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Abstract

Background: Patients often wait to have urgent or emergency surgery. The number of operating rooms (ORs)
needed to minimize waiting time while optimizing resources can be determined using queuing theory and
computer simulation. We developed a computer program using Monte Carlo simulation to determine the number
of ORs needed to minimize patient wait times while optimizing resources.

Methods: We used patient arrival data and surgical procedure length from our institution, a tertiary-care academic
medical center that serves a large diverse population. With ~4800 patients/year requiring non-elective surgery, and
mean procedure length 185 min (median 150 min) we determined the number of ORs needed during the day and
evening (0600-2200) and during the night (2200-0600) that resulted in acceptable wait times.

Results: Simulation of 4 ORs at day/evening and 3 ORs at night resulted in median wait time =0 min (mean = 19 min)
for emergency cases requiring surgery within 2 h, with wait time at the 95th percentile = 109 min. Median wait time
for urgent cases needing surgery within 8-12 h was 34 min (mean =136 min), with wait time at the 95th
percentile =474 min. The effect of changes in surgical length and volume on wait times was determined with
sensitivity analysis.

Conclusions: Monte Carlo simulation can guide decisions on how to balance resources for elective and non-elective

surgical procedures.

Background

Millions of surgical procedures are performed in the
United States annually, and many of these are done on
an urgent or emergency basis. Consequently, timely
access to surgical care is vital to achieve optimal outcomes
[1]. Most hospitals devote peri-operative resources (operat-
ing rooms, staff, physicians, equipment) to both elective
and non-elective surgeries, however, the division of these
costly resources depends, in part, on the relative mix of
these two classes of cases (elective vs. non-elective).
Resource planning for elective surgeries is relatively
straightforward, while planning for non-elective surgery is
often more challenging. For example, how many operating
rooms (ORs) should be devoted to non-elective surgeries?
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Queuing theory (also known as waiting-line modeling)
and other operational research techniques have been
used in a variety of healthcare settings to determine how
long patients must wait for care relative to the available
resources [2-7]. In this paper, we describe a model that
predicts the waiting time for patients needing urgent
surgical care. We used standard queuing theory models
and Monte Carlo techniques to test the validity of our
findings and predictions.

Methods

The University of California Davis Medical Center
(UCDMC) is a 578-bed facility located in Sacramento,
California and is part of the University of California
Davis Health System. UCDMC has 33 ORs devoted to
surgical care, including an outpatient facility (4 ORs),
a pediatric facility (5 ORs) and the Pavilion OR area
(24 ORs).
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The University of California, Davis administrative of-
fice of the institutional review board determined that
this study was a quality improvement project that did
not constitute human research and approved the use of
administrative data in this simulation study. Administra-
tive data for surgical procedures performed at UCDMC
were used to determine: 1) the “arrival” rate of patients
requiring urgent and emergency surgical care in the
Pavilion ORs, which was defined as the time when a
schedule request was submitted; 2) the length of the sur-
gical procedure (defined as the time the patient wheeled
into the OR and the time the patient left the OR).
Urgent cases are performed primarily in the Pavilion
ORs, although some urgent pediatric cases are per-
formed in the pediatric ORs. In 2013, 22,908 surgical
procedures were performed; 75 % of these were elective.
The remaining cases were “add-on” elective (5 %) urgent
(15 %) and emergency (5 %). For the purposes of this
simulation, we excluded urgent and emergency pediatric
cases performed in the pediatric unit, as that unit func-
tions somewhat independently. Thus, there were 4802
non-elective cases performed in the Pavilion ORs in
2013: An add-on elective case is defined as one that
could wait several days; an urgent case is defined as one
that must enter the OR within 24 h, or sooner, depend-
ing on the clinical need; urgent cases are further divided
into classifications of 0 to 4—6 h (urgentl), 8-12 h (ur-
gent2) and 24 h (urgent3). An emergency case is one
that must enter the OR within 2 h. For example, a pa-
tient with penetrating trauma and hypotension would be
expected to enter the OR within 5-30 min after the de-
cision is made to perform surgery.

The average arrival rate (patients/min) was calculated
by dividing the number of patients in each classification
by the number of minutes in a year (525,600 min/year).
The length of surgery was not normally distributed (it
was skewed towards longer procedures times) and was
better described using a log normal distribution, consist-
ent with published results [8]. The arrival rate followed a
Poisson distribution.

The Monte Carlo Markov chain program was written in
the Python language, version 2.6.6 (www.python.org;
accessed 6-1-14). Source code of our program is freely
available online (https://github.com/joe-antognini/or-wait-
times) and we release the code under the Massachusetts
Institute of Technology license. The program takes as
input: 1) the arrival rate (patients/minute) for each case
class; 2) the mean surgical length and standard deviation
for each case class (using a log-normal distribution); 3)
the set-up and clean-up time (e.g., the pre-operative time
spent by the OR staff and anesthesia care team preparing
for a case and the post-operative time needed to clean-up
the OR and take the patient to the post-anesthesia care
unit). This time was set at 60 min (based on our
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experience at our institution), but was adjusted in some
simulations to determine the effect of faster or longer
“down” time when the OR staff were not available. Adjust-
ing this time could also reflect changes in operative time.
We simulated a 5 year period; data for the initial 2 months
was discarded to allow the program time to achieve
steady-state.

The program steps through each minute of time and
first randomly draws the number of patients in each
class who arrive in that minute from Poisson distribu-
tions. The arrival time can be thought of as the time
when the decision is made to perform surgery and the
case is scheduled. Each simulated patient is given a
random surgery time drawn from a log-normal distribu-
tion. If there are any available ORs, the patients are
placed in the ORs starting with the most urgent class. If
no ORs are available the patients are placed on a waiting
list. When the next OR becomes available the patient in
the most urgent class who has been waiting the longest
is placed in the OR. Each simulated patient’s class, sur-
gery time, and wait time is recorded. We performed 4—6
simulations (each a 5 year period) in which we changed
the number of ORs, the length of surgery/clean-up time
or the volume of patients (by adjusting the arrival rate).
Using these 4—6 simulations of each set of parameters
(number of ORs, surgery/clean-up length, volume) we
calculated the means of the mean, standard deviation,
median, 95th percentile, and maximum values of wait
times. We define the wait time as the time between
when the decision is made to perform surgery and when
the patient can enter the OR (i.e., the OR is ready to
accept the patient). The parameters used (patient arrival
rate, mean surgical duration or length and standard
deviation of the surgical duration) are shown in Table 1.

A second statistical approach using standard boot-
strapping techniques was taken to evaluate the uncer-
tainties on the median and 95th percentiles of the wait
times. To do this, we took the wait times generated by
the Monte Carlo simulation and randomly sampled from
this data set with replacement until we had generated a
re-sampled data set with as many points as are in the
original data set. For example, on each draw from the
original sample, any data point is equally likely to be
picked as any other, independent of whether that data
point had already been picked in a previous draw. Thus,
this re-sampled data set contains some data points from
the original data set multiple times, and others not at all.
The median and 95th percentiles were then calculated
for this re-sampled data set. This entire process was then
repeated 100 times, producing a distribution of median
and 95th percentiles of wait times from the re-sampled
data sets. The standard deviation of these distributions
was then taken to be the uncertainty of the median and
95th percentile wait times from the original data set.
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Table 1 Parameters used to generate wait times

Page 3 of 9

Urgency Mean arrival time Mean surgery Standard deviation of
Class duration surgery duration
(Patients/min) Natural log Natural log

Emergent 001607686 5.00716 0.583642
Urgent 1 003232496 496477 0677607
Urgent 2 002665525 5.05842 0.651279
Urgent 3 000334855 5.00069 0570812
Add-on 001288052 501655 0.713405

The mean arrival time (patients/minute), mean surgical duration and standard deviation of the surgical duration are shown for each urgency class. The mean
surgery durations are expressed as the mean of the natural logarithms of the durations (i.e., each duration was log-transformed and the mean determined). The

standard deviations are expressed as the natural logarithms

For comparison purposes, we determined wait times
using a multiple server, multiple priorities waiting line
model. In this approach, an estimate of mean surgical
time must be used. The surgical durations were not
normally distributed, i.e., there was rightward skewing of
the durations. Using the mean of the data would poten-
tially introduce error because the mean did not repre-
sent the central tendency of the data. Therefore, we
performed two separate calculations using two means:
one calculated from the raw data of surgical times (as
noted above) and the second from the log-transformed
data (i.e., we took the inverse log of the mean of the log-
transformed data). We then used each of these two
means to determine average wait times. A comparison of
the wait times between the two calculations would
provide an estimate of the error of using the mean surgi-
cal duration when there is rightward skewing. The pro-
gram developed by Stevenson and Ozgur [9] has a
maximum of four priority classes, so we modified the
Monte Carlo simulation model to include only four
classes by combining the arrival rates for the 0-24 h
class and the add-on elective class.

Results

The distribution of inter-arrival times are shown in Fig. 1
for real data for 1 year (2013) at UCDMC and for simu-
lated data using the Monte Carlo simulation. Note that
in both situations inter-arrival times followed a Poisson
distribution.

We start with the simplest model in which the number
of ORs available during the night is equal to the number
of ORs available during the day. Table 2 shows the wait
time according to the number of ORs used to service
patients. This application of the model assumed that
patients would enter the OR when an OR becomes avail-
able, regardless of urgency, e.g., an add-on elective pa-
tient could receive surgery during late evening or early
morning. Increasing the number of available ORs from 3
to 5 decreased utilization from 74.8 to 45 %; mean wait
times likewise decreased, reaching just a few minutes for
5 ORs for most urgency classes. For example, when

running 4 ORs, wait times at the 95th percentile ranged
from 84 min for emergency cases to 256 min for add-on
elective cases. When running just 3 ORs, however, the
95th percentile was 155 min (i.e, 5 % of emergency pa-
tients would need to wait more than 155 min) (Table 2).
Decreasing the number of ORs increased wait times
exponentially (Fig. 2).

We then turn to a more complicated model in which
we fix the number of ORs available during the day to 4
and the number of ORs at night to 2, 3 or 4. In addition,
in this model nighttime surgery was restricted to emer-
gency and significantly urgent patients (e.g., Urgentl
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Fig. 1 Shown are histograms of patient inter-arrival times (all urgency
classes combined); bin width = 20 min. Solid line: actual data from
University of California Davis Medical Center for a 1 year period.
Dashed line: simulated data (1 year period). Note the similar
distribution of times. The slightly greater peak in the actual data
is likely due to two or more patients being scheduled <20 min
apart even though the decisions to perform surgery for these
patients might have been >20 min apart
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Table 2 Wait times (minutes) according to urgency
classification and number of operating rooms

Number of Operating Rooms

3(n=6) 4(n=4) 5(=4)
Emergent Mean 39+1 131 4+1
Median 10+2 0+0 0+0
95th %ile 155+4 84+3 27 +1
Urgent1 Mean 61+3 171 5+1
Median 13+4 0+0 0+0
95th %ile 253+9 112+£3 32+4
Urgent2 Mean 128+8 27+2 7+1
Median 21£5 0+0 0+0
95th %ile 591 £40 171£8 45+7
Urgent3 Mean 224 +37 35+2 8+2
Median 32+8 0+0 0£0
95th %ile 1113+£194 220+ 4 46+18
Add-on Elect Mean 340+ 28 40+£3 10£1
Median 37£10 0+0 0+0
95th %ile 1745+ 178 256+ 18 55+10
Utilization (%) 748 0.5 559+0.2 450+03

Data are Mean £ SD. The n in parentheses aside number of ORs refers to the
number of simulation runs performed

classification). With 4 ORs during daytime and at night,
we found that wait times were short and within clinically
acceptable ranges (Table 3). For example, the median
wait time for emergency patients was 0 min, the mean
was 14 min and the 95th percentile was 89 min. When
the number of night time ORs was decreased wait times
increased, as expected, especially in the higher urgency
groups. For example, decreasing the number of ORs at
night from 4 to 3 increased the wait times for emergency
and urgentl cases by 20-30 min at the 95th percentile
(Table 3). When running just 2 ORs during the night,
wait times for emergency cases averaged 29 min and the
95th percentile was at 144 min (although the median
remained at 0 min; Table 3).

Changing the clean-up time/surgical time affected wait
times in a predictable way (Table 4). When clean-up/sur-
gical time was decreased by 15 min, wait time for emer-
gency cases decreased by 10 min for the 95th percentile,
and decreased 20-65 min for urgent cases. Increasing
the clean-up/surgical time by 15 min increased wait
times, although the absolute change was greater than for
the simulations with a 15 min decrease: at the 95th
percentile, emergency cases waited 25 min longer, while
for urgent classes, wait times increased 34—107 min.

Increasing patient volume increased wait times
(Table 5). Increasing volume by 5 % increased wait time
for urgent cases by 27-108 min at the 95th percentile;
a 10 % volume increase resulted in an increase in 95th
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Fig. 2 This graph shows wait times (median and 95th percentile)
according to the number of operating rooms (ORs) for emergency
patients and for all patients combined. Wait times increased
exponentially as the number of ORs decreased. The error bars are
(+) one standard deviation; unseen error bars are contained within
the corresponding symbol. When 1 or 2 ORs were used we show
only the wait time for emergency patients because simulations
generated surgical demand (total surgical time for all patients) that
exceeded capacity which thereby resulted in some simulated urgent

patients not being treated

percentile wait times of 48-230 min for the urgent
cases.

The mean wait times using a multiple server, multiple
priorities waiting line model were similar to those
obtained using Monte Carlo simulation (Table 6). In a
four OR model, mean wait times between the two
methods did not differ by more than 35 min, while the 3
OR model showed differences of 296 min for urgent3
patients. The use of log-transformed data to determine
the mean surgical time resulted in better congruence
between the Monte Carlo simulation and the standard
approach, as compared to use of the mean of the raw
data.

Data generated using the “bootstrapping” method were
similar to data using multiple 5 year simulations. For
example, the median wait time for emergency patients
differed by just 2 min (8 min versus 10 min) for 3 ORs and
was 0 min for 4 and 5 ORs for both methods. Likewise, the
difference between the two methods in the 95th percentile
ranged from 1 to 4 min. As the urgency class became less
acute, the difference widened. For example, differences in
the 95th percentile ranged from 2 to 5 min for urgencyl
patients to 4—139 min for add-on elective patients; the
ranges of differences of the medians were 0—17 min.
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Table 3 Wait times (minutes) according to urgency
classification and number of operating rooms running during
the day and the number running at night

Number of Operating Rooms

4,4 (n=4) 4,3 (n=4) 4.2 (n=4)
Emergent Mean 14+£1 19+1 29+1
Median 0+0 0+0 0+0
95th %ile 891 109+3 144+ 3
Urgent Mean 19+1 26+ 1 44+ 1
Median 0+0 0+0 0+0
95th %ile 118+3 149+ 4 227+9
Urgent2 Mean 128 +2 136 £1 138+4
Median 28+2 34+4 41+2
95th %ile 468+ 5 474+ 6 480+ 7
Urgent3 Mean 1487 150+ 16 159+3
Median 33+7 34+20 44 +6
95th %ile ~ 515+23 559 + 41 592+ 20
Add-on Elect Mean 176 £4 182+ 11 194+6
Median 40+8 39+16 45+3
95th %ile  664+18 692 +53 764 +57
Utilization (%) 55704 612+05 669+0.2

Data are Mean + SD. The first number refers to the number of operating rooms
running during daytime (0600-2200; 16 h) and the second number refers to
the number of ORs running at night time (2200-0600; 8 h). The n in
parentheses aside number of ORs refers to the number of simulation

runs performed

The effect of utilization on wait times is shown in
Fig. 3. As expected, when parameters were altered to
increase utilization (e.g., decreasing the number of avail-
able ORs), wait time increased, and did so exponentially
when utilization approached 70-75 %.

Discussion

The present study demonstrates a simulation approach
to determine the resources needed to handle urgent
surgical cases. We performed a sensitivity analysis and
found how wait times change as the result of changing
the number of ORs, the service time (e.g., how long
resources are devoted to the patient) and surgical vol-
ume. The parameters of the program (which is freely
available) can be adjusted according to the characteris-
tics of individual hospitals. For example, the number of
ORs needed to achieve acceptable wait times will depend
on the arrival rate of patients, length of surgical proce-
dures and preparation/clean-up time specific to each
hospital.

In the present simulation model the arrival time equates
to when the decision is made to perform surgery, and the
wait time is the time between the arrival time and when
the patient enters the OR. The interpretation of that wait
time is made from a clinically relevant perspective, i.e.,
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how long can the patient wait before a further delay would
result in a clinically poorer outcome? But a patient might
want to have surgery as soon as possible, even though
waiting 24—48 h might not result in clinical compromise
and therefore would be clinically acceptable. Thus, from a
patient satisfaction perspective, a clinically acceptable wait
time might not be acceptable to the patient.

We described our simulation data using mean, median
and 95th percentile wait times, however, a manager
could also determine the probability that a patient would
need to wait a set time, such as 1 h or longer. For
example, in the situation of running 3 ORs during day-
time and at night, the probability that an emergency pa-
tient would wait 1 h or more is about 27 %.

The OR is one of the most resource-intensive parts of
a hospital and so there is always a constant challenge to
find the optimal balance between having enough ORs to
provide timely peri-operative care and having the fewest
number of ORs to minimize costs [10]. A fundamental
issue that each hospital must address is the number of
ORs that should be devoted to elective workflow and the
number of ORs that should be reserved for non-elective
patients (e.g., urgent and emergency patients). Some
authors have recommended that during daytime week-
day hours 15-20 % of available ORs be used for non-
elective cases and last-minute elective cases. Depending
on the demand for elective surgery, this approach could
provide timely urgent and emergency surgical care at
the expense of delayed scheduling of elective surgeries.
This can have a negative influence on the programmatic
visions and developments of the institution. Contrari-
wise, if all the ORs are used for elective care, patients
needing urgent care will wait longer, which can increase
emergency department boarding, wait times and the
familiar problem of congestion.

Opening more ORs to accommodate urgent cases ob-
viously comes at a financial cost. At our institution, the
marginal cost to staff an OR 24 h/day, 365 days/year is
about $1.3 million (United States dollars). This figure
includes nurses and surgical technicians, but excludes
anesthesia services and surgeon costs. In our model of
staffing 4 ORs during the day and 2 ORs at night, open-
ing up another OR at night (total 3 ORs at night, or an
additional 8 h/day) would save around 860 h/year of
patient waiting time at a cost of about $500/hour, or
around $430,000/year. Going from 3 ORs to 4 ORs at
night would result in a further reduction of patient wait-
ing time by 550 h/year at a cost of $800/hour. Stated
another way, because the marginal reductions in waiting
time decrease as more ORs are staffed, but the marginal
costs remain more-or-less the same, the cost per hour
saved increases.

Queuing theory is used as part of a broad approach to
smooth patient flow [11]. Patient flow issues have
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Table 4 Effect of length of surgical time (or clean up time) on wait times (minutes) according to urgency classification

4,2, =15 min (n=4) 4,2 (n=4) 4,2, +15min (n=4)
Emergent Mean 26+ 1 29+ 1 36+1
Median 0+0 0+0 0+0
95th %ile 134+7 144+ 3 169+ 3
Urgent1 Mean 38+1 44+1 54+2
Median 0+0 0+0 0+0
95th %ile 205+6 227+9 261+ 11
Urgent2 Mean 130+2 138+4 159+5
Median 29+3 4112 63+4
95th %ile 466+5 480+7 537+12
Add-on Elect Mean 179+2 194+6 260+6
Median 3816 45+3 92+7
95th %ile 665+ 12 764 £57 1068 + 39
Utilization (%) 63.1+£05 66.9+0.2 709+ 04

Data are Mean + SD. The model assumes four operating rooms running during daytime (0600-2200; 16 h) and two ORs running at night time (2200-0600; 8 h).
The model adds15 min (+15 min, right column) to (or subtracts15 min from, —15 min, left column) the length of the surgery. This 15 min change could also
simulate 15 min of increased or decreased clean-up (turnover) time. The n in parentheses aside number of ORs refers to the number of simulation runs performed

become an important area of focus by not only patients
and healthcare workers, but also regulatory agencies,
such as The Joint Commission. The ORs (and, by exten-
sion, the post-anesthesia care unit) are at the nexus of
patient flow. Variability of patient flow in a hospital
largely depends on variation of elective admissions,
including surgical admissions. As part of the approach
to reducing variability, some authors have recommended

separating elective admissions from non-elective

admissions, especially non-elective surgical patients
[12, 13]. At Cincinnati Children’s Hospital and Mayo
Clinic-Jacksonville, some ORs are dedicated to urgent
cases [11]. This approach has helped reduce variability,
and improved throughput and financial performance.
The key concept is that the variability encountered in
the ORs and hospital is categorized either as “natural
(from the ED and needs to be managed) or “artificial”
(from elective cases that need to be controlled).

Table 5 Effect of surgical volume on wait times (minutes) according to urgency classification

4,2 (n=4) 4,2, 45 % (n=4) 4,2,410% (n=4)
Emergent Mean 29+1 34+1 39+1
Median 0£0 0+0 2+1
95th %ile 144 £3 157 +4 170+5
Urgent1 Mean 44 £1 52+1 59+1
Median 0+0 0+0 241
95th %ile 227+£9 254+3 275+6
Urgent2 Mean 138+4 158 +7 173+£2
Median 41+2 62+4 80+4
95th %ile 480+7 534+22 589+ 11
Urgent3 Mean 159+3 184+ 11 222+10
Median 44+6 58+10 79+12
95th %ile 592+ 20 705 £ 20 822+ 27
Add-on Elect Mean 19446 241+£26 301+£18
Median 45+3 81+12 122+8
95th %ile 764+ 57 937+78 1233+ 119
Utilization (%) 66.9+0.2 702+0.7 740+ 0.1

Data are Mean + SD. The model assumes four operating rooms running during daytime (0600-2200; 16 h) and two ORs running at night time (2200-0600; 8 h).
The model adds patients (5 % increased volume, middle column; 10 % increased volume, right column). The n in parentheses aside number of ORs refers to the

number of simulation runs performed
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Table 6 Comparison of Monte Carlo simulation to standard
approach. Waiting time (min)

4 ORs Standard Standard-Log Monte Carlo
Emergent Mean 16 9 11
Urgentl Mean 23 12 15
Urgent2 Mean 38 18 23
Urgent3 Mean 61 26 34
Utilization (%) 559 479 54.7
3 ORs

Emergent Mean 53 32 37
Urgent1 Mean 87 48 54
Urgent2 Mean 195 91 114
Urgent3 Mean 462 166 226
Utilization (%) 74.5 63.9 733

The standard approach and Monte Carlo simulation used four (top) or three
(bottom) operating rooms (ORs). Because the standard approach we used
accepts a maximum of four urgency classes, we combined the 0-24 h urgency
class with the add-on elective class for both Monte Carlo simulation and the
standard approach. In the first column the surgical time was based on the
mean of the actual surgical times of urgent cases for 1 year at our institution
(plus 60 min preparation and clean-up time; total 244.76 min). The second
column (Standard-Log) is based on a log transformation of the actual times
(plus 60 min preparation and clean-up time; total 210 min). Note that the
Monte Carlo simulation produced results closer to the log-transformed data.
The standard approach produces mean values, but no variances because it is
formulaic-based. The Monte Carlo data are from one simulation run, although
the expected variation can be seen from the variation in the data of Table 2

We compared our simulation approach to a simplified
queuing model which uses the mean duration of the surgi-
cal procedure (Table 6). There are several limitations of
this latter approach. First, the model provides an average
wait time, but does not provide a range of wait times.
Thus, the mean wait time might seem acceptable but the
wait times at the 95th percentile (e.g., for 5 % of patients)
might be unacceptable. Secondly, using the average surgi-
cal time could be misleading if the surgical times are not
normally distributed, as was the case for procedures at
our institution. While this factor could be minimized by
adding an ad hoc factor to account for the long tail of the
duration of surgical procedures, our model can directly
incorporate the observed distribution.

Several events must happen to ensure timely surgical
care. The patient must be ready from a psychological
and medical perspective; anesthesia, nursing and surgical
staff must be available; and an OR must be open and
ready to go. Patients cannot receive surgical care if any
of these components is missing. Thus, this model
assumes an alignment of resources, which clearly does
not always occur. At our institution, surgeons are often
available when the OR is not, and vice versa. Likewise,
there may be limited nursing staff either because of
unpredictable sick leave or boarding in the postoperative
care unit that influences the ability to perform urgent
cases in a timely fashion. There are numerous other
patient flow variables that can impact patient wait times
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Fig. 3 This graph shows the relationship between operating room
(OR) utilization and waiting time. The simulation model was used to
generate a large range of utilization scenarios; each scenario
represents about 4 years of simulated data and the time represents
the time (hours/year) patients had to wait. The number of ORs
(range 3-12) was varied to achieve the different utilizations. Note
that waiting time increased as the utilization increased, with an
exponential rise at around 70-75 %. These data are consistent with
the classical relationship between wait time and utilization. The error
bars are the standard deviation; when error bars are not seen they
are contained within the corresponding symbol

but use of our model provides a starting point for
addressing them systematically. Traditionally, resources
have been devoted to ensuring that the OR is always
available, but such a model might no longer be econom-
ically viable, given the constraints on funding of health-
care. Thus, surgeons might need to alter their practice
patterns to ensure better alignment of their availability
with availability of the ORs. From the patient’s perspec-
tive, it matters little if the delay is due to lack of an OR
or due to lack of a surgeon.

Wait time for surgery is a significant factor in the
quality of care. First, the clinical condition of the patient
can deteriorate during waiting, and is especially import-
ant for patients with emergency and urgent clinical
disease. In particular, a patient who has traumatic injury
and is hypovolemic and hypotensive requires immediate
surgical care. Thus, waiting just a few minutes could be
detrimental. Second, wait times negatively affect patient
satisfaction [14, 15]. Third, excessive wait times can lead
to increased costs [16]. Nonetheless, our data do not
address the issue of what is “clinically acceptable waiting
times”, although we have used that term. It is reasonable
to argue that any patient who must wait beyond the
established time has waited too long, yet a hospital
might not want to devote resources to prevent such an
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occurrence. We found that a combination of 4 ORs dur-
ing the daytime and evening and 2 ORs at night were
sufficient, although more than 1 emergency patient in 20
would need to wait>2 h. It seems prudent that a call
team could be used to mitigate such events, however,
having 3 ORs at night might also be a reasonable
approach. In addition, the 60 min “clean-up/preparation”
time that we utilized can be significantly shortened in a
real situation when a life-threatening emergency case
arrives, or when a patient with less urgency has been
waiting. Thus, our simulation program likely overesti-
mated wait times at the 95th percentile for these cases.
Last, at our institution, like at many other hospitals, pa-
tients are brought to a holding area near the ORs while
the OR is being prepared. The patient can then enter the
OR immediately when the OR is ready. For many of the
scenarios that we modeled the median wait time was
0 min, which simply means that when the decision was
made to perform surgery, an open OR was available and
ready to accept the patient. We recognize, however, that
it takes time to transport the patient to the OR.

Although it makes intuitive sense that reserving an OR
for urgent cases should reduce waiting times and im-
prove outcomes, studies have not uniformly shown posi-
tive benefits. Heng and Wright found that a dedicated
OR for acute surgical cases at a children’s hospital
reduced wait times by about 1 h, with a slight increase
in patients who had surgery within 12 h (from 52 to
58 %) [17]. Trydestam et al. did not find that a dedicated
OR improved timeliness of surgery for patients requiring
laparoscopic cholecystectomies, appendectomies and
repair of small bowel obstructions [18]. Likewise, using a
simulation model, Wullink et al. did not observe benefits
to a dedicated OR [19]. Others have reported increased
delays and transfer of care, presumably because patients
wait until the next day to have surgery in the dedicated
OR [20]. Bhattacharyya and colleagues reported that an
open OR for orthopedic cases decreased the proportion
of hip fracture patients having surgery after 5pm; fewer
complications occurred [21].

Cardoen et al. and others provide an extensive
review of various methods and techniques related to
OR scheduling [4-6]. A full comparison of these ap-
proaches is beyond the scope of the present paper.
Cardoen et al.,, however, separate the methods into
several broad categories, including mathematical pro-
gramming, simulation and improvement heuristic
[4]. It is important to note that these methods are
not mutually exclusive: more than one can be ap-
plied to solve a particular scheduling problem. In
addition, Pandit and colleagues have described
methods to better manage surgical capacity and de-
mand and thereby improve elective and urgent surgi-
cal utilization [22, 23].
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Conclusions

Our simulation program and approach provides a guide
to determine how many ORs should be devoted to man-
aging patients who require non-elective surgery. While
we have tailored our approach based on the number of
patients at our institution, the program can be adapted
to predict resource needs at any institution, based on
specific characteristics of each institution.
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