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Abstract

Background: Measurement of healthcare spatial access over a network involves accounting for demand, supply,
and network structure. Popular approaches are based on floating catchment areas; however the methods can
overestimate demand over the network and fail to capture cascading effects across the system.

Methods: Optimization is presented as a framework to measure spatial access. Questions related to when and why
optimization should be used are addressed. The accuracy of the optimization models compared to the two-step
floating catchment area method and its variations is analytically demonstrated, and a case study of specialty care
for Cystic Fibrosis over the continental United States is used to compare these approaches.

Results: The optimization models capture a patient’s experience rather than their opportunities and avoid
overestimating patient demand. They can also capture system effects due to change based on congestion.
Furthermore, the optimization models provide more elements of access than traditional catchment methods.

Conclusions: Optimization models can incorporate user choice and other variations, and they can be useful
towards targeting interventions to improve access. They can be easily adapted to measure access for different
types of patients, over different provider types, or with capacity constraints in the network. Moreover, optimization
models allow differences in access in rural and urban areas.
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Background
Access to healthcare is widely recognized as essential for
ensuring not only care of immediate health needs but
also to enable health and wellness in the population.
Access has multiple dimensions including accessibility,
availability, affordability, accommodation, and accept-
ability [1–3] and is of great importance to decision
makers in public health. In this paper, we focus on
measurement models for spatial access over a health
network with patients and providers, which is most
closely related to the elements of accessibility (e.g., loca-
tion and travel distance for care) and availability (e.g.,
coverage or the volume of providers). A healthcare net-
work is defined as a transportation network with pa-
tients as demand nodes and providers as supply nodes,

and an arc between patient and provider if the provider
is accessible for the patient.
Themeasurementmodels studied in this paper are designed

to measure potential access based on the services that are
available for use relative to population and distance. On the
contrary, realized access reflects actual use of services, which
can be affected by finances, behaviors, and other factors.
Potential access ismeasurable although it is not observable.
An optimization-based approach is described in this

paper for quantifying potential access over the health-
care network and for estimating the impact of changes
to the network. Optimization is a mathematical science
that is widely accepted in engineering and science as
providing a way to balance complex interactions across
a system, and there is a history of using optimization to
assist medical decision making [4–6]. In this paper, the-
oretical and practical optimization modeling techniques
are used to assist with health care policy development by
measuring access and computing the economics behind
discrepancy of access. Specifically, questions such as how
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optimization models can be used to measure access, on
what types of networks they offer the most accurate esti-
mates of access, and ultimately, why they should be used
for measuring and for suggesting interventions to improve
access are addressed in this paper. The answers to these
questions are useful for improving the health of popula-
tions and assisting with health policy development by
informing areas of greatest need.
The optimization models are compared to some exist-

ing methods. In particular, comparisons are made to var-
iations of the two-step floating catchment area (2SFCA)
method [7], including the Enhanced 2SFCA (E2SFCA)
method [8] and the Modified 2SFCA (MSFCA) method
[9], with some discussion of other catchment methods.
The catchment methods, which are offsprings of a grav-
ity model of attractions between populations and pro-
viders, estimate the size of population served at each
provider using distance zones and compute accessibility
of a community based on the availability of providers
in the community’s zones; communities can be cap-
tured in the zones of multiple providers. In contrast,
optimization models match patients and providers
based on both distances and the relatively crowdedness
of each provider, and estimate the accessibility of a pa-
tient using the matching results to determine the travel
distance and the corresponding crowdedness of each
patient. Optimization models can take on the perspec-
tive of a centralized planner in making assignments, or
they can be adapted to directly incorporate patient
choice over the network.
To compare the measurement models for spatial ac-

cess, several specific network structures are examined,
which are designed so that access measures can be
compared analytically. Results on a large case study of
specialty care of Cystic Fibrosis (CF), where the
network has varying levels of accessibility are also
provided.
Analytically, this paper demonstrates that the total

number of patient visits captured by all facilities in the
2SFCA methods is larger than the number of visits
expected based on population size. The three-step
floating catchment area (3SFCA) method [10] adds an
assignment mechanism to address the competition by
facilities, but the assignments are only based on
distance. In contrast, in the optimization models, the
willingness to travel is not only a function of distance
but also of facility congestion including its size. As a
result, the optimization models can capture cascading
effects in the system, where a change in congestion
for one population leads to different decisions and
thus impacts individuals in another location. The
optimization models also allow for simultaneous esti-
mation of measures of access across the five dimen-
sions outlined [1].

More generally, optimization models can be adapted
to many contexts including different patient types
(e.g., Medicaid or not), provider constraints, or others.
They are also useful in optimizing interventions, where
the intervention can target different aspects of access
(e.g., distance versus congestion).

Methods
Optimization framework
In healthcare decision making and service research
areas, optimization models have been used to determine
the best location for a new clinic [11–13], ensure that
resource locations are sufficient to cover the need across
a network [14], route nurses for home health services
[15], improve health outcomes among communities [16,
17], and evaluate policies for pandemic influenza, breast
cancer, and HIV over a network [18–20], among others.
Wang [21] reviewed several cases where optimization
models could be used to improve access or service over
a network.
In our models, the cost of an individual is associ-

ated with two dimensions of access [1]: accessibility
and availability. The first is measured with travel dis-
tance (or time). The second is measured with conges-
tion, which for an individual is associated with the
relative number of people (or visits) at a provider
compared to the resources available. One can also
think of this as capturing the waiting time until an
appointment is available. Studies show that individuals
are willing to drive further to receive an appointment
more quickly [22]. Thus we assume that the utility
(or disutility) associated with a patient’s access is a
weighted sum of the distance and a congestion term,
where we scale the congestion term to trade-off the
relative importance between the two. We expect that
the congestion weight (α) may be different for differ-
ent types of healthcare services, such as primary care
or specialty care (i.e., distance may have a relatively
lower cost). The congestion weight can also represent
the resources available at a facility.
Several elements are defined for our formulation. The

total number of patients is n and the total number of fa-
cilities is m. Let i = 1,…, n be the indices of patients and
j = 1,…, m be the indices of facilities. The distance be-
tween patient i and provider j is dij; vi is the estimated
number of visits that patient i = 1,…, n will make
(demand);and αj is the congestion weight at provider j.
A dummy location can be introduced for the assignment
of demand that cannot be met.
The decision variables are xij, which is the percentage

of time assigned to facility j from patient or community
i, for each i = 1,…, n and j = 1,…, m.
The formulation of the basic centralized model

follows:
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Objective function:

min
Xn

i¼1

Xm

j¼1
dijxijvi þ

Xm

j¼1
αj

Xn

i¼1
xijvi

� �2
ð1Þ

Constraints:
Xm

j¼1
xijvi ¼ vi; ∀i ¼ 1;…; n assignment constraintð Þ

ð2Þ
0≤ xij ≤ 1;∀i ¼ 1;…; n and∀j ¼ 1;…;m: ð3Þ

The objective function (1) states that the total number
of visits assigned should be vi for each patient or com-
munity i. Constraint (2) requires that all individuals be
assigned, and equation (3) requires non-negativity of the
decision variables. Each individual’s congestion at a visit
is proportional to the total number of visits at that facil-
ity scaled by αj. The congestion term in the objective
sums over the congestion experienced by all patients
resulting in an overall term that is squared. The choice
of quadratic function comes from the following idea: if n
patients receive care from a provider location, then each
patient experiences n units of congestion, then the total
congestion is n × n = n2 (similar to total latency in net-
work congestion work [23]). Note that when α = 0, this
model gives equivalent results to assignment by shortest
distance, and when α =∞, this model gives equivalent re-
sults to equally distributing patient visits to each facility.
See Additional file 1 section 1 for a process to select the
congestion weight.
For a patient, the number of visits to a close location

is expected to be more than the number of visits to a far
location because of the willingness to travel. Thus, the
number of visits to each location using a function that
decays with distance is determined. This is analogous to
step 1 in the E2SFCA method where the population is
multiplied by a weight. This also implies that the num-
ber of visits covered in the network may be less than
100 %.
From the results of an optimization model, several

measures of spatial access are calculated. The measures
include i) the distance traveled for each patient or com-
munity; ii) the congestion experienced by each patient
or community; iii) the coverage, which is defined as the
ratio of visits assigned to visits needed for an individual
or community.

Variations on the optimization model
With optimization models, many variations are possible,
including through the addition of constraints, the use of
different objective function values, or by differentiating
decision variables by type. Here we describe a major
variation in our model, optimization with user choice
(“Decentralized”), and include many others such as

capacity, unmet demand, and willingness to travel in
Additional file 1 section 2.
The traditional deterministic optimization model (as

presented above) often assumes a centralized planner
who makes decisions for every patient in a healthcare
network to achieve the best overall objective. However,
user choice can be incorporated by an equilibrium con-
straint that represents individual choices as in game the-
ory [24]; we call the resulting optimization model
decentralized.
An overall equilibrium solution requires a user choice

constraint to be satisfied for each patient visit in the net-
work, where the constraint states that the individual
cannot improve their distance and congestion of that
visit by switching to another facility given the other deci-
sions on the network.
The decision variable and equilibrium constraint are

defined below:
xijk = decision variable is 1 if patient i chooses facility j

for visit k, or 0 otherwise;

dij þ αj
Xn

p¼1

Xvp

k¼1
xpjk ≤ diq

þαq
Xn

p¼1

Xvp

k¼1
xpqk þ 1

� �
;∀q ≠ j;∀i;∀k

ð4Þ

The equilibrium condition includes a separate con-
straint for each patient’s visit and each location when
there is no distance decay function. The left-hand side is
the distance and congestion associated with current fa-
cility choice j for a visit k, and the right-hand side is the
distance and congestion at any location other than j. See
Additional file 1 section 3 for more details.

Review of catchment models
Gravity models use the following general form to calcu-
late an “attraction” measure for each patient i:

AG
i ¼

Xm

j¼1

Sjw dij
� �

Xk

i¼1
Piw dij

� �; ð5Þ

where Sj is the supply at provider j, Pi is the popula-
tion at location i, w(dij) is the decay function based on
distance of each patient-provider pair (i,j).
The original 2SFCA method was introduced by Luo

and Wang [7]; it allows the catchment of each provider
and patient to float based on the distances between each
pair. E2SFCA is a variation that suggests applying differ-
ent weights within travel time zones to account for
decaying of the willingness to travel as distance increases
[8]. Under the E2SFCA model, in the first step the
“physician-to-population ratio” at each provider is calcu-
lated. Although the E2SFCA aims to estimate the num-
ber of patients that may potentially use a facility, it is
easy to extend the metrics to estimate the number of
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visits by replicating each patient using visits demanded
(e.g., a patient demanding 10 visits can be viewed as 10
patients) [25, 26]. We make a minor adjustment to allow
for each patient to have multiple visits to a provider, so
we use physician-to-visits ratio instead. Thus we obtain:

Rj ¼ SjX
r

X
i∈ dij<Drf gV iWr

; ð6Þ

where Sj is the number of physicians available at pro-
vider j, Wr is the weight value corresponding to the
catchment zone of dij. The value of Wr is calculated
using the distance decay function, which is usually non-
linear. Dr is the distance threshold of catchment zone r.
The parameter Vi is the number of potential visits if
there is no decay in willingness to travel or the maximal
demand for patient or community i. The original
E2SFCA method introduced the model with three catch-
ment zones, but an extension is to allow a different
number of zones or even a continuous decay (“imped-
ance”) function across a single zone. Example choices of
impedance functions include Gaussian [7, 27], exponen-
tial, inverse power, and others; [27] discusses parameter
setting for the impedance function. In the second step of
E2SFCA, the method defines the accessibility of each
patient or community i based on the ratios at each pro-
vider and the zone weights:

Ai ¼
X

r

X
j∈ dij<Drf gRjWr: ð7Þ

Another catchment approach is the 3SFCA method,
which incorporates competitions among multiple pro-
viders within the same catchment zone of a patient and
makes assignments of patients by distance. The M2SFCA
method [9] modifies the patient level accessibility in [7] by
multiplying the distance weight twice, while another ap-
proach [28] allows for zones to differ by transportation
modes.
For a simple system, the individual measures of spatial

access from optimization models can be combined to
directly compare with the accessibility measures of
2SFCA methods (E2SFCA and M2SFCA). The simplest
supply network consists of n communities in a circular
population area with a facility at the center. Let di be the
distance from community i to the facility and S the
number of physicians in the facility. Calculate the facility
population-to-physician ratio R and patient accessibili-
tyAi using [6] and [7]. Define a decay function w (di) ∈
[0,1]. For this system, the optimization method is
equivalent to assigning by shortest distance. Let F denote
the congestion at the facility, then F ¼ 1

R . The coverage
of community i is calculated as w(di). Therefore, for this
system, the patient accessibility is AE

i ¼ coverage
congestion , for the

E2SFCA method. For the M2SFCA method, a similar
calculation can be made, where the composite patient

accessibility measure is AM
i ¼ coverage2

congestion.

Human subject study approval
The Institutional Review Board of the Georgia Institute
of Technology approved the overall research project
using data from the Cystic Fibrosis Foundation, and the
Cystic Fibrosis Foundation also approved the study to
use registry data previously collected from patients with
their signed consent. The submitted article uses the
existing locations of Cystic Fibrosis care centers, the dis-
tances traveled by patients to CF centers for care, and
simulated patient locations with corresponding distances
to CF centers. Simulated locations of patients are ran-
domly generated according to the prevalence of CF and
the composition of populations at the county level.

Results
Analytical comparisons
In this section, analytical results on accessibility as mea-
sured by the optimization method and catchment
models are provided. Most analyses in this section focus
on simple systems where service areas are non-
overlapping. For simple networks with overlapping
service areas, the detailed analysis can be found in
Additional file 1 section 4. Notations that will be used
frequently in the analysis are defined below. The dis-
tance decay function w(dij) is between 0 and 1. If dij is
the distance between community i and facility j, and vi
is the visits needed by community i, then we assume
that facility j receives w(dij)vi visits from community i
as in the catchment models. In optimization models,
let Pij be the proportion of the population in commu-
nity i that visits facility j.

Result 1 (Opportunities vs. Experiences): optimization
models capture a patient’s experience rather than their
opportunities. As a result, 2SFCA methods tend to
overestimate the total number of visits
For many catchment models, the estimated accessibility
measure increases when more facility choices are
available to a population. However, assignments models
(including optimization and the 3SFCA method), are es-
timating the cost of potential access, and this does not
increase if a new choice is congested or inconsequential.
This is illustrated with a simulated system of populations
and facilities, as in Delamater (2013) [9] .
Consider System 1 as described in Fig. 1. When facility

A and population X are sufficiently far from B and Y, the
catchment models and the optimization method will
provide the same accessibility estimate. Consider a sec-
ond system, where B and Y are both closer to X and A
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than in the first system, with the distances between A - X
and B - Y retained and b closer to Y than A. The 2SFCA
methods show that the accessibility of Y increases due to
the possibility of service at A, while the accessibility of X
decreases because of demand on facility A from popula-
tion Y. However, the optimization method shows there is
no change in accessibility for reasonable congestion
weights. From the perspective of a person at Y, service at
facility A would be associated with a higher congestion
cost and a further distance, thus he would neither be
assigned to facility A nor choose that facility. This is still
the cost associated with potential access rather than real-
ized access, but the cost is associated with the potential
experience of a patient. In contrast, the 2SFCA methods
always realize additional choices regardless of their relative
competitiveness to existing choices. Therefore the total
number of visits implied by the 2SFCA methods is higher
compared to the optimization method, and can be higher
than the total number of visits demanded.

Result 2 (System Effects): the 2SFCA methods do not
capture the cascading effects based on congestion
For methods focused primarily on catchment zones
without assignment, there are some system effects that
may not be captured over the network. In Fig. 2, we
define several systems to illustrate this point. Define Sys-
tem 2, with population z added to system 1, and with a
population of 100 for each of X, Y, and Z. In this system,
the optimization method and the 3SFCA both compute the
same accessibility for each population, while in the 2SFCA
methods the accessibility is higher for Y since it is capturing
opportunities for access rather than the patient experience.
Consider System 3 with increased population at loca-

tion Z. In the catchment models, as the population of Z
increases, the accessibility for Y and Z decrease, while
the accessibility for X remains the same no matter how
large Z is. In the optimization method, as Z gets larger,
more of the population from Y goes to facility A, so the
accessibility at all population locations decreases. The

Fig. 1 System 1, with populations 100 at location X and 1 at Y. Facilities (a) and (b) each have 10 beds

Fig. 2 Systems 2 through 5, with populations as specified at location X, Y, and Z. Facilities (a) and (b) each have 10 beds, and the distance
weights are provided between locations
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accessibility at each location is the same because the sys-
tem is constructed in a very specific and symmetric way.
A similar effect can be seen when System 2 is varied

by moving population Z further away from the center
(System 4). In this case, more patients from Y switch to
B to reduce congestion, resulting in better access for
population X in the optimization method, while the
2SFCA methods show no change for X.
Define System 5 the same as 1 but with an unbreak-

able barrier separating population Y in half, and a popu-
lation of Z equal to 150. The 3SFCA quantifies the same
access with and without the barrier, because the assign-
ment is based on distance alone. On the other hand, the
optimization method shows different access in System 5
compared to 3, because assignment is based on both dis-
tance and congestion. The accessibility estimates for the
different systems are summarized in Table 1.

Result 3 (Composite Measures vs. Individual Measures): the
composite measures of the 2SFCA methods are insufficient
to distinguish multiple elements of access
Consider systems 6 ~ 8 in Fig. 3. System 6 has 100
people in X and 10 beds in A, and the distance weight
between X and A is 0.1. System 7 is similar to system 6
but with a distance weight 0.2 (which implies the popu-
lation is closer to the facility). System 8 is similar to sys-
tem 7 but has 5 beds in A. As we move from system 6
to system 7 and then to system 8, either the population

is closer to the facility, the facility has fewer beds, or
both, so the network is getting more congested and the
accessibility of X should reflect this change. However, as
Delamater [9] points out, the E2SFCA method shows
the same accessibility for populations in system 6 and 7.
Similarly, the M2SFCA method shows the same accessi-
bility for populations in system 6 and 8.
The individual measures in the optimization method

indicate the coverage increases as you move to system 8
but that the congestion also increases (see Table 2).

Case study
The analytical analysis above illustrates several direct
comparisons between the 2SFCA methods and the
optimization method. In this section access is estimated
for the specific health service network associated with
Cystic Fibrosis (CF), which is a chronic condition that
requires specialty care. Recent studies have shown that
Medicaid status is related to survival rate and outcomes
[29], but spatial access may also be a factor. The condi-
tion has prevalence in the United States of about 30,000
patients with 208 CF care centers in the continental US
[30]. Though it is a rare disease, the service network
displays heterogeneity, with the spatial access varying
greatly over the network.
Focusing on potential spatial access, locations of CF

patients are simulated according to the incidence of the
disease rather than using existing locations of actual pa-
tients (which may be biased by service locations). With
CF, the population eligible for Medicaid is considered
separately, since they may need to receive service in
their home state. 30,000 virtual patients are generated
with CF located in county centroids in the continental
US, where the prevalence was generated proportionally
to the populations in each race/ethnicity who are above
or below 2 times the federal poverty level [31], using the
incidence matrix for race/ethnicity in Additional file 1
section 5 (see Additional file 5 for raw population data).
Patient demand is defined as 10 visits per year to a cen-
ter (this captures more than 90 % of the patients with
location information available in the CF Foundation
Registry data) [30]. We assume the actual number of
visits is decreasing with the distance to selected service
facility, patients will not visit facilities more than 150
miles away (again, this captures more than 90 % of the
patients in the registry with location information) [30],
and low-income patients will only visit a CF center within
the patient’s state due to restrictions of the Medicaid
program.
The zip code of each CF center (see Additional file 6)

is obtained using patient encounter data from the CF
Foundation [30], and the road distance from each CF
virtual patient to each CF center is computed using
Radical Tools [32] . We assume all facilities are the same

Fig. 3 Systems 6 ~ 8, with population of 100 at location X, and a
single facility with either 5 or 10 beds. Distance weights are
provided for each system
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size (e.g., can serve 1500 visits a year); the exact number
can be changed and the relative comparisons between
methods will hold.
Accessibility measures were calculated for E2FSCA,

M2SFCA, and the decentralized (with user choice)
optimization model. The optimization model was imple-
mented using C++ and the CPLEX solver on a UNIX
system (see Additional file 2). The decay functions are
such that 10 visits will be made when distance is zero,
and visits approach zero when distance is 150 miles; see
specific functions in section 7 in Additional file 1: Table
S4. There are many functions that can be used to model
the decaying willingness of travel. We have chosen to
use the exponential function for the rare disease setting
of Cystic Fibrosis. Because CF is rare and access to care
is relatively low compared to primary care, patients are
willing to travel longer distances than for some conditions.
The parameter used in the case study was calibrated to be
in line with realized utilization derived from the CF regis-
try data (see section 7 in Additional file 1: Figure S12). For
the optimization model, a congestion weight of 10 is used
unless otherwise specified (see Additional file 1 section 1).
For the 2SFCA methods, Medicaid patients were only in-
cluded in catchment areas of facilities in their own states.
Maps of the decentralized optimization model display

the distance traveled and the congestion experienced by
each person, averaged at the county level, in Fig. 4(a)
and 4(b). In general, distance is small close to centers,
especially in areas with multiple centers such as the
coastal northeast. There are a few pockets with higher
distance, especially in parts of the West. Congestion is

higher in a few areas, such as around Houston and some
parts of Ohio and Pennsylvania. Some counties have no
simulated patients, while others have uncovered de-
mand, such as in many counties in the Midwest or
Western regions. There are also isolated areas that are
uncovered, such as near southwest Georgia, southern
Missouri, and some counties at the boundary of the US.
A summary histogram is provided for distance, conges-
tion and coverage for each county in Additional file 1
section 6. The distribution of coverage shows that many
needed visits are not met, due to the distance patients
need to travel to CF centers.
The composite measure AE generated from the decen-

tralized optimization model is shown in Fig. 5(a). The
main areas with high accessibility are near CF centers
and around urban areas. There are pockets of low accessi-
bility in many places; however, these can occur for differ-
ent reasons. In Pittsburg, Pennsylvania, and Columbus,
Ohio, Fig. 5(a) shows that the congestion was high, while
in Springfield, Missouri, Fig. 5(a) shows that the travel dis-
tance is high. Pockets of low accessibility in New York
arise from a combination of longer distances and higher
congestion.
Figure 5(b) shows the difference between the decentra-

lized optimization model composite measure AE and the
result from the E2SFCA method using the same scale. In
comparison to the optimization approach, the E2SFCA
method tends to show higher accessibility in areas with
many centers (e.g., near Los Angeles and around New
York). It also shows higher accessibility in many areas
that lie in overlapping service areas for centers (e.g.,
northern South Carolina, eastern Arkansas, and New
Mexico). A pairwise t-test (1-tail) shows that for coun-
ties with more than 50 CF patients (127 “large” counties)
or less than 5 CF patients (1289 “small” counties), the
measure from the E2SFCA method is significantly higher
than measures from the optimization method (respect-
ively, with p-values 0.20 × 10−6 and 2.00 × 10−2); for

Table 2 Accessibility estimates for systems 6 ~ 8

System E2SFCA M2SFCA Opt coverage Opt congestion

6 0.1 0.01 0.1 1

7 0.1 0.04 0.2 2

8 0.05 0.01 0.2 4

Table 1 Accessibility estimates for systems 2 ~ 5

E2SFCA M2SFCA

System X Y Z X Y Z

2 0.05 0.1 0.05 0.04 0.08 0.04

3 0.05 0.0833 0.0333 0.04 0.0667 0.0267

4 0.05 0.1056 0.0444 0.04 0.0844 0.0284

5 0.067 Y1 = 0.067 Y2 = 0.05 0.05 0.053 Y1 = 0.053 Y2 = 0.04 0.04

Optimization (AE) Optimization (AM)

System X Y Z X Y Z

2 0.067 0.067 0.067 0.053 0.053 0.053

3 0.057 0.057 0.057 0.046 0.046 0.046

4 0.071 0.071 0.0571 0.0571 0.0571 0.0366

5 0.067 Y1 = 0.067 Y2 = 0.05 0.05 0.053 Y1 = 0.053 Y2 = 0.04 0.04
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counties of other sizes (“medium” counties), the test is
inconclusive. The F-test shows that for all groups of
counties, the variance of the E2SFCA measure is higher
(with p-value 1.88 × 10−4 for small counties, value less
than 10−6 for medium counties, and 3.90 × 10−2 for large
counties. The Mann–Whitney-Wilcoxon test shows that
the E2SFCA measure is greater in median than the
optimization composite measure with p-values less than
10−6 for small and medium counties, and 2.02 × 10−2 for
large counties. The finding is consistent with the analyt-
ical results in Additional file 1 section 4 showing that
with overlapping catchment areas, E2SFCA quantifies
higher access when distances are relatively small. The
comparison between the composite measure AM and the

M2SFCA method is similar but the magnitude of differ-
ences is smaller.
The number of visits captured in the E2SFCA method

is shown in Fig. 6 in comparison to the visits needed by
the population. It is highest around facilities, and espe-
cially with multiple facilities such as around New York.
For the optimization model, the realized visits per facil-
ity are estimated to be 0 to 3000. In contrast, the range
for the E2SFCA result is 0 to 10,540 per facility. This is
consistent with the analytical result that the number of
visits is higher in the E2SFCA approach. The F test indi-
cates that the variance of the facility congestion is
significantly higher for the E2SFCA approach, with a
p-value less than 10−6. This is similar to the analytical

Fig. 4 Optimization results for patient cost of potential access. (a) Distance, and (b) Congestion
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result that the optimization model always has a lower
facility congestion.
The results showing access over the network indicate

a number of areas that have uncovered populations, high
congestion, and/or high travel distances. Figure 7 shows
the results in several local areas after network interven-
tions. One new facility was added to the network in lo-
cations with uncovered populations (Springfield, MO),
and the capacity of existing facilities was doubled in two
locations (Columbus, OH; and Pittsburgh, PA). For the
E2SFCA method, the gain in access is centered over the
interventions and decays with distance within 150 miles.
The gain is positive in all areas with change, as the new
facilities increase the opportunities available or have no
impact. Under the optimization method, the coverage in
an area increases when a new facility is added, and con-
gestion in an area decreases when new capacity is added.
Although the total access increases, some populations

show a worse composite measure, which indicates that
they are traveling shorter distances but experiencing
higher congestion (or the reverse) based on new network
dynamics. Note also that when the new location is added
in Springfield, there are cascading effects under the
optimization approach, and access increases for the
population around Jefferson City, since their congestion
is decreasing due to the new facility. We performed a
pairwise T-test comparing the impact of intervention on
both measures for each of the 479 counties that had a
change under the intervention. The test shows that the
E2SFCA measure estimates a greater improvement from
the intervention compared to the optimization measure,
which is consistent with our discussion above.

Discussion and conclusions
The optimization methods provide several innovations
useful both for understanding access and designing

Fig. 5 Results comparing optimization model with E2SFCA and M2SFCA for CF care in US. (a) Decentralized model composite measure AE, and
(b) E2SFCA-AE
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interventions. They can be applied across heterogeneous
networks with both dense and sparse areas, and they
allow user choice to balance travel and congestion
within communities. The approach presented includes a
way to select the specific parameters of a model.
Optimization models also provide both a picture of the
status quo and an approach for evaluating a potential
change to a network. Fundamentally, the optimization
models have a different framework than many catch-
ment methods, since they estimate the access costs asso-
ciated with a patient’s experience (albeit the potential
experience rather than actual utilization).
Under optimization models, the presence of additional

opportunities only provides gains in potential access
when they provide better access compared to existing
opportunities, while in the 2SFCA methods, additional
opportunities always provides gains in potential access.
This difference shows that many 2SFCA methods over
count visits when there are facilities with overlapping
catchment zones. This effect is stronger in areas with
the greatest infrastructure of health services, so inter-
preting accessibility over a network with sparse and
dense areas may not be reasonable. One could adapt the
approach by dividing the population by the number of
facilities in the zone, or use other adaptations as in the

assignment mechanism of the 3SFCA approach. How-
ever, these adaptations do not address other issues, such
as the cascading effects across the system. The catch-
ment methods tend to capture effects in a defined area,
but they do not capture the interactions between areas
(or the cascading effects over a network if there are
changes introduced) as well as assignment models do.
This also means catchment methods may misestimate
availability across a network for complicated networks.
Using optimization models for estimating access has

many other advantages, as they can be easily adapted to
measure access for different types of patients, over dif-
ferent provider types, or with capacity constraints in the
network. Moreover, decentralized optimization models
allow differences in access in rural and urban areas,
which arises directly from the trade-off between distance
and congestion rather than solely from different distance
functions. It is also easy to modify optimization models
to determine the best locations for facilities given an
existing demand and supply network [11, 12]. The indi-
vidual measures from optimization models show not
only where to intervene, but also points to what kind of
intervention is needed (e.g., new location to reduce dis-
tance versus more capacity to reduce congestion). This
is especially true as one moves beyond just one measure

Fig. 6 Estimated patient visits in E2SFCA and M2SFCA relative to the visits needed in each county. A value greater than 1 indicates that the
2SFCA methods estimate more visits than needed
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of access like spatial accessibility to consider the other
dimensions of access [1].
This study focus on estimating potential health access

using optimization models. There are limitations with
the approach. The optimization models assume that
patients are trading off travel distance and congestion
rationally across a network, while in reality there might
be many other factors considered by patients. In
addition, the optimization models are built using deter-
ministic known data. In the case study, the possibility of
using satellite clinics or services provided through

telemedicine are not considered. Results are also
dependent on the specific decay function and parameter
chosen [27]. Furthermore, the case study also assumes
that the transportation modes used by all patients are
the same.
Optimization models come at a cost. They are less fa-

miliar to many working in public health or public policy.
They can be complex to model or compute, although
this may be a matter more of the appropriate training
than extensive computing power. Sample code and in-
structions for building the optimization models in this

Fig. 7 Optimization results showing impact of intervention near locations Springfield, MO, Columbus, OH, and Pittsburgh, PA. (a) Access gain
under optimization using composite measure AE, and (b) access gain under E2SFCA
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paper are provided for use without a license in Additional
file 4 (see Additional file 3 for the software package). It
may be most important to use optimization models when
a network has facilities with overlapping zones, when one
wants to capture the nuances of access across populations,
or when one needs to develop interventions to improve
access. We hope that the use of optimization models will
provoke more discussion in how to measure access, and
ultimately how to improve access, especially in light of the
increase in computing power and big data that will be
coming online in the US health system.

Availability of supporting data
The data sets supporting the results of this article are
included within the article and its additional files (see
Additional file 6).
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