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Abstract

Background: The transferability of economic evaluation in health care is of increasing interest in today’s globalized
environment. Here, we propose a methodology for assessing the variability of data elements in cost evaluations
in oncology. This method was tested in the context of the European Network of Excellence “Connective Tissues
Cancers Network”.

Methods: Using a database that was previously aimed at exploring sarcoma management practices in Rhône-Alpes
(France) and Veneto (Italy), we developed a model to assess the transferability of health cost evaluation across
different locations. A nested data structure with 60 final factors of variability (e.g., unit cost of chest radiograph)
within 16 variability areas (e.g., unit cost of imaging) within 12 objects (e.g., diagnoses) was produced in Italy and
France, separately. Distances between objects were measured by Euclidean distance, Mahalanobis distance, and
city-block metric. A hierarchical structure using cluster analysis (CA) was constructed. The objects were also
represented by their projections and area of variability through correlation studies using principal component
analysis (PCA). Finally, a hierarchical clustering based on principal components was performed.

Results: CA suggested four clusters of objects: chemotherapy in France; follow-up with relapse in Italy; diagnosis,
surgery, radiotherapy, chemotherapy, and follow-up without relapse in Italy; and diagnosis, surgery, and follow-up
with or without relapse in France. The variability between clusters was high, suggesting a lower transferability of
results. Also, PCA showed a high variability (i.e. lower transferability) for diagnosis between both countries with
regard to the quantities and unit costs of biopsies.

Conclusion: CA and PCA were found to be useful for assessing the variability of cost evaluations across countries.
In future studies, regression methods could be applied after these methods to elucidate the determinants of the
differences found in these analyses.
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Background
Economic evaluations have become an integral part of
healthcare decision-making worldwide; however, cost
assessments are time consuming, expensive, and not
systematically reproducible. The value of these studies,
according to Nixon, is determined by the methods used
and transparency in reporting [1]. Although the number
of economic evaluations of pharmacoeconomic guidelines
has increased, the use of economic evaluations in other
jurisdictions usually requires the implementation of meth-
odological adaptations for the specific environment under
investigation [2,3].
Sculpher et al. suggested that the generalizability of

economic evaluations is based on the extent to which
results from a study of a particular patient population
and/or specific context can be transposed to another
population and/or a different context [4]. Alternatively,
transferability represents the ability to substitute local
data with data from other environments, allowing the
analysis to be easily applied to other settings or countries
[1]. Generally, the data used in economic evaluations in-
clude pricing (unit costs of resources used and quantities)
and clinical practices (characteristics of disease and
corresponding procedures of diagnosis, treatment, and
follow-up).
After the pioneering work of Drummond [5], many

authors have employed a qualitative approach, which is
based on systems, tools, checklists, and flow charts, in
order to assess or guide transferability practices during eco-
nomic evaluation. This topic has been recently reviewed by
Goeree [6].
Quantitative methods, mainly based on regression model-

ing, have been largely used to explain variability in costs
and/or cost-effectiveness by location [7-15]. More specific-
ally, multilevel regression models were employed to analyze
data that fall naturally into hierarchical structures, consist-
ing of multiple macro units (countries) and multiple micro
units (centers) within each macro unit [4]. We aim to
achieve an overall picture of things, which could make it
possible to focus on the main problems and identify
hypotheses using cluster analysis (CA) and principal com-
ponent analysis (PCA). CA and PCA are examples of how
distances and the assumption of correlations among
numerous quantitative variables can be used to display
whether the phenomena are near or far in a simple plot.
Regression methods could be applied after such explo-
rative analyses to recognize the determinants of the differ-
ences found.
To our knowledge, only one abstract using CA to explore

the transferability of cost assessment among countries
has been published [16], while none have utilized PCA.
In the present study we have used both methods, CA
and PCA, to assess the variability of health care costs in
sarcoma management in two European regions, Rhône-
Alpes (France) and Veneto (Italy). The rarity of these
tumors and the large variability in their clinical and
histopathological presentation makes the standardization
of therapeutic sequences difficult, making this research
particularly important with respect to transferability of its
economic evaluation [17].
The objective of the research was then to ascertain the

contributions of various stages of cancer care, more spe-
cifically their unit costs and resource use to between
country differences.

Methods
Our initial cohort consisted of 327 sarcoma patients who
were ≥15 years-old (254 in Veneto, Italy and 73 in Rhône-
Alpes, France). All patients had histological confirmation
of primary malignant sarcoma, with or without distal me-
tastases at initial diagnosis. All patients from Rhône-Alpes
(n = 73) had been diagnosed between March 2005 and
February 2006 and were recruited from two sites (the
University Hospital of Lyon and the Léon Bérard Cancer
Centre). The patients from Veneto (n = 161) were diag-
nosed between January 2007 and December 2007 and
recruited at one of the 22 public hospitals in the region.
Absence of patient consent (n = 55), care undertaken
outside the participating regions or in private hospitals
(n = 23), and missing records (n = 30) reduced the num-
ber of patients included in the study to 219, 58 from
Rhône-Alpes and 161 from Veneto [17]. These patients
were followed retrospectively using prospectively imple-
mented databases for three years after their initial sarcoma
diagnosis or until death. In addition, patients were man-
aged in accordance with the ethical principles for medical
research involving human subjects described in the
Declaration of Helsinki. The cost evaluation of the 219
sarcoma patients began in 2009. For each patient, quan-
tities of resources used (number of days in hospital, cycles
and doses of chemotherapy, number of transfusions, ra-
diotherapy sessions, imaging procedures, biopsies, surgical
process and consultations) were collected for each se-
quences of management (i.e. initial diagnosis, initial
surgery, chemotherapy, radiotherapy, follow-up with re-
lapsed patients, and follow-up with healthy patients).
Costs were assessed from the hospital’s perspective from
the time of diagnosis to the end of follow-up (or death),
designating the country (France or Italy) and the sequence
of management. Average unit costs were assessed for
France and Italy respectively and applied in respect to the
patient management country of origin. All costs were ex-
pressed in 2009 euro. 4% discounting per year was applied
according to the French Health Authority’s recommenda-
tion to both countries [18]. The study received approval in
France from the National Ethics Committee (N°904073)
and the National Committee for Protection of Personal
Data (N°05-1102), and from the Local Sanitary Agency



Perrier et al. BMC Health Services Research 2014, 14:537 Page 3 of 15
http://www.biomedcentral.com/1472-6963/14/537
of the Veneto Region and the Ethics Committee of the
Azienda Ospedaliera di Padova (N°156/06/CE) in Italy.
Data were collected within the context of the European
network of excellence “Connective Tissues Cancers
Network” (CONTICANET, FP6 018806), which is funded
by the European Commission. The full protocol of the
project has been previously published [19,20].

Definition
Welte and Sculpher suggested that, in order to clearly
structure the transferability assessment, it is necessary to
systematically identify the factors that impact the vari-
ability (final factors) and to gather them into homoge-
neous categories (areas of variability) [21,4]. Accordantly
to model the problem of assessing transferability of health
cost evaluation across locations we identified 60 final
factors of variability (e.g. unit cost of chest radiograph). In
addition to fit better our data regarding entire manage-
ment process of a sarcoma disease we applied a nested
structure within 16 variability areas (e.g. unit cost of
imaging) and within 12 objects (e.g. diagnoses) in Italy
and France, independently.

Identification of potential and final factors of variability
A factor is a potential source of variability in the relative
prices and quantities (i.e. unit cost, number of surgical
biopsies, radiotherapy sessions, etc.). They were identi-
fied from the literature [1,4-6,22-24]. Only those factors
that varied from one to another country were included
in the analysis (final factors), i.e. factors that do not vary
with geography were not included.

Area of variability
Each area of variability included a set of final factors.
The complete list of final factors within these areas is
reported in Table 1. An example of an area is the
“area quantity of imaging”, which included five final
factors: “chest radiograph”, “colonoscopy”, “computed
tomography”, “ultrasound”, and “magnetic resonance
imaging”. Since each final factor can vary according
to “unit cost” and “number of resources used”, a total
of 16 (8 × 2 = 16) areas of variability were generated
(Table 1). For example, imaging was classified in Area
3 considering resources used and Area 11 considering
costs.
Formally, the values of the n = 16 areas of variability

for m = 12 objects give a matrix A(mxn) with the general
term αij with αij ≥0.

A m�nð Þ ¼ αij
� �

; αij ≥ 0

To overcome variability due to differences in monetary
units and/or quantity of health resources used, all of the
variables were standardized, passing from the matrix
A(mxn) = [αij] to the matrix X(mxn) = [xij] where:

xij¼
αij − �αj

σ j
�αj ¼ 1

m

Xm
i¼1

αij σ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

αij − �αj
� �2s

Object
Six phases of management (diagnosis, surgery, chemother-
apy, radiotherapy, follow-up with relapsed patients, and
follow-up with healthy patients) and two countries (Italy
and France) were delineated. We therefore generated 12
objects (6 × 2 = 12), which included: diagnosis in France
(object 1); diagnosis in Italy (object 2); surgery in France
(object 3); surgery in Italy (object 4); chemotherapy in
France (object 5); chemotherapy in Italy (object 6);
radiotherapy in France (object 7); radiotherapy in Italy
(object 8); follow-up without relapse in France (object 9);
follow-up without relapse in Italy (object 10); follow-up
with relapse in France (object 11); and follow-up with
relapse in Italy (object 12).

Statistical analysis
An individual patient level dataset was completed ac-
counting for resources consumed during the defined time
period of the study, broken down into different phases of
care (objects) and different areas (e.g. quantity of biopsies)
per country and also accounting for the average unit cost
of resource per country.

Cluster analysis
Cluster analysis involves assigning a set of objects into
groups (called clusters) so that the objects in the same
cluster are more similar to each other than to those in
other clusters. Clustering required three steps in order
to define the following parameters: distances, hierarchical
structure, and optimal number of clusters [25].
First, the distances between all the pairs of objects can

be evaluated using Euclidean distance, Mahalanobis dis-
tance, and city-block metric [26]. Given an m-by-n data
matrix X, which is treated as m (1-by-n) row vectors x1,
x2,…,xm, the various distances between the vector xr and
xs are defined as follows:

(i) Euclidean distance: d2
rs ¼ xr − xsð Þ xr − xsð Þ′

Due to the preceding normalization this is in fact a
‘Standardized Euclidean distance’.

(ii) Mahalanobis distance: d2
rs ¼ xr − xsð Þ′V −1 xr − xsð Þ

where V is the sample covariance matrix.

(iii) City Block metric: drs ¼
Xn
j¼1

xrj − xsj
�� ��

However, when we used linkage procedures in a
second stage, not all distances were relevant. Therefore, in



Table 1 Final factors included in the construction of the 16 areas of variability and method of calculation of factors
inside each area

Area (Source of information) Final factors of variability included Methods of calculation

Area 1 Number of: surgical biopsies, micro-biopsies,
needle

Sum of the factors per patient

Q. biopsies (A) aspiration cytology Calculation of the mean per object

Area 2 Number of: days for inpatient; days
for outpatient

Sum of the factors per patient

Q. hospital admissions (A) Calculation of the mean per object

Area 3 Number of: chest radiograph, colonoscopy,
computed tomography, ultrasound,
magnetic resonance imaging

Sum of the factors per patient

Q. imaging (A) Calculation of the mean per object

Area 4 Number of external consultations Calculation of the mean per object

Q. external consultations (A)

Area 5 Number of: Ps packs, red blood cell packs Sum of the factors per patient

Q. transfusions (A) Calculation of the mean per object

Area 6 Number of radiotherapy sessions Calculation of the mean per object

Q. radiotherapy (A)

Area 7 Number of preparations for
radiotherapy sessions

Calculation of the mean per object

Q. preparation for radiotherapy (A)

Area 8 Drug administration (yes/no): Caelyx,
Carboplatin, Cisplatin, Deticene, Doxorubicin,
Etoposide, Gemcitabin, Holoxan, Ifosfamide,
Imatinib, Melphalan, Vinorelbin, Oxaliplatin,
Paclitaxel, Vincristine

Sum of the “yes” for the fifteen factors
per patient.

Q. chemotherapy drugs (A)
Calculation of the mean per object

Area 9 Unit cost of: surgical biopsies;
microbiopsies; needle

Calculation of the mean cost of the factors
by country.

C. biopsies (B, C) aspiration cytology Application of the mean (by country) to the
objects with quantity of biopsies >0

Area 10 Unit cost of: days for inpatient, days
for outpatient

Calculation of the mean of the factors by country.

C. hospital admissions (D) Application of the mean (by country) to the
objects with quantity of days of hospital
admissions >0

Area 11 Unit cost of: chest radiograph; colonoscopy;
computed tomography; ultrasound;
magnetic resonance imaging

Calculation of the mean of the factors by country.

Application of the mean (by country) to the objects
with quantity of imaging >0

C. imaging (B, C)

Area 12 Unit cost of external consultations Application (distinguishing the country) to the objects
with quantity of external consultations >0

C. external consultations (B,C)

Area 13 Unit cost of: Ps packs, red blood
cell packs

Calculation of the mean of the factors by country.

C. transfusions (E,C) Application of the mean (by country) to the objects
with quantity of transfusion packs >0

Area 14 Unit cost of radiotherapy sessions Application (distinguishing the country) to the objects
with quantity of radiotherapy sessions >0

C. radiotherapy (B,C)

Area 15 Unit cost of preparation for
radiotherapy sessions

Application (by country) to the objects with quantity
of preparation for radiotherapy sessions >0

C. Preparation for radiotherapy (B,C)

Area 16 Unit cost of: Caelix; Carboplatin; Cisplatin;
Deticene; Doxorubicin; Etopophos etoposide;
Gemcitabine; Holoxan; Ifosfamide; Imatinib;
Melphalan; Navelbine; Oxaliplatin; Paclitaxel;
Vincristine

Calculation of the mean of the factors by country.

C. Chemotherapy drugs (F) Application of the mean (by country) to the objects
with quantity of chemotherapy drugs >0

Sources of information: A = Medical records; B = Classification commune des actes médicaux (France); C = Regione del Veneto, Nomenclatore tariffario prestazioni
specia-listiche ambulatoriali (Italy); D = Hospital Managers; E = Arrêté du 2 janvier 2008 relatif au tarif de cession des produits sanguins labiles JORF, 10 février 2008, n°35
(France); F = Hospital pharmacists; Q. = quantity; C. = unit cost.
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order to make the best choice, we had to use the cophe-
netic correlation coefficient (see below).
Secondly, an iterative process (agglomerative hierarch-

ical approach) was used to set a hierarchical structure.
We put the distance information and link pairs of ob-
jects that were close together into binary clusters (made
up of two objects). Then, these newly formed clusters
were linked into larger clusters until all objects were
linked together in a hierarchical tree. The hierarchical
tree created by the linkage function was most easily
understood when viewed graphically [27]. Therefore, we
plotted this hierarchical information as a graph. The
criteria used to compute distances between groups of
objects were:
- Single linkage: minimum distance criteria, using the

smallest distance between objects in the two groups:

d r; sð Þ ¼ min dist xri; xsj
� �� �

i∈ 1;…; nrð Þ j∈ 1;…; nsð Þ;

- Complete linkage: maximum distance criteria, using
the largest distance between objects in the two groups:

d r; sð Þ ¼ max dist xri; xsj
� �� �

i∈ 1;…; nrð Þ j∈ 1;…; nsð Þ;

- Average linkage: using the average distance between
all pairs of objects in cluster r and cluster s:

d r; sð Þ ¼ 1
nr � ns

Xnr
i¼1

Xns
j¼1

dist xri; xsj
� �

;

- Centroid linkage: using the distance between the
centroids of the two groups:

d r; sð Þ ¼ d �xr; �xsð Þ �xr ¼ 1
nr

Xnr
i¼1

xri �xs ¼ 1
ns

Xns
j¼1

xsj ;

- Ward linkage: using the incremental sum of squares
(i.e. the increase in the total within-group sum of squares
as a result of joining groups r and s). It is given by:

d r; sð Þ ¼ nr � ns
nr þ ns

d2 r; sð Þ ¼ nr � ns
nr þ ns

d �xr; �xsð Þ;

Where d2 (r,s) is the distance between cluster r and
cluster s defined in the Centroid linkage. The within-
group sum of squares of a cluster is defined as the sum
of the squares of the distance between all objects in the
cluster and the centroid of the cluster. The cophenetic
correlation coefficient, as defined below, was used to
select the most appropriate combination (i.e. metrics, link-
age procedure).
For the final step of the clustering process, the cluster-

ing solution was evaluated by computing the cophenetic
correlation coefficient “c”; the closer the coefficient value
was to 1, the better the clustering solution. If Y gives dis-
tances computed in the step 1, and Z signifies distances
generated by a linkage method in the step 2, then the
cophenetic correlation coefficient between Z and Y was
defined as:

c ¼
X

i<j
Y ij − y
� �

Zij − z
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i<j

Y ij − y
� �2X

i<j
Zij − z
� �2q

where:
Yij is the distance between objects i and j in Y.
Zij is the distance between objects i and j in Z.
y and z are the average of Y and Z, respectively.
The cophenetic correlation coefficient analyses are

shown in Additional file 1. The best linkage method and
the best distance are the pair (average; euclidean distance)
with a cophenetic correlation coefficient equal to 0.83035.
A combination of good R-Square (RSQ) values was used

to select the number of clusters to retain. More precisely,
the optimum number of clusters to retain, which depends
on homogeneity within cluster and/or heterogeneity
between clusters, was assessed by RSQ, Semi-Partial
R-Squared (SPRSQ), Root-Mean-Square Standard Devi-
ation (RMSSTD) and the pseudo-F statistic (pF) [28,29].
Methods and measures used for determining the optimal
number of clusters are:
- RSQ: RSQ measures the heterogeneity of the cluster

solution formed at a given step. A large value represents
that the clusters obtained at a given step are quite hetero-
geneous, whereas a small value signifies that the clusters
formed at a given step are not very different from each
other. It is therefore recommended to have a cluster solu-
tion with a high RSQ.
- SPRSQ: The SPRSQ measures the loss of homogen-

eity due to the merging of two clusters to form a new
cluster at a given step. If the value is small, then it suggests
that the cluster solution obtained at a given step is formed
by merging two very homogeneous clusters. On the other
hand, large values of SPRSQ suggest that two heteroge-
neous clusters have been merged to form the new cluster.
In general, a cluster solution with a low SPRSQ is pre-
ferred, as a high value for SPRSQ implies that two hetero-
geneous clusters are being merged.
- RMSSTD: The RMSSTD measures the homogeneity

of the cluster formed at any given step. It essentially mea-
sures the compactness or homogeneity of a cluster. Clus-
ters in which consumers are very close to the centroid are
compact clusters. The smaller the RMSSTD, the more
homogeneous or compact the cluster formed is at a given
step. A large RMSSTD value suggests that the cluster ob-
tained at a given step is not homogeneous, and is probably
formed by the merging of two heterogeneous clusters.
- pF: The pF is intended to capture the tightness of

clusters, and is a ratio of the mean sum of squares be-
tween groups to the mean sum of squares within groups.
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It makes it possible to compare the homogeneity of a
partition in k classes with that of a partition in (k-1)
classes. A “strong” pF value at the level s will indicate a
suitable partition in s classes correct. Peaks on the curve
give the values of pF according to the number of classes.
As recommended in the literature, all measures were

used as they relate to various properties of the clusters
(see Figure 1).

Principal component analysis
To perform PCA, we began with the matrix X(m,n),
where m corresponded to the 12 objects (i.e. observations
or individuals in statistical terms) and n to the 16 areas of
variability (i.e. the variables). Individuals and variables did
not have symmetrical roles therefore we had a different
representation in the factorial plane (or hyper plane), with
a different interpretation [30,31].
For individuals, we had m points that were located in

the variable space Rn. We then sought unit vectors uα
for defining a sub-space of Rn where in a projection of
initial individuals-points was performed. Generally a
projection is performed in the plane (R2). Vectors uα
were the eigenvectors of the matrix XTX, ranked in de-
scending order of the corresponding eigenvalues. They
were located on the factorial axes Fα. The coordinates of
the m individual points on the factorial axis Fα were the m
components of the vector ψα =Xuα. The factor ψα was a
linear combination of the initial variables. Individuals were
described by coordinates denoted ψα(i). They were associ-
ated with the measurements denoted CTRα(i) such that:

CTRα ið Þ ¼ ψ2
α ið Þ

Σiψ2
α ið Þ
Figure 1 Determination of optimal number of clusters.
pF: Pseudo-F statistic, RSQ: R-Square, RMSSTD: Root-mean-square
standard deviation, SPRSQ: Semi-partial R-squared (pF has been scaled
so that its values fall between 0 and 1, allowing it to be displayed in
the same graph).
Individuals who made a strong contribution to the axis
had a strong CTRα(i) (Additional file 2). Moreover, if a
variable xj was strongly correlated with, for example, ψ1

it meant that individuals with high positive (respectively
negative) coordinates on axis 1 were characterized by
a value of xj well above (respectively below) the average
(since the origin of axes of interest is the center of gravity
of the cloud).
A projection of the objects in the first two components

was made, and here we have added a three-dimensional
graph because of the highest percentage of inertia of the
first three components.
For variables, we had n points that were located in the

space of individual Rm. Each point was associated with a
new point for which the coordinate on a factorial axis was
a measurement of the correlation between the variable and
the corresponding factor. In order to define a subspace of
Rm we sought unit vectors vα. These were the eigenvectors
of the matrix XXT in decreasing order of corresponding
eigenvalues. The coordinates of the variable points on the
axis α were the n components of the vector ϕα =XTvα. We
showed that the coordinate of a variable point on an axis
was actually the correlation coefficient for this variable with
the corresponding factor ψα. Because the factorial axes
were orthogonal pairs, we obtained a series of uncorrelated
artificial variables called principal components, which syn-
thesized the correlations of all the original variables.
In the space of dimension m, the distance between the

point-variables and the origin was equal to 1, and there-
fore, by projection on a factorial plane, variables-points
were part of a circle of radius 1, also known as the circle of
correlations. These points were even closer to the edge of
the circle as the variable point was well-represented by the
factorial plane and thereby the variable was correlated
with the two factors that made up the plane. Variables that
were not located at the edge of the circle in a factorial
plane were not correlated with the two corresponding fac-
tors and effectively were not useful for interpretation.
If we followed the first factorial plane, the coordinates

of variable-points in the plane were given by quantities
denoted ϕ1(j) and ϕ2(j). Considering the values of ϕα(j)
for the first two axes, the distance from the center of the

circle, rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
1 jð Þ þ ϕ2

2 jð Þ
q

was calculated and variables

were sorted in descending order of rj.
Additional measures could be used to assist with the in-

terpretation. In this regard, first the relative contribution
of a variable to the inertia was explained by the axis α:

CTRα jð Þ ¼ ϕ2
α jð Þ

Σjϕ
2
α jð Þ

where ϕα(j) represented the coordinate of the variable j
on the axis α (Additional file 3) and second the quality
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of the representation of the variable j by its projection
on the axis α:

cos2α jð Þ ¼ ϕ2
α jð Þ
x2j

��� ���
where ‖xj‖ was the norm (i.e. length) of the vector
variable j.

Hierarchical clustering on principal component
The simultaneous analysis of a principal component
map and hierarchical clustering enriched the approach
by representing the whole hierarchical tree in three di-
mensions on the principal component map [32], which
was achieved by representing the centers of gravity of
the partition (i.e. the highest nodes of the hierarchy).
Calculations were performed using MATLAB 6.1 (Math-

Works, Inc. Natick, MA 01760 USA) and STATA 11
(StataCorp LP, College Station, TX 77845 USA).

Results
The average costs of sarcoma management reached
€26,156 (SD18,190) for patients diagnosed and treated in
Rhône-Alpes (n = 58) and €24,986 (SD 24,575) for patients
diagnosed and treated in Veneto (n = 161). The details of
these mean costs of each stage of sarcoma management
are shown in Table 2.
Table 3 reports data from Matrix A, which indicates

the average of resources used and unit costs at the inter-
section of each column (16 areas of variability) and row
(12 objects). In addition, the standardized data of Matrix
X are reported in Additional file 4.

Cluster analysis
As shown in Additional file 1, the best cophenetic correl-
ation coefficient was obtained with the Euclidean metric
and the Average linkage (0.83). The hierarchical tree infor-
mation was shown in Figure 2, where the new clusters that
were obtained by cluster analysis are numbered from 13
to 23. In Figure 2, the numbers along the horizontal axis
Table 2 Average costs (standard deviation) for each phase of

Phases of treatment All patients
(n = 219)

Diagnosis 3,701 (7420)

Surgery (primary and wide surgical excision) 8,170 (7,364)

Chemo-therapy 6,107 (11,988)

Radio-therapy 2,270 (5,850)

Follow-up 5,048 (11,760)

Follow-up without relapse 1,468 (11,760)a

Follow-up with relapse 16,261 (11,760)

Overall management 25,296 (22,919
an = 58; bn = 42; cn = 16; dn = 161; en = 124; fn = 37.
represent the indices of the objects in the original data set.
The links between objects are represented as upside down
U-shaped lines, with the height of the U indicates corre-
sponding to the distance between the objects. The analysis
shows 4 clusters:

(1) cluster 5 only chemotherapy in France (object 5);
(2) cluster 12 only follow-up with relapse in Italy

(object 12);
(3) cluster 18 including surgery in Italy (object 4),

radiotherapy in Italy (object 8), diagnosis in Italy
(object 2), follow-up without relapse in Italy
(object 10), and chemotherapy in Italy (object 6);

(4) cluster 20 including diagnosis in France (object 1),
follow-up without relapse in France (object 9),
radiotherapy in France (object 7), surgery in France
(object 3), and follow-up with relapse in France
(object 11).

The details of the linkage information, including iden-
tification and specification of the pair of objects that had
been linked and the distances between these objects, are
shown in Additional file 5.
The optimal number of clusters based on the use of

RSQ, SPRSQ, RMSSTD and the pF is shown in Figure 1.
According to the pseudo-F statistics, the best choice was
4 clusters, which confirmed our interpretation based on
the hierarchical tree.

Principal component analysis
Figure 3 shows the areas of variability (variables) in the
correlation circle. The red circle of radius 0.8 drawn in the
unit circle corresponds to the calculation of rj given in
Additional file 6. This facilitates the identification of vari-
ables. Moreover we used CTR1(j) and CTR2(j) (Additional
file 3) and cos21 jð Þ, cos22 jð Þ (Additional file 7). Hence, refer-
ring to the previous graph one clearly characterize several
groups for variables. Along axis 1, a group on the right in-
cluding Unit cost of days of hospital admissions (area 10)
and Unit cost of external consultations (area 12) can be
sarcoma management by country (in €, 2009)

Rhône-Alpes France
(n = 58)

Veneto Italy
(n = 161)

1,392 (1,450) 4,534 (8,484)

9,046 (6,226) 7,855 (7,749)

9,689 (14,003) 4,815 (11,196)

1,615 (2,495) 2,505 (6,665)

4,414 (8,864) 5,277 (12,693)

1,732 (1,728)b 1,379 (2,501)c

d 11,454 (14,745)e 18,339 (21,611)f

) 26,156 (18,190) 24,986 (24,575)



Table 3 Matrix A data: unit cost and quantity (final fac rs of variability) for 16 areas and 12 objects defined

Objects Areas of variability

Area 1
Q. Biopsies

Area 2
Q. day
hospit zation

Area 3
Q. imaging

Area 4
Q. external
consultations

Area 5
Q. transfusions

Area 6
Q. rad.
sessions

Area 7
Q. rad.
preparation

Area 8
Q. chemotherapy
drugs

1. Diagnosis France 1.34 1.29 3.66 0.76 0 0 0 0

2. Diagnosis Italy 2.04 5.4 4.61 1.19 0 0 0 0

3. Surgery France 0 13.38 1.98 0 0.8 0 0 0

4. Surgery Italy 0 10.53 2.37 0 1.72 0 0 0

5. Chemotherapy France 0 20.54 5.29 0 2.92 0 0 2.88

6. Chemotherapy Italy 0 18.36 8.06 0 1.52 0 0 2.03

7. Radiotherapy France 0 1.08 0 0 0 26.44 1 0

8. Radiotherapy Italy 0 11 0 0 0 19.87 1 0

9. Follow-up without relapse France 0 0.38 3.28 3.41 0 0 0 0.05

10. Follow-up without relapse Italy 0 1.01 5.29 4.01 0 0.02 0.01 0

11. Follow-up with relapse France 0 7.47 2.53 5.18 0 2.47 0.13 1.53

12. Follow-up with relapse Italy 0 20 11.41 5.06 0 0.26 0.04 0.47
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Objects Areas of variability

Area 9
C. biopsy

Area 10
C. day
hospitalization

Area 11
C. imaging

Area 12
C. external
consultation

Area 13
C. transfusion

Area 14
C. rad.
session

Area 15
C. rad.
preparation

Area 16
C. chemotherapy
drugs

1. Diagnosis France 59.5 918.3 76.34 90 0 0 0 0

2. Diagnosis Italy 41.63 602 76.24 47.45 0 0 0 0

3. Surgery France 0 918.3 75.59 0 199.6 0 0 0

4. Surgery Italy 0 602 76.24 0 26.3 0 0 0

5. Chemotherapy France 0 918.3 98.75 0 199.6 0 0 2.22

6. Chemotherapy Italy 0 602 67.16 0 26.3 0 0 2.98

7. Radiotherapy France 0 918.3 0 0 0 137 439 0

8. Radiotherapy Italy 0 602 0 0 0 150 871.8 0

9. Follow-up without relapse France 0 918.3 66.69 90 0 0 0 0.04

10. Follow-up without relapse Italy 0 602 76.24 47.45 0 150 871.8 0

11. Follow-up with relapse France 0 918.3 75.59 90 0 137 439 3.49

12. Follow-up with relapse Italy 0 602 76.24 47.45 0 150 871.8 0.5

Quantity of biopsies (area 1), Quantity of days of hospital admissions (area 2), Quantity of imaging (area 3), Quantity of external consultations (area 4), Quantity of transfusion packs (area 5), Quantity of radiotherapy
sessions (area 6), Quantity of preparation for radiotherapy sessions (area 7), Quantity of chemotherapy drugs (area 8), Unit cost of biopsies (area 9), Unit cost of days of hospital admissions (area 10), Unit cost of imaging
(area 11), Unit cost of external consultations (area 12), Unit cost of transfusion packs (area 13), Unit cost of radiotherapy sessions (area 14), Unit cost of preparation for radiotherapy sessions (area 15), Unit cost of
chemotherapy drugs (area 16).

Table 3 Matrix A data: unit cost and quantity (final factors of variability) for 16 areas and 12 objects defined
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Figure 2 Cluster analysis: hierarchical tree of 12 objects and newly obtained clusters (numbered from 13 to 23). The numbers along the
horizontal axis represent the indices of the objects in the original data set (1: diagnosis in France (object 1), 2: diagnosis in Italy (object 2), 3:
surgery in France (object 3), 4: surgery in Italy (object 4), 5: chemotherapy in France (object 5), 6: chemotherapy in Italy (object 6), 7: radiotherapy
in France (object 7), 8: radiotherapy in Italy (object 8), 9: follow-up without relapse in France (object 9), 10: follow-up without relapse in Italy
(object 10), 11: follow-up with relapse in France (object 11), 12: follow-up with relapse in Italy (object 12). The newly clusters obtained by cluster
analysis are numbered from 13 to 23.
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identified, as well as another group on the left comprising
Unit cost of radiotherapy sessions (area 14) and Unit cost
of preparation for radiotherapy sessions (area 15). Along
axis 2 there is only one group (on the top) that contains
Quantity of chemotherapy drugs (area 8) and Unit cost of
imaging (area 11). Other areas of variability (e.g. quantity
of external consultations (area 4)) were too close to the
center to be interpretable.
Figure 4 shows the projection of 12 objects on the

map formed by the first two principal components, re-
vealing four groups corresponding to the previously
identified clusters. PCA also indicates that axis 1 opposes
follow-up with relapse in Italy (object 12 in left-hand side)
with follow-up with relapse in France (object 11 in right-
hand side). The projection of 12 objects on the map formed
by the first three principal components is shown in
Additional file 8. The inertia of the first three compo-
nents corresponded to 59.43% of the total inertia instead
of 44.76% for the two first components.
In addition, an analysis that takes into account the

PCA distributions of both areas of variability and objects
shows, as previous evidenced, an opposition between
follow-up with relapse in France (object 11) and follow-
up with relapse in Italy (object 12). Therefore, it is evi-
dent that this difference mainly results from unit cost of
days of hospital admissions (area 10), unit cost of external
consultations (area 12), unit cost of radiotherapy sessions
(area 14), and unit cost of preparation for radiotherapy
sessions (area 15). Moreover, a discrepancy is observed
between diagnosis in Italy (object 2) and diagnosis in
France (object 1), explaining that this difference is mostly
due to quantity of biopsies (area 1) and unit cost of biop-
sies (area 9).
Even though we utilized the first two principle axes,

we tried to go further. The initial table was of the size
(n× m) = (12×16). We formed the matrix X of standardized
data and diagonalized the correlation matrix Γ =XT ×X.
In effect, we had to find 16 eigenvalues. Based on the
Kaiser criterion, we retained the principle components
corresponding to eigenvalues above 1. In doing so, we had
to retain 6 eigenvalues. Unfortunately, we can perform
graphic representation in R3 at the maximum.

Hierarchical clustering on principal component
Figure 5 displays the 3-Dimensional representation of
the hierarchical tree on the map produced by the first
two principal components. The map shows that the four
clusters are well separated on the first two principal
components. Also, this graph enables visualization of the
complementarity of the two methods.



Figure 3 Principal component analysis: projection of the 16 areas of variability in the factorial plane. QBiop: Quantity of biopsies (area 1);
QJhos: Quantity of days of hospital admissions (area 2); QImed: Quantity of imaging (area 3); QCons: Quantity of external consultations (area 4);
QPtra: Quantity of transfusion packs (area 5); QSira: Quantity of radiotherapy sessions (area 6); QPrep: Quantity of preparation for radiotherapy
sessions (area 7); QDchi: Quantity of chemotherapy drugs (area 8); CBiop: Unit cost of biopsies (area 9); CJhos: Unit cost of days of hospital
admissions (area 10); CImed: Unit cost of imaging (area 11); CCons: Unit cost of external consultations (area 12); CPtra: Unit cost of transfusion
packs (area 13); CSira: Unit cost of radiotherapy sessions (area 14); CPrep: Unit cost of preparation for radiotherapy sessions (area 15); CDchi: Unit
cost of chemotherapy drugs (area 16).
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Taken together, using this methodology, we were able
to identify objects within our analysis that displayed high
variability (i.e. lower transferability), which allowed us
to distinguish areas that contributed to cost evaluation
discrepancies. This study utilized both CA and PCA in
order to evaluate the transferability of the results of a
health economics evaluation between two countries.

Discussion
Discussion of results on variability in sarcoma
management
Based on quantities of resources used and unit costs, the
present study reveals a high discrepancy between France
and Italy even though both countries reached a consensus
in their clinical practice guidelines relating to all phases of
sarcoma management (initial examination and diagnosis,
histopathological report, surgery, chemotherapy, and radi-
ation therapy), excluding follow-up after therapy [33,34].
Differences in the quantity of resources used could be
controlled through study design (e.g. multicenter random-
ized trials focused on economic evaluations). However,
this was not possible in this study because data were
retrospectively collected and were not obtained as part of
a clinical trial dedicated to this question [20].
This study also showed differences in diagnosis between

Italy and France, and this heterogeneity could be ex-
plained, according to PCA, by differences in unit cost of
biopsies and in quantity of biopsies. The latter could be
explained by Italy employing cytology biopsies before sur-
gical ones. This difference in management, and also differ-
ence in costs, does not permit a consistent external
validity of health economic evaluations in this phase of
sarcoma management. The difference between follow-up
with relapse in France and in Italy was explained by a dif-
ference in unit costs, which generally have a low trans-
ferability level compared to other data elements [35].
Differences in payment systems and incentives between
both countries could be valid reasons for variability,



Figure 4 Principal component analysis: projection of the 12
objects on the map formed by the first two components. DiagF:
diagnosis in France (object 1); DiagI: diagnosis in Italy (object 2);
ChirF: surgery in France (object 3); ChirI: surgery in Italy (object 4);
ChimF: chemotherapy in France (object 5); ChimI: chemotherapy
in Italy (object 6); RadF: radiotherapy in France (object 7); RadI:
radiotherapy in Italy (object 8); SusrF: follow-up without relapse in
France (object 9); SusrI: follow-up without relapse in Italy (object 10);
SuarF: follow-up with relapse in France (object 11); SuarI: follow-up
with relapse in Italy (object 12); Clusters 5, 12, 18, and 20.
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especially between clusters 5, 12, 18, and 20 as stated by
Barbieri [36]. In particular, object 5 in PCA analysis and
cluster 23 in CA (chemotherapy in France) are explained
by the higher cost of chemotherapy in France than in Italy,
as evidenced also in Table 3. This could be due to efforts
Figure 5 Hierarchical clustering on principal components: tree repres
DiagF: diagnosis in France (object 1); DiagI: diagnosis in Italy (object 2); Chi
chemotherapy in France (object 5); ChimI: chemotherapy in Italy (object 6)
(object 8); SusrF: follow-up without relapse in France (object 9); SusrI: follow
in France (object 11); SuarI: follow-up with relapse in Italy (object 12).
by the Region Veneto Health Directorate to increase econo-
my and efficiency in the use of resources through a num-
ber of actions, for example, defining a sort of ‘threshold’
of appropriateness of chemotherapy provided through in-
patient hospitalizations to promote the outpatient health
care system [37] or a deep health technology assessment
for high cost imaging (for example, PET) to offer examin-
ation only when appropriate [38].
As clinicians commonly have limited personal experi-

ence managing sarcoma outside of centers of excellence
(due to rarity of the disease, variety of histological types,
little graduate or post-graduate medical training, etc.), it
might be interesting to analyze, using CA and PCA, how
clinicians’ adherence versus non-adherence to practice
guidelines can modify the hierarchical structure [39-41].
In this regard, based on six phases of management (diag-
nosis, surgery, chemotherapy, radiotherapy, follow-up
with relapse, and follow-up without relapse), two regions
(Veneto and Rhône-Alpes), and compliance (or not)
with clinical practice guidelines, we could generated 24
objects (6 × 2 × 2 = 24): compliant diagnosis in France
(object 1); non-compliant diagnosis in France (object 2),
etc. Those investigations should permit an even more
precise assessment of barriers to the transferability of
cost evaluations in this healthcare setting.

Discussion on new methodological approach to identify
variability
The approach used is analytical, identifying the factors
of variability and gathering them into homogeneous cat-
egories, thus making it possible to measure proximities
either between objects (CA and PCA approaches) or be-
tween objects and areas of variability (PCA approach).
ented on the map induced by the first two principal components.
rF: surgery in France (object 3); ChirI: surgery in Italy (object 4); ChimF:
; RadF: radiotherapy in France (object 7); RadI: radiotherapy in Italy
-up without relapse in Italy (object 10); SuarF: follow-up with relapse
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The identification of the factors of variability and their
regrouping into homogeneous categories (i.e. areas of
variability) has already been studied in the literature. For
example, the review of the literature carried out by Scul-
pher et al. shows that four groups are generally retained
as the area of variability: the characteristics of the pa-
tients, the clinical parameters, the healthcare systems,
and the socio-economic aspects [4].
CA and PCA have already been used in the field of

health economics [42-44]. However, measurement using
formal statistical methods (CA and PCA), based on the
unit costs and quantities of resources used during sar-
coma management, has not been performed in the past
to assess variability of data in cost evaluations. CA
attempts to gain first order knowledge by partitioning data
points into disjoint groups based on similarity, with
dissimilar data points belonging to distinct clusters. Alter-
natively, PCA attempts to transform high dimensional data
into lower dimensional data where coherent patterns can
be detected more clearly [30]. CA and PCA were found to
be very complementary tools to assess transferability of
health cost evaluation across locations (Figure 5); especially
since in this case Matrix A was a sparse matrix. Moreover,
the two methods present good concordance. Recent re-
search on data mining has demonstrated the possibility
of presenting both methods simultaneously representing
the 3-Dimensional hierarchical tree [32]. Methods to assess
the transferability of economic data are increasingly needed
as the demand for economic evaluations across multiple
countries often outstrips the availability of local data to
support these evaluations.

Limitations of the study
Further research involving the application of CA and
PCA to the assessment of micro-cost datasets is needed.
It would be interesting to analyze the differences in cost
evaluation and resources used for a single subtype of
sarcoma histology or for the management of other more
frequent cancers. This study only takes into account
resources used and unit costs. In the future, it will be
necessary to test this methodology with additional data
elements, such as baseline risk, treatment effect, and
health utilities in order to continue to assess the transfer-
ability of economics evaluations across locations. Potential
towards health economics evaluations (e.g. multinational
cost-effectiveness analysis) which are different and more
complex in comparison with cost studies hasn’t been
taken into account in the present study.

Conclusions
CA and PCA provided a description of the variability in
health cost evaluations between France and Italy. Indeed,
using CA and PCA revealed the large spectrum of het-
erogeneity in sarcoma management. In future studies,
regression methods could be applied after these methods
to elucidate the determinants of the differences found
with these analyses.
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Additional file 2: The values of the CTRα (i) for the objects
(individuals).
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(variables).

Additional file 4: The values of the standardized variables Matrix X.

Additional file 5: Linkage information, new clusters, and distances
obtained by cluster analysis.
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