal DAGs with DAGitty: User manual for
version 2.0. URL http://www.dagitty.net/manual-2.x.pdf; 2013.

Liu Z, Fang F, Chang E, Adami H, Ye W. Sibship size, birth order and risk of
nasopharyngeal carcinoma and infectious mononucleosis: a nationwide
study in Sweden. Int J Epidemiol. 2015.

Maclure M, Greenland S. Tests for trend and dose-response -
Misinterpretations and alternatives. Am J Epidemiol. 1992;135:96-104.
Schmidt CO, Ittermann T, Schulz A, Grabe HJ, Baumeister SE. Linear,
nonlinear or categorical: how to treat complex associations in regression
analyses? polynomial transformations and fractional polynomials. Int J Public Health.
2013;58:157-60.

Altman DG, Lausen B, Sauerbrei W, Schumacher M. Dangers of using
optimal cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst.
1994;86:829-35.

Royston P, Altman DG. Regression using fractional polynomials of continuous
covariates - Parsimonious parametric modeling. Appl Stat J Royal Stat Soc Ser C.
1994:43:429-67.

Royston P, Ambler G, Sauerbrei W. The use of fractional polynomials to
model continuous risk variables in epidemiology. Int J Epidemiol. 1999;28:
964-74.

Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic
spline functions in public health research. Stat Med. 2010,29:1037-57.
Schmidt CO, Ittermann T, Schulz A, Grabe HJ, Baumeister SE. Linear,
nonlinear or categorical: How to treat complex associations? Splines

and nonparametric approaches. Int J Public Health. 2013;58:161-5.

Keogh RH, Strawbridge AD, White IR. Effects of classical exposure
measurement error on the shape of exposure-disease associations.
Epidemiol Methods. 2012;1:13.


http://www.dagitty.net/manual-2.x.pdf

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Study selection
	Exclusion criteria
	Search strategy

	Data extraction
	Statistical analysis

	Results
	General characteristics
	Incidence of categorisation amongst the exposures or main risk factors
	Decisions informing categorisation
	Criteria used for categorisation
	Number of categories
	Trend testing and analysis
	Covariate adjustment

	Summary of key findings

	Discussion
	Conclusions
	Additional file
	Acknowledgement
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethical approval and consent to participate
	Publisher’s note
	Author details
	References

