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Abstract

Background: Currently there is no standard algorithm to identify whether a subject is residing in
a nursing home from administrative claims. Our objective was to develop and validate an algorithm
that identifies nursing home admissions at the resident-month level using the MarketScan Medicare
Supplemental and Coordination of Benefit (COB) database.

Methods: The computer algorithms for identifying nursing home admissions were created by using
provider type, place of service, and procedure codes from the 2000 — 2002 MarketScan Medicare
COB database. After the algorithms were reviewed and refined, they were compared with a
detailed claims review by an expert reviewer. A random sample of 150 subjects from the claims
was selected and used for the validity analysis of the algorithms. Contingency table analysis,
comparison of mean differences, correlations, and t-test analyses were performed. Percentage
agreement, sensitivity, specificity, and Kappa statistics were analyzed.

Results: The computer algorithm showed strong agreement with the expert review (99.9%) for
identification of the first month of nursing home residence, with high sensitivity (96.7%), specificity
(100%) and a Kappa statistic of 0.97. Weighted Pearson correlation coefficient between the
algorithm and the expert review was 0.97 (p < 0.0001).

Conclusion: A reliable algorithm indicating evidence of nursing home admission was developed
and validated from administrative claims data. Our algorithm can be a useful tool to identify patient
transitions from and to nursing homes, as well as to screen and monitor for factors associated with
nursing home admission and nursing home discharge.

Background

Administrative claims databases have been utilized fre-
quently in health services research [1-4]. For instance,
automated claims data protocols are used to identify
chronic conditions, predict future health care costs, screen
for population at risk for outcomes, and review the appro-
priateness of medical procedures (including surgery and

hospital admission) and drug prescribing [5-7]. Many
studies have assessed the validity and reliability of these
protocols for a number of clinical conditions [8-13].
Although claims databases have limitations such as lack
of information on important risk factors (i.e., smoking
status and family histories), they remain a good resource
for a number of reasons. The use of large administrative
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databases is relatively inexpensive, minimizes selection
bias, and increases external validity compared to the pri-
marily collected dataset. Automated claims data contain
more accurate and complete information on variables
related to payment. Since they are rich in patient utiliza-
tion variables, and since patient utilization variables can
be linked to the patient health care environment, large
administrative databases can be used to identify nursing
home related transitions [14-18]. However, claims data
have unique limitations that may diminish the validity of
results [9,10,19,20]. In addition, the sensitivity of claims
data to capture and assess case mix has been a key issue
[2,21].

Nursing home care is the most expensive type of long-
term care [22]. Poor health outcomes, including death,
have been found to be associated with nursing home
placement [23,24]. A recent meta-analysis using data that
is nationally representative of the U.S. population found
that three or more activities of daily living dependencies,
cognitive impairment, and prior nursing home use were
the strongest predictors of nursing home admissions [25].
It is extremely important to screen and monitor for factors
associated with nursing home admissions. However, no
standard algorithm to identify nursing home admissions
has been developed, making it difficult to isolate true
admissions. Utilization of administrative claims data-
bases for nursing home research has not been extensively
explored. There is no direct way to identify whether a sub-
ject is in a nursing home from administrative claims
[2,16,26-28]. For example, if a subject's health insurance
does not cover the nursing home care (i.e., the nursing
home charges), then there will not be a claim for the
charges. However, if a subject is in a nursing home under
that circumstance, there will be other covered charges, for
example, physician visits, during the nursing home stay.
These other covered charges may be captured, albeit indi-
rectly, in the claims by examination of the place of service
and procedure codes. Beusterien et al. investigated the
impact of rivastigmine use on the risk of nursing home
placement using the MarketScan database [29]. Nursing
home placement was identified by a record of a nursing
home claim on two separate dates. However, it is unclear
whether their methodology included only claims submit-
ted by nursing home providers or claims that indicated
nursing home stays through place of service and proce-
dure codes. Hence, it is not simple to identify nursing
home admission from claims because nursing home stays
are covered fully, partially, or not at all by various payers,
unless one has access to all sources of payment, including
self-payment.

Awareness of the potential pitfalls for identifying nursing
home admission in the use of large claims data can help
prevent misclassification and improve the validity and
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efficiency of analysis. Therefore, the development of a
valid and reliable algorithm to identify nursing home
admissions is imperative. The algorithm may help to
screen high risk elderly or monitor elderly in terms of
nursing home admission. The objectives of this study are
to develop an algorithm that identifies nursing home
stays on a month level and to validate the algorithm
against a "gold standard" measure of monthly nursing
home stays using the MarketScan Medicare Supplemental
and Coordination of Benefit database.

Methods

Study subjects and data sources

Data were obtained from the 2000-2002 MarketScan
Medicare Supplemental and Coordination of Benefit
database. The database, produced by Thomson Medstat,
contains information on a convenience sample of pri-
vately insured Medicare-eligible retirees who are covered
by employer-sponsored Medicare supplemental benefit
plans [30]. The database includes all employer and Medi-
care coordination of benefits for those enrollees who have
both employer coverage and Medicare coverage. The lon-
gitudinal database links medical and prescription drug
administrative claims with person-level enrollment data.
All MarketScan Medicare inpatient and outpatient service
claims containing information on any of the following
variables were extracted: (1) provider type suggestive of a
nursing home (e.g., long-term care facility); (2) place of
service suggestive of a nursing home (e.g., skilled nursing
facility); or (3) CPT (Current Procedure Terminology)
procedure code suggestive of care specific to a nursing
home. Table 1 includes a description of these claims
codes.

Creating the computer algorithms for identifying nursing
home stays

Claims were sorted by person identifier and service dates,
and from this an event day-level file was created. For each
person-day, a variable (RULE) was assigned that indicates
the type of nursing home (NH)-related claims identified
for that date. The value of RULE was specific to the pro-
vider [1 = NH-related or O = not], place of service [1 = NH-
related or 0 = not|, procedure [1 = NH-related or 0 = not]
and source of claim (inpatient or outpatient claim). Thus
the value for RULE was a string of 6 characters of 0s and
1s: the 1stcharacter is a flag of a claim with a NH provider
type from an inpatient claim; the 2nd character is a flag of
a claim with a NH provider type from an outpatient claim;
the 3t character is a flag of a claim with a NH place of
service from an inpatient claim; the 4th character is a flag
of a claim with a NH place of service from an outpatient
claim; the 5t character is a flag of a claim with a NH pro-
cedure code from an inpatient claim; the 6th character is a
flag of a claim with a NH procedure code from an outpa-
tient claim.
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Table I: Claims codes screened for nursing home admission incidents

Code

Description

Provider type codes

Evaluation and management of a new or established patient involving an annual nursing facility assessment: 30 minutes at
Evaluation and management of a new or established patient involving an annual nursing facility assessment of a
Evaluation and management of a new or established patient involving an annual nursing facility assessment at the time of
Subsequent nursing facility care, per day, for the evaluation and management of a new or established patient: |5 minutes
Subsequent nursing facility care, per day, for the evaluation and management of a new or established patient who is

Subsequent nursing facility care, per day, for the evaluation and management of a new or established patient who has

Physician supervision of a nursing facility patient (patient not present) requiring complex and multidisciplinary care;

Physician supervision of a nursing facility patient (patient not present) requiring complex and multidisciplinary care

Domiciliary or rest home visit for the evaluation and management of a new patient; the presenting problems are of low
Domiciliary or rest home visit for the evaluation and management of a new patient; the presenting problems are of
Domiciliary or rest home visit for the evaluation and management of a new patient; the presenting problems are of high

Domiciliary or rest home visit for the evaluation and management of a new patient; the patient is stable, recovering or

30 Long term care facility
31 Extended care facility
32 Geriatric hospital
33 Convalescent care facility
34 Intermediate care facility
Place of service codes
27 Inpatient long term care
31 Skilled nursing facility
32 Nursing facility
33 Custodial care facility
Procedure codes
99301
the bedside.
99302
complication or a new problem: 40 minutes at the bedside.
99303
initial admission to the facility: 50 minutes at the bedside.
99311
at the bedside.
99312
responding inadequately to therapy or has developed a minor complication: 25 minutes at the bedside.
99313
developed a significant complication or a new problem: 35 minutes at the bedside.
99315 Nursing facility discharge day management; 30 minutes or less
99316 Nursing facility discharge day management; more than 30 minutes
99379
15-29 minutes
99380
modalities; 30 minutes or more
GO0066 Physician supervision of a nursing facility patient (patient not present); 30 minutes or more per month
99199 Unlisted special service, procedure or report
99321
severity
99322
moderate severity
99323
complexity
99331
improving
99332 Domiciliary or rest home visit for the evaluation and management of a new patient; the patient is responding
inadequately to therapy or has developed a minor complication
99333

Domiciliary or rest home visit for the evaluation and management of a new patient; the patient is unstable or has

developed a significant complication or a significant new problem

For example, RULE = '100000' means that for a specific
person-day there was one or more inpatient claims that
had a NH provider type. Furthermore, on that specific
date, there were no inpatient or outpatient claims with a
NH place of service or NH procedure code. RULE =
'101000'means that for a specific person-day there was
one or more inpatient claims that had a NH provider type
and an inpatient claim with a NH place of service, and
RULE = '111111' means that for a specific person-day
there was one or more inpatient and outpatient claims
that had a NH provider type, a NH place of service, and a
NH procedure code. There were 833,669 person-days

where the provider type, place of service or procedure
code was indicative of a nursing home stay. These person-
days represented 90,465 subjects. The frequency distribu-
tion of the claims codes RULE variable is displayed in
Table 2.

Each RULE type was categorized as "PROBABLE," "POSSI-
BLE," or "UNLIKELY" for its rating of nursing home evi-
dence. Strong evidence of a nursing home stay was coded
as "PROBABLE" (e.g., one or more outpatient claims that
had a NH place of service and an outpatient claim with a
NH procedure code: RULE = 000101); ambiguous evi-
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Table 2: Frequencies of nursing home evidence types among days with any evidence (n = 833,669 person-days)

RULE Description Frequency Percent
000101 outpatient POS and outpatient PROC 448,959 53.85
000001 outpatient PROC only 143,515 17.21
000100 outpatient POS only 137,355 16.48
010100 outpatient PROVIDER and outpatient POS 43,413 5.21
000010 inpatient PROC only 19,213 2.30
001010 inpatient POS and inpatient PROC 12,152 1.46
010000 outpatient PROVIDER only 10,444 1.25
101000 inpatient PROVIDER and inpatient POS 4,830 0.58
ololol outpatient PROVIDER and outpatient POS and outpatient PROC 4513 0.54
001000 inpatient POS only 3,844 0.46
100000 inpatient PROVIDER only 3,359 0.40
101010 inpatient PROVIDER and inpatient POS and inpatient PROC 564 0.07
010001 outpatient PROVIDER and outpatient PROC 351 0.04
001111 inpatient POS and outpatient POS and inpatient PROC and outpatient PROC 232 0.03
100010 inpatient PROVIDER and inpatient PROC 172 0.02
111100 inpatient PROVIDER and outpatient PROVIDER and inpatient POS and outpatient POS 107 0.01
001100 inpatient POS and outpatient POS 98 0.01
001001 inpatient POS and outpatient PROC 78 0.01
00001 | inpatient and outpatient PROC only 72 0.01
001011 inpatient POS and inpatient PROC and outpatient PROC 62 0.01
000111 outpatient POS and inpatient PROC and outpatient PROC 58 0.01
101001 inpatient PROVIDER and inpatient POS and outpatient PROC 50 0.01
100101 inpatient PROVIDER and outpatient POS and outpatient PROC 45 0.01
110000 inpatient PROVIDER and outpatient PROVIDER 40 <0.01
110100 inpatient PROVIDER and outpatient PROVIDER and outpatient POS 39 < 0.0l
111000 inpatient PROVIDER and outpatient PROVIDER and inpatient POS 31 <0.0l
olol1o outpatient PROVIDER and outpatient POS and inpatient PROC 17 <0.0l
100100 inpatient PROVIDER and outpatient POS 15 <0.0l
100001 inpatient PROVIDER and outpatient PROC I < 0.0l
(NRRRN inpatient PROVIDER and outpatient PROVIDER and inpatient POS and outpatient POS 5 <0.0l
and inpatient PROC and outpatient PROC
oriolo outpatient PROVIDER and inpatient POS and inpatient PROC 4 <0.0l
111010 inpatient PROVIDER and outpatient PROVIDER and inpatient POS and inpatient PROC 4 <0.0l
000110 outpatient POS and inpatient PROC 3 < 0.0l
010010 outpatient PROVIDER and inpatient PROC 3 < 0.0l
110101 inpatient PROVIDER and outpatient PROVIDER and outpatient POS and outpatient 3 <0.0l
PROC
ortttl outpatient PROVIDER and inpatient POS and outpatient POS and inpatient PROC and 2 <0.0l
outpatient PROC
10001 | inpatient PROVIDER and inpatient PROC and outpatient PROC 2 <0.0l
101011 inpatient PROVIDER and inpatient POS and inpatient PROC and outpatient PROC 2 < 0.0l
001101 inpatient POS and outpatient POS and outpatient PROC | < 0.0l
111101 inpatient PROVIDER and outpatient PROVIDER and inpatient POS and outpatient POS | <0.01

and outpatient PROC

POS = place of service; PROC = procedure code

dence of a nursing home stay was coded as "POSSIBLE"
(e.g., one or more outpatient claims that had only NH
procedure code: RULE = 000001); and "UNLIKELY" (e.g.,
one or more inpatient claims that had only NH procedure
code: RULE = 000010) indicated no evidence of a nursing
home stay. Table 3 contains a full description of the pro-
tocol used to classify each RULE as PROBABLE, POSSI-
BLE, or UNLIKELY. Two computerized algorithms were
developed to assign a level of evidence for a nursing home
stay for each person-month. Algorithm 1 defined a per-

son-month as a nursing home stay if there was at least one
person-day in the month where the nursing home RULE =
"PROBABLE" was present; otherwise the person-month
was considered not to be a nursing home stay. Algorithm
2 defined a person-month as a nursing home stay if there
was at least one person-day in the month where the nurs-
ing home RULE = "PROBABLE" or RULE = "POSSIBLE"
was present; otherwise the person-month was considered
not to be a nursing home stay.
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Table 3: Modified nursing home rules, based on preliminary expert review

RULE Description NH status PROBABLE,
POSSIBLE, or UNLIKELY,
000001  outpatient PROC only POSSIBLE
000010  inpatient PROC only UNLIKELY
000011 inpatient and outpatient PROC only POSSIBLE
000100  outpatient POS and SPECIAL SERVICE or REST HOME PROC PROBABLE*
outpatient POS only UNLIKELY*
000101 outpatient POS and outpatient PROC PROBABLE
000110  outpatient POS and inpatient PROC PROBABLE
000111  outpatient POS and inpatient PROC and outpatient PROC PROBABLE
001000 inpatient POS and REST HOME PROC POSSIBLET
inpatient POS and SPECIAL SERVICE PROC PROBABLE"
inpatient POS only UNLIKELY*t
001001 inpatient POS and outpatient PROC PROBABLE
001010  inpatient POS and inpatient PROC PROBABLE
001011 inpatient POS and inpatient PROC and outpatient PROC PROBABLE
001100 inpatient POS and outpatient POS PROBABLE
ool 101 inpatient POS and outpatient POS and outpatient PROC PROBABLE
001111  inpatient POS and outpatient POS and inpatient PROC and outpatient PROC PROBABLE
010000  outpatient PROVIDER only UNLIKELY
010001 outpatient PROVIDER and outpatient PROC POSSIBLE
010010  outpatient PROVIDER and inpatient PROC PROBABLE
010100  outpatient PROVIDER and outpatient POS PROBABLE
010101 outpatient PROVIDER and outpatient POS and outpatient PROC PROBABLE
010110 outpatient PROVIDER and outpatient POS and inpatient PROC PROBABLE
011010  outpatient PROVIDER and inpatient POS and inpatient PROC PROBABLE
Olllll  outpatient PROVIDER and inpatient POS and outpatient POS and inpatient PROC and outpatient PROBABLE
PROC
100000 inpatient PROVIDER only PROBABLE
100001 inpatient PROVIDER and outpatient PROC PROBABLE
100010  inpatient PROVIDER and inpatient PROC PROBABLE
10001 | inpatient PROVIDER and inpatient PROC and outpatient PROC PROBABLE
100100  inpatient PROVIDER and outpatient POS PROBABLE
100101 inpatient PROVIDER and outpatient POS and outpatient PROC PROBABLE
101000  inpatient PROVIDER and inpatient POS PROBABLE
101001 inpatient PROVIDER and inpatient POS and outpatient PROC PROBABLE
101010  inpatient PROVIDER and inpatient POS and inpatient PROC PROBABLE
101011 inpatient PROVIDER and inpatient POS and inpatient PROC and outpatient PROC PROBABLE
110000  inpatient PROVIDER and outpatient PROVIDER PROBABLE
110100  inpatient PROVIDER and outpatient PROVIDER and outpatient POS PROBABLE
110101 inpatient PROVIDER and outpatient PROVIDER and outpatient POS and outpatient PROC PROBABLE
111000  inpatient PROVIDER and outpatient PROVIDER and inpatient POS PROBABLE
111010 inpatient PROVIDER and outpatient PROVIDER and inpatient POS and inpatient PROC PROBABLE
111100  inpatient PROVIDER and outpatient PROVIDER and inpatient POS and outpatient POS PROBABLE
111101 inpatient PROVIDER and outpatient PROVIDER and inpatient POS and outpatient POS and PROBABLE
outpatient PROC
I11111 inpatient PROVIDER and outpatient PROVIDER and inpatient POS and outpatient POS and inpatient PROBABLE

PROC and outpatient PROC

POS = place of service; PROC = procedure code

*If claim had one of the following procedure codes; 99199, 99321, 99322, 99323, 99331, 99332, 99333, it was classified on "PROBABLE" otherwise

it was classified on "UNLIKELY".

TIf claim had one of the following procedure codes; 99321, 99322, 99323, 99331, 99332, 99333, it was classified on "POSSIBLE". If claim had 99199,

then it was classified on "PROBABLE" otherwise "UNLIKELY".

Validating the algorithms against a "gold standard"

A random sample stratified by nursing home evidence for
their first nursing home month of 150 subjects was
selected: 50 subjects with evidence = "PROBABLE"; 50
subjects with evidence = "POSSIBLE," and 50 subjects

with no evidence of nursing home residence during any
month (= "UNLIKELY"). We used this stratification to
assure that our sample contained subjects that represented
a broad spectrum of our RULEs for identifying nursing
home stays.
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For each person in the randomly selected validation sam-
ple, all of their inpatient and outpatient administrative
service claims for years 2000, 2001, and 2002 were
extracted. These claims were arranged into a profile for
each person that contained a line listing of the claims,
sorted by service date with the following information:
patient identifier, source (inpatient or outpatient), date,
provider type, place of service, procedure. An expert
claims reviewer reviewed the profiles. The expert reviewer
was a clinical pharmacist who had over eight years of
experience doing research with administrative claims and
other secondary datasets. One of her areas of expertise is
in developing algorithms and operationalizing defini-
tions of specific outcomes and covariates from adminis-
trative claims. The reviewer was blinded to the computer
algorithm's values. The expert reviewer recorded her
assessment on a data collection sheet. For each person-
month, the reviewer recorded a "1" in the box for each
month determined to have any evidence of nursing home
residence, and left the box blank if there was no evidence
of nursing home residence. Results of the expert reviewer
were entered into a database and compared to the results
of the two computer algorithms. This in-depth review of
claims was considered the "gold standard" for the purpose
of validation of the computer-based algorithm.

Since the sampling unit was the subject, all analyses were
performed with the subject as the unit of analysis. To esti-
mate statistical measures for the entire population of
interest, each subject's measures were weighted. Each per-
son was assigned a weight which was derived from the
reciprocal of the probability of selection, based upon the
stratified sampling design. All results are reported using
weighted measures; unweighted measures are also
included for measures of agreement, sensitivity, specificity
and Kappa.

To compare the computer algorithms to the "gold stand-
ard" assessment of nursing home residence at the month
level, a month from each sample subject was randomly
selected to report percent agreement, sensitivity, specifi-
city and predictive values. In addition, the Kappa statistic
is reported. The Kappa statistic determines the extent of
agreement between two or more measures beyond what
would be expected by chance. The standard error of Kappa

Table 4: Validation sample stratification and weights
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was used to generate 95 percent confidence intervals [31].
Previously established guidelines were used to interpret
the Kappa statistics. A Kappa greater than 0.75 indicates
excellent agreement, values between 0.4 and 0.75 indicate
fair to good agreement, and values less than 0.4 indicate
poor agreement [32]. A priori acceptable values for agree-
ment, sensitivity and specificity were set at greater than
0.8, and a priori acceptable values for Kappa were set at
greater than 0.75. Correlations and paired t-tests were
used to compare the two methods' total number of nurs-
ing home months identified per subject.

Results

The population comprises 520,260 subjects, represented
by the stratified sample of 150 subjects (Table 4). Mean
age of the sample population was 74 years old; 55 percent
were female. Table 5 compares the "gold standard" review
to the computer algorithms. Both algorithms had high
agreement and specificity. However, Algorithm 2, a
broader definition including ambiguous nursing home
evidence, had higher sensitivity than Algorithm 1. Algo-
rithm 2 also had a higher Kappa statistic, indicating that
this algorithm had higher chance-corrected agreement
with the "gold standard" and was less susceptible to
chance agreement. Algorithm 1 did not meet the a priori
criteria for acceptable sensitivity or for Kappa in either the
unweighted or weighted measures. Positive predictive val-
ues were high for both algorithms (1.00 and 0.97 for
Algorithm 1 and Algorithm 2, respectively) and negative
predictive values were above 0.99 for both algorithms.
Algorithm 1 agreed with the expert reviewer to the exact
month in 97.9 percent of the subjects, and was accurate
within two months in 98.0 percent of subjects. Algorithm
2 performed slightly better, with exact month agreement
in 99.1 percent subjects, and within two months in 99.3
percent of subjects. Detailed information on distribution
of the expert reviewer's responses and algorithm determi-
nations is shown in Table 6. The total number of nursing
home residence months per subjects during the study
period was similar among all three measures, with a mean
difference of less than one month for each algorithm,
when compared to the expert review (Table 7). The high
correlations between each algorithm and the expert
review also suggest agreement on this measure, although
Algorithm 2's correlation coefficient was slightly higher

Stratification group Validation sample Study population Probability of Weight
size (n = 150) size (n = 520,260) selection

First nursing home residence month with 50 27,668 0.001807 553.36

"PROBABLE" evidence

First nursing home residence month with "POSSIBLE" 50 8,970 0.005574 179.40

evidence

All months with "UNLIKELY" evidence 50 483,622 0.000103 9,672.44
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Table 5: Frequency and agreement between methods of
determination of nursing home residence (n = 150, Weighted n =
520,260)

Algorithm 1*  Algorithm 2t Expert
Review
Frequency (%) of
NH stay
Unweighted 6 (4.0 18 (12.0) 18 (12.0)
Weighted 3,320 (0.6) 5,473 (1.1) 5,473 (1.1)
Correspondence
with expert review
Agreement
Unweighted 92.0% 98.7% -
Weighted 99.6% 99.9% -
Sensitivity
Unweighted 0.33 0.94 -
Weighted 0.61 0.97 -
Specificity
Unweighted 1.00 0.99 -
Weighted 1.00 1.00 -
Kappa (95% ClI)
Unweighted  0.47 (0.22, 0.71) 0.93 (0.85, 1.00) -
Weighted 0.75 (0.74,0.76)  0.97 (0.96, 0.97) -

NH = nursing home; ClI = confidence interval

*Algorithm | defined a person-month as a nursing home stay if there
was at least one day in the month where the nursing home RULE =
"PROBABLE"; otherwise the person-month was considered not to be
a nursing home stay.

T Algorithm 2 defined a person-month as a nursing home stay if there
was at least one day in the month where the nursing home RULE =
"PROBABLE" or RULE = "POSSIBLE"; otherwise the person-month
was considered not to be a nursing home stay.

than Algorithm 1 (r = 0.97 vs. 0.83, respectively). Algo-
rithm 2 is more likely to have higher validity.

Discussion

A reliable algorithm indicating evidence of nursing home
admission was developed and validated from administra-
tive claims data. Algorithm 2 met minimal a priori criteria
for sensitivity, specificity and agreement, suggesting that
the algorithm is a valid measure of nursing home resi-
dence. Although Algorithm 1 performed well with regard
to measuring the total number of nursing home residence

http://www.biomedcentral.com/1472-6963/7/202

Table 6: Unweighted frequency between methods of
determination of nursing home residence (n = 150)

Frequency (%)

Expert Review

NH Non-NH Total

Algorithm I* NH 6 (4.0 0 (0.0 6 (4.0
Non-NH 12 (8.0) 132 (88.0) 144 (96.0)
18 (12.0) 132(88.0) 150 (100)
Algorithm 2t NH 17 (11.3) 1 (0.7) 18 (12.0)
Non-NH 1 (0.7) 131 (87.3) 132(88.0)
18 (12.0) 132(88.0) 150 (100)

NH: Evidence of nursing home residence

*Algorithm | defined a person-month as a nursing home stay if there
was at least one day in the month where the nursing home

RULE = "PROBABLE"; otherwise the person-month was considered
not to be a nursing home stay.

TAlgorithm 2 defined a person-month as a nursing home stay if there
was at least one day in the month where the nursing home

RULE = "PROBABLE" or RULE = "POSSIBLE"; otherwise the person-
month was considered not to be a nursing home stay.

months, its sensitivity reached only 61 percent (weighted)
with a Kappa statistic suggesting fair to good agreement.
Based on a Kappa statistic of 0.97, Algorithm 2 displayed
excellent agreement and higher validity. Thus, "relaxing"
the definition for a nursing home stay by including those
rules with a "POSSIBLE" evidence rating improved sensi-
tivity without sacrificing specificity.

The methodology compares algorithms based on nursing
home-related claims for identifying nursing home stays to
a "gold standard" measure, which is an expert's review of
all claims (nursing-home related and non-nursing home-
related claims). One limitation is that the "gold standard"
is not an actual observation of whether or not the subject
is in the nursing home; it is also based on administrative
claims analysis. However, the "gold standard" is more
robust in that it includes a review of all administrative
claims (inpatient and outpatient) and it is an implicit
review by an expert who has research experience with

Table 7: Comparison of total count of nursing home residence months(n = 150, Weighted n = 520,260)

Weighted mean difference in total p-value Weighted Pearson p-value
number of nursing home residence correlation coefficient
months (95% CI)
Algorithm I*vs. Expert Review -0.13 (-0.36, 0.11) 0.30 0.83 <0.0001
Algorithm 2tvs. Expert Review -0.01 (-0.11, 0.10) 0.93 0.97 <0.0001
Cl = confidence interval
*Algorithm | defined a person-month as a nursing home stay if there was at least one day in the month where the nursing home RULE =
"PROBABLE"; otherwise the person-month was considered not to be a nursing home stay.
TAlgorithm 2 defined a person-month as a nursing home stay if there was at least one day in the month where the nursing home RULE =
"PROBABLE" or RULE = "POSSIBLE"; otherwise the person-month was considered not to be a nursing home stay.
Page 7 of 9
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claims analysis, and specifically with nursing home
claims. Having two or more experts review the claims and
adjudicating discrepancies would strengthen the "gold
standard" measure, but resources precluded the use of
more than one reviewer.

Since our algorithms were developed and validated using
the MarketScan Medicare Supplemental and Coordina-
tion of Benefit database, they may not be applicable to
other claims databases. The MarketScan database has
unique characteristics. It is a collection of coordination of
benefits claims, which means that if a service claim was
paid completely by Medicare, it may not be in the Coordi-
nation of Benefit database. This scenario is likely to hap-
pen with Medicare qualified skilled nursing facility stays
since Medicare covers full cost for the first 20 days. In
addition, the subjects in this study cohort may be different
from the general elderly Medicare population. They are,
on average, likely to be younger and have better income,
education, and health [5].

Three different indicators were used to identify nursing
home in the claims databases in this study: provider type,
place of service, and procedure code. Since claims data pri-
marily serve billing purposes, provider type and proce-
dure codes are likely to be more accurate than place of
service. Place of service codes do not directly affect reim-
bursement. Also, it is difficult for both the computer algo-
rithm and the expert reviewer to differentiate between
nursing homes and assisted living facilities.

The development of algorithms for identifying nursing
home admission can help to reduce misclassification. Suf-
ficient magnitude of this measurement error decreases the
validity of a study's findings. Some studies using claims
databases describe that their measures of nursing home
admission are defined as patient admission to nursing
home or long-term care facility [15,17,33], with no meth-
odological details about how admission to nursing facili-
ties was identified, even though most claims databases
have the same measurement issues as the MarketScan
database. Unless the measurement methodology is
explained, it is difficult to assess how measurement errors
may affect the study results. Our findings suggest that
using one indicator alone on claims may miss capturing
some patients with events of nursing home admission,
reducing the measure's sensitivity. Researchers using
claims should know characteristics of databases and be
cautious about the potential pitfalls.

Conclusion

Based upon our analysis, Algorithm 2 is a valid measure
of nursing home residence when compared to a "gold
standard" expert review. Using similar methodology,
algorithms can be developed and applied to various

http://www.biomedcentral.com/1472-6963/7/202

administrative databases as a useful tool for screening and
monitoring high risk patients for nursing home admis-
sion. Since administrative claims databases can provide
large, representative samples of longitudinal patient pro-
files, they can be effectively used to analyze factors associ-
ated with nursing home admission.
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