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Abstract

Background: This study examined the daily surgical scheduling problem in a teaching hospital. This problem
relates to the use of multiple operating rooms and different types of surgeons in a typical surgical day with
deterministic operation durations (preincision, incision, and postincision times). Teaching hospitals play a key role in
the health-care system; however, existing models assume that the duration of surgery is independent of the
surgeon’s skills. This problem has not been properly addressed in other studies. We analyze the case of a
Spanish public hospital, in which continuous pressures and budgeting reductions entail the more efficient use
of resources.

Methods: To obtain an optimal solution for this problem, we developed a mixed-integer programming model
and user-friendly interface that facilitate the scheduling of planned operations for the following surgical day.
We also implemented a simulation model to assist the evaluation of different dispatching policies for surgeries and
surgeons. The typical aspects we took into account were the type of surgeon, potential overtime, idling time of
surgeons, and the use of operating rooms.

Results: It is necessary to consider the expertise of a given surgeon when formulating a schedule: such skill can
decrease the probability of delays that could affect subsequent surgeries or cause cancellation of the final
surgery. We obtained optimal solutions for a set of given instances, which we obtained through surgical
information related to acceptable times collected from a Spanish public hospital.

Conclusions: We developed a computer-aided framework with a user-friendly interface for use by a surgical
manager that presents a 3-D simulation of the problem. Additionally, we obtained an efficient formulation for
this complex problem. However, the spread of this kind of operation research in Spanish public health hospitals
will take a long time since there is a lack of knowledge of the beneficial techniques and possibilities that operational
research can offer for the health-care system.
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Background
Teaching hospitals play a key role in the majority of
health-care systems: these institutions provide medical
attention to the community and train future health
professionals. Several studies have identified operating
rooms (ORs) as a hospital’s largest cost area [1,2].
Optimizing ORs is difficult since many constraints
need to be considered, and solving this issue within a
reasonable time is difficult [3]. Improvements made in the
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scheduling of an OR lead to enhanced cost efficiency and
better patient service [4].
In this situation, the objective is to determine the opti-

mal assignment of ORs and surgeons to each operation
in a daily base; consequently, it is necessary to find the
best sequence of operations for each surgeon with the
goal of minimizing the total surgical cost resulting from
an OR’s underuse or overuse and from the surgeons’
waiting times. Here, we will assume that a set of surger-
ies is known 24 hours in advance of the operations and
that the number of available ORs and surgeons is also
known. All the planned operations have to be performed
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:raul.pulido@upm.es
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Pulido et al. BMC Health Services Research 2014, 14:464 Page 2 of 13
http://www.biomedcentral.com/1472-6963/14/464
on the surgical day. The tasks that have to be performed
in the surgery are divided into the following:

� TP: preparation time (preincision),
� TS: surgery time (incision), and
� TC: cleanup time (postincision).

The OR staff has to support a surgery during the
preparation, the operation itself, and in the cleanup.
However, surgeons are required to be present only
during the operation itself until the completion of the
incision. Thus, surgeons could perform an operation in
a different OR immediately after finishing the previous
surgery. One example of this type of decision making
process is found in a Teaching hospital in Toledo, where
we started describing the actual decision making process
and then a computer aid decision would be introduced.

Conventional decision-making process
This description of the conventional decision-making
process is based on interviews conducted at a teaching
hospital in Toledo, Spain. After a negotiation among the
chief of physicians and the head of the different medical
sections, ORs are assigned to each section.
For example, two ORs may be available for urology

from Monday to Friday, though an additional OR is
available on Wednesday. Despite most of its ORs are able
to handle all medical services, in order to unnecessary
changes of specific instruments required for particular
medical services, the medical services use the same ORs
in a weekly base.
Every day the head of the service decides which pa-

tients on the waiting list will undergo surgery and in
what order and which surgeons will perform the opera-
tions. At the Toledo hospital, the head of each medical
service made manually this difficult decision. Finally, a
secretary puts all these details into the hospital’s com-
puter system; the information is sent to the hospital’s
reception office so that all the necessary procedures and
preparations for surgery may begin. If for any reason,
the patient is unable to undergo the operation, it has to
be rescheduled.

Teaching hospitals
Health care systems relies on teaching hospitals to train
future health professionals, conduct medical research,
fulfill part of the patient-care needs, and sometimes offer
services not available in other facilities [5]. Various stud-
ies have found that resident doctors take longer to per-
form a surgical operation than experienced doctors.
Becoming a properly trained surgeon requires that resi-
dent doctors work and study for 4–5 years, depending on
their intended medical specialty, and during this time they
carry out different types of surgery. The scheduling of
surgery being performed in teaching hospitals has not
been properly addressed in the literature [6].
Two typical differences between a normal hospital and

a teaching hospital is that in normal hospital the surgery
is pre-assigned to a surgeon according with any decision
criteria such as the one that diagnostic the problem or
the one chosen by the patients. Then, it is just necessary
coordinating the use of the operation rooms. The second
main difference is that the surgery duration depends on
the surgical team assigned, this add the decision to
evaluate which surgeon is better to assign to each sur-
gery and where to perform the surgery.
A teaching hospital may be considered as a particular

case of a normal hospital where the different resources
(surgeons) may take different times, according to their
experience, and there is no pre - assignment of surgeons
to surgeries.
Some normal hospital algorithms have to make some

assumption and preassign surgeries to surgeons to deal
with teaching hospital problems. Example of this is Fei
[2] that pre assign the surgical case to be treated for dif-
ferent surgeons (or, more generally, surgery groups) and
the duration of the surgery is independent of the sur-
geon. Jebali [7] allows the model to assign surgeon to
perform an operation but do not make any distinction
with the surgeons. Other algorithms like Kharraja [8]
defines a block scheduling where each surgeon request
block of time to perform surgeries.

Literature review
A literature review can make different classifications ac-
cording to patient characteristics (elective or not elect-
ive), performance measures, decision delineation (date, time,
room, or capacity), research methodology, and consider-
ations of uncertainty and applicability [9]. The schedule for
ORs is usually done in an intuitive manner by the OR actors;
thus, introducing optimization techniques will require a
cultural change because it may restrict the authority of some
of those individuals [7].
Many studies have addressed different aspects of the

topic of optimization techniques from various points of
view with regard to the decision-making process in OR
scheduling. There are different classifications of the
problems in this area. One of the most important is-
sues is decision delineation. No agreement has been
reached about classifying the decisions made regarding
surgery and its scheduling. Since the boundaries are
unclear, various papers have addressed different parts
of the decision-making process [10].
A literature review conducted by Guerreiro [11] made

an interesting classification of hierarchical decision levels.
Strategic is when OR times are assigned among different
surgical services. This is also known as the “case mix plan-
ning problem”. Tactical involves the development of a
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master surgical schedule (MSS). An MSS is a schedule
that defines the number and type of available ORs. There
is also the operational type, which is concerned with the
scheduling of elective patients on a daily basis after an
MSS has been developed.
The strategic level of decision making is generally per-

formed following annual negotiations between the hos-
pital manager and the head of surgical services. This
part of the decision-making process is beyond the scope
of the present study. Accordingly, in terms of the hier-
archical decision-level classification, this study tackles a
combination of tactical and operational problems.
Another important literature review—one by Cardoen

[9]—deliberately avoids these classification levels since
they lack clear definitions. Cardoen [9] suggests creating
a classification according to the type (date, time, room,
and capacity) and level (discipline, surgeon, and patient)
of decision being made. The type of decision in question
could be the assignment date on which surgery will be
performed, the time indications, the operating surgeon,
the OR, and the allocation capacity. In this study, we will
take all these elements into consideration—except for
date.
With an open scheduling strategy, surgeons submit a

request for OR time, and a detailed schedule is gener-
ated prior to the day of surgery. This procedure is com-
mon, for example, in neurosurgical operations, where
the patient list is known only 24 hours before the day of
surgery. This flexible scheme avoids unfilled blocks in
the working day [12]. In the present study, we will focus
on the deterministic daily scheduling problem in ORs
under an open scheduling strategy.
The performance measures examined in the literature are

the following: waiting time (patient, surgeon, and through-
put); utilization, underutilization/under time (OR, ward, and
intensive care unit); overutilization or overtime (OR and
ward); general (OR and ward); leveling (OR, ward, post
anesthesia care unit, holding area, and patient volume);
makespan; patient deferral; financial measurements; and sur-
geons’ preference [9].
The aim of the present study was to develop a generic

deterministic model for dealing with the daily scheduling
of a set of surgeries in a teaching hospital in a reason-
able time. The surgeries can be performed in a given
number of ORs by different types of surgeons. We
consider most of the problems encountered in the
OR’s daily operations. We evaluated the proposed ap-
proach using real data from a Spanish hospital, a friendly
and efficient computer aided tool and a simulation
software.
The paper is organized as follows. The next section

describes the actual decision-making process and the
proposed approach used to address the surgical schedul-
ing problem in a typical teaching hospital. That will be
followed by the Results and Discussion. Finally, the
Conclusions will be presented.

Methods
Operation research techniques have helped health-care
managers optimize their operations. We will address this
issue using a mixed-integer programming model (MILP)
and a user-friendly interface; these will allow the sched-
uling for surgeries planned the following day. Addition-
ally, we will implement a simulation model to facilitate
the evaluation of different dispatching policies related to
surgical operations and surgeons. AMILP solution has
previously been developed for a similar problem [13];
however, that did not exploit the real strength of general-
precedence concepts and did not preassignan operation to
a surgeon or use different types of surgeons.
The MILP model was created using AIMMS 3.14 [14] and

was solved with the standard solver Gurobi Optimization
5.5; it was simulated with Enterprise Dynamics 8.01 by In
control. As noted above, the model presented is a generic
one as applied to one Spanish teaching hospital. If you want
to know more about the Spanish health system please refer
to the Appendix. In the remainder of this section, we present
a 3D simulation of the different dispatching policies, which
will be followed by the MILP formulation.

Objective function
Some studies have found that OR performance mea-
sures, such as utilization, overtime, and on-time per-
formance, may be used as achievable targets at most
hospitals [15]. Denton [16] highlights how despite the
tightness of surgical schedules, it is possible to achieve a
balance among the three competing criteria of surgeon
waiting, OR staff idling, and overtime costs. The object-
ive function minimizes the sum of these three costs.

� Surgeon waiting cost. Since the surgeon is a very
expensive resource, decreasing the surgeon’s waiting
time has been the subject of many papers
[12,16-18]. This factor has to take into consideration
the minimum waiting time a surgeon needs between
operations (Pause Time).

� OR waiting cost (underutilization). OR idling is the
direct cost associated with having an OR vacant,
with no surgical activity being performed [9,18-23].

� Overtime cost. Late starts result in direct costs
associated with overtime staffing when the surgery
finishes later than the end of the appropriate shift
[8,12,17,22,23].

The OR staff works in a normal shift of 7 hours (T =
420 minutes). Accordingly, overtime needs to be consid-
ered if the OR staff has to work beyond the normal shift
length, T. For simplicity, all the patients are ready to



Pulido et al. BMC Health Services Research 2014, 14:464 Page 4 of 13
http://www.biomedcentral.com/1472-6963/14/464
start the surgical procedure when the OR is ready. Three
main costs are taken into account (see Table 1): (a) the
cost per hour of OR idling time (vacant time cost); (b) the
cost per hour of OR overtime (overtime cost); and (c) the
cost per hour of surgeon waiting time (waiting time
cost).

Assumptions
We assume that a set of ORs and surgeons are available
each day. Additionally, we stipulate that only surgeon 1
in OR 1 can perform surgery D, which is an extremely
complex operation, and that surgery A should be per-
formed by a resident (surgeon k = 2). The remaining sur-
geries can be performed in any OR by any surgeon. The
ORs can operate in parallel.
Figure 1 presents a simple example of seven surgeries

scheduled in three ORs with two surgeons. The first idle
time cost (a) is incurred when the patient has to wait for
surgeon 2. OR1 and OR2 generate extra time cost (b).
Surgeon 1 generates waiting cost when the surgeon fin-
ishes surgery 1 and has to wait to start surgery 4. The
vacant time is the time between surgeries where the sur-
geon cannot perform other activities since the surgeon is
wearing surgical uniform.

Data accessibility
We looked for available public data to test our model,
but the majority of the papers dealing with OR schedul-
ing do not present a complete dataset. We used data
from the waiting list of the urology department of the
general hospital in Toledo, mentioned above, to test the
model. That information included an estimate of the
duration of the surgery.
We experimented with six instances, each consisting

of five to nine surgeries. Table 2 contains the preparation
time, the incision time for each surgeon, and the cleanup
time. Each surgeon had different surgical times accord-
ing to their expertise, which allowed them to perform an
operation faster or slower. Surgeon (k = 1) was the fast-
est surgeon, surgeon 2 the slowest, and surgeon 3 inter-
mediate. Each instance represents different types of
working days, with two ORs and three surgeons being
available. For example, instance 1 represents the smallest
instance, in which only five surgeries have to be per-
formed, and instance 6 represents the largest instance,
in which nine surgeries have to be performed (see
Table 3). To test the model, we ran it on a day with the
following availability: three ORs and two groups of
Table 1 Estimated hourly cost

ORs’ vacant cost Surgeons’ waiting cost ORs’ overtime cost

CV CW CO

€ 900 € 700 € 1500
surgeons—one without residents (k = 1) and the other
with residents (k = 2).
Spanish hospitals usually operate from 8:00 a.m. to

3:00 p.m. (T = 420 minutes). Extra time is possible only
if a request is made for this during the day. Thus, it is
important to know when additional time will be re-
quired, and it cannot exceed 2 hours. If any delays occur
aside from the approved extra time, the surgeon and
other staff need to finish the surgery without additional
payment. Therefore, if the anesthesiologist or surgeon
realizes that a surgery will not be completed on time,
they usually prefer to cancel the surgery and reschedule
it before it begins.
Simulation model
We used a simulation to evaluate different solutions
without any disturbance on the hospital’s operations
[24]. We built the simulation model using the Enterprise
Dynamics discrete-event simulation tool, which emulates
different dispatching policies of surgeries and surgeons.
We set different strategies for the dispatch of surgeries

such as ordering (ascending or descending) them ac-
cording to the duration of a given surgery time (TS).
When two surgeons were idle, we selected either the fas-
ter or slower surgeon to perform the surgery [18].
MILP problem formulation
In this section, we begin by introducing the notation
needed to formulate the problem (see Table 4). There-
after, we present the MILP for the OR scheduling.
Most studies [2,12,17] on this topic make the assump-

tion that the surgeons for each patient are already
known. However, the problem of assigning surgeons,
residents for each operation in several ORs does not ap-
pear to have been addressed in OR planning and sched-
uling [25]. To the best of our knowledge, no models
have involved different types of operations in multiple
ORs with different types of surgeons. This study pre-
sents a detailed scheduling scheme for different surgery
cases in multipurpose ORs with multiple types of sur-
geons. Based on the principal ideas of general-precedence
concepts [26], we formulated a MILP model for the sched-
uling of multiple surgery types in multiple ORs with sev-
eral available surgeons.
We present a MILP model for this particular problem

with the aim of minimizing the total surgical cost de-
noted by the overtime cost (CO), vacant time cost (CV),
and waiting time cost (CW) in equation (1). Equations
(2) and (3) guarantee that all surgeries are performed in
only one OR by just one surgeon. The sequencing and
timing constraints in the same OR and also by the same
surgeon are presented in equations (4) and (5) and equa-
tions (6) and (7), respectively.



Figure 1 Scheduling of a given surgical day. Where (1–7) are the surgeries performed in three ORs with two surgeons. And (a) is the OR idle
time, (b) is the over time, and (c) is the waiting time of the surgeons.
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The binary variable zss’kk’ is introduced to consider the
sequencing and timing decisions of operations per-
formed by different surgeons but in the same OR, as
shown in equations (8) and (9). Equations (10) and (11)
are provided to estimate the completion time both in
the ORs (makespan of the rooms) and by the surgeons
(makespan of the surgeons). Equations (12) and (13) de-
termine the initial time of each operation and surgeon in
the system. Additionally, overtime (ot) is calculated in
equation (14) while equation (15) limits the amount of
overtime and equation (16) limits the number of opera-
tions performed by the same surgeon. Vacant time (vt)
and waiting time (wt) variables are calculated in equa-
tions (17) and (18), respectively.

min: tc ¼ CO
X

r
otr þ CV � vt þ CW

X
k
wtk

ð1Þ
X

r
xsr ¼ 1 ∀s ∈ Sr ð2Þ

X
k
qsk ¼ 1 ∀s ∈ Sk ð3Þ
Table 2 Surgery durations (min.)

Surgery type (i) A B C D E F G H

TP 15 20 15 20 25 30 35 40

TSk=1 20 35 40 45 85 130 190 220

TSk=2 30 53 60 n.a. 128 195 285 330

TSk=3 25 44 50 n.a. 106 163 238 275

TC 10 20 35 40 40 50 50 60
tss þ TSsk þ TCs ≤ tss0− TPs0 þM 1− yss0 k
� �þM 2 −xsr−xs0 r

� �

þM 2 − qsk − qs0 k
� �

∀s; s
0
; r; k s

0
< s

� ����
ð4Þ

tss0 þ TSs0k þ TCs0 ≤ tss − TPs þM yss0 k
� �þM 2 − xsr − xs0 r

� �

þM 2 − qsk− qs0 k
� �

∀s; s
0
; r; k s

0
< s

� ����
ð5Þ

tss þ TSsk þ PT ≤ tss0 þM 1 − yss0 k
� �

þM 2 − qsk − qs0 k
� �

∀s; s
0
; k s

0
< s

� ����
ð6Þ

tss0 þ TSs0k þ PT ≤ tss þM yss0 k
� �

þM 2 − qsk−qs0 k
� �

∀s; s
0
; k s

0
< s

� ����
ð7Þ

tss þ TSsk þ TCs ≤ tss0 − TPs0 þM 1 − zss0 kk0
� �

þM 2 − xsr − xs0 r
� �þ M 2 − qsk − qs0 k

� �
∀r; s; s

0
; k; k 0 s

0
< s

� ����
ð8Þ

tss0 þ TSs0k 0 þ TCs0 ≤ tss − TPis þM zss0 kk 0
� �

þM 2 − xsr − xs0 r
� �

þM 2 − qsk−qs0 k
� �

∀r; s; s
0
; k; k 0 s

0
< s

� ����
ð9Þ

msRr ≥ tss þ
X

k
TSsk � qskð Þ þ TCs −M 1 − xsrð Þ ∀s; r

ð10Þ
msSk ≥ tss þ TSsk −M 1 − qskð Þ ∀s; k ð11Þ
tss ≥ TPs ∀s ð12Þ



Table 3 Surgical day instances with several ORs and surgeons

#Instance #ORs #k #Surgeries S1 S2 S3 S4 S5 S6 S7 S8 S9

1 2 1 6 A B C D E E

2 3 2 5 E E D F G

3 3 2 6 C D D E F H

4 3 2 7 B B C D E G G

5 3 2 8 A B B C D E F G

6 4 3 9 A B C D E E F G H

Table 4 Indexes, parameters, and variable sets

Sets

S Set of surgeries s to be scheduled in a surgical day

Sk Subset of surgeries (S) that can be performed by surgeon k

Sr Subset of surgeries (S) that can be performed in room r

R Set of operating rooms r

K Set of surgeons k

Parameters

TPs Preparation time (preincision time) of the surgery s

TSsk Surgery time (incision time) of the surgery s by surgeon k

TCs Cleanup time (postincision time) of the surgery s

CV Cost per minute of having an OR vacant

CW Cost per minute of having the surgeon waiting

CO Cost per minute of using an OR beyond the normal shift
length T

T Shift length

PT Pause between surgeries done by the same surgeon

MOT Maximum overtime

MaxS Maximum number of surgeries performed by a surgeon

M A large scalar value

Variables

xsr Binary variable; 1 if surgery s∈ S is done in room r∈ R, 0 otherwise

yss’k Binary variable; 1 if s∈S precedes s'∈Sand is done by the same
surgeon k∈K, 0 otherwise

zss’kk’ Binary variable; 1 if s precede s'∈S and it is done by different
surgeon k and k'∈K, 0 otherwise

qsk Binary variable; 1 if surgery s∈ S is done by surgeon k∈ K, 0
otherwise

msRr Non negative variable equal to the make span of room r∈ R

msSk Non negative variable equal to the make span of surgeon k∈ K

tss Non negative variable equal to the start time of the surgery s∈S

tsSk Non negative variable equal to the start time of the surgeon k∈ K

vt Non negative variable equal to the vacant time

otr Non negative variable equal to the overtime of room r∈ R

wtk Non negative variable equal to the waiting time of a
surgeon k∈ K

tc Total cost
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tsSk ≤ tss þM 1 − qskð Þ ∀s; k ð13Þ
otr ≥msRr − T ∀r ð14Þ
otr ≤MOT ∀r ð15Þ
X

s
qsk ≤MaxS ∀k ð16Þ

vt ≥
X

r
msRrð Þ −

X
s
TPs þ TCsð Þ −

X
sk

TSsk � qskð Þ
ð17Þ

wtk ≥msSk − tsSk −
X

s
TSsk � qskð Þ ∀k ð18Þ

Where

xsr ∈ 0; 1f g; yss0 k ∈ 0; 1f g; zss0 kk 0 ∈ 0; 1f g; qsk ∈ 0; 1f g;
msRr > 0; msSk > 0 tss > 0; tsSk > 0; vt > 0

otr > 0; wtk > 0:

Ethics
Given that this research is computational in nature, does not
generate adverse environmental impacts neither involves hu-
man subjects and respects the existing bioethical standards.

Results
We evaluated the performance of our approach using part
of the waiting list from the urology department of the
teaching hospital in Toledo. We defined six instances with
different numbers and types of surgeries. The computa-
tional experiences were performed on a ASUS PC Intel
Core i3-2350 M 2.30 GHz with 6 GB RAM running the
solver in parallel mode with two threads under Windows 7.

Simulation results
The results of the different strategies for various surgeries
and surgeons are presented in Table 5. In the last column,
the results from running 100 replications are displayed.
It is evident from those results that no dispatching policy

was able to outperform the others. For some instances,
using the faster surgeon first was better; in other instances,
using the slower surgeon was advantageous. We made the
same observation with the ascending or descending order.
Another option was to try many random combinations to
obtain a good solution. In some instances, that worked to



Table 5 Costs of the different strategies for the dispatch of surgeries (euros)

Instance Optimal
(MILP)

Faster k,
ascending TS

Faster k,
descending TS

Slower k,
ascending TS

Slower k,
descending TS

Results of 100 scenarios

Mean (std) Min-Max

1 3,400 3,850 4,325 3,850 4,325 3,812 (53) 3775-3850

2 2,850 3,579 4.320 6,966 4,850 4,914 (1,277) 3,579-6,966

3 3,258 8,541 6,616 9,141 7,204 7,162 (1,337) 5,591-9,475

4 5,100 7,291 10,300 5,900 9,662 7,848 (1,104) 5,900-10,562

5 3,650 9,600 7,783 8,800 6,729 7,073(960) 5175-10,329

6 4,183 15,668 13,539 13,637 15,456 13,563 (933) 11,066-16,568
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an acceptable degree; however, with a larger number of
ORs and surgeons, there was a greater difference from the
optimal situation. It should be noted, though, that all of the
results were far from optimal.

MILP results
Table 6 presents the computational performance of each
instance; Table 7 shows the detailed costs and Figure 2
displays the solution schedule in a Gantt chart. In that
chart, we observed that the waiting time of the surgeons
was minimized and that changing the ORs would avoid
delays with the postincision time and the cleanup time for
the next patient. The overtime was minimized, but it was
inevitable in some situations. OR occupation also increased
since in the majority of the cases as soon as one patient left,
the preincision procedure began for the next.
We did not experiment with any operations bigger

than surgery type H (320 minutes’ duration): they would
require a full day in the OR and would result in a trivial
answer (one OR, one long surgery), which was not rele-
vant to this study.
Our model was able to deal with multiple surgeons in

multiple ORs. The solutions are presented in Table 6. Some
of the tested instances are solved up to optimality within a
few minutes—in some cases, in less than 1 minute. The
model takes more time to solve the most complex instance.
The model size is also reported in Table 6 according

to the number of variables and constraints; the complex-
ity of the solution is demonstrated by the number of
nodes and iterations explored. As with other similar
Table 6 Results of the instances

Instance CPU time (s) Total cost (€) Integer variables

1 3.8 3,400 33

2 3.5 2,850 65

3 4.7 3,258 90

4 140 5,100 119

5 456.3 3,650 152

6 1,720.1 4,183 387
models, the solution time for an instance with the same
number of surgeries varies considerably depending on
the data. This is a critical point in the solution perform-
ance: our model could obtain high-quality initial feasible
results in only a few minutes, but it needed much more
time to ensure the optimality of the solution found.
With the general-precedence formulation, a reduced num-
ber of binary sequencing variables has been reported com-
pared with other MILP formulations, e.g., that presented in
Batun et al. [13].
Our model was refined through using pairs of con-

straints associated with the general-precedence formula-
tion and appears to be much more efficient than that
since it uses a unique general-precedence variable for se-
quencing surgeries simultaneously for both ORs and sur-
geons; in other formulations, the sequencing variables are
proposed for each OR using surgery-specific precedence-
based representation. Since the number of binary variables
increases with the number of surgeries and the number of
ORs is greater than the number of surgeons, our represen-
tation can significantly reduce the size of the problem
[26]. As an example, using a unit-specific representation,
the number of sequencing variables will be |S|*|S-1| in
each OR as a result of s ≠ s’; in our formulation, the num-
ber of combinations is reduced to (|S|*|S-1|)/2 for each
surgeon since s > s’ under general-precedence concepts.
This is because if the sequence exists in one tuple of the
constraints, it does not exist in the other.
The combinatorial sequencing problem size increases

with the number of surgeries considered, as noted above.
Continuous
variables

Constraints Nodes Iterations

15 140 10,552 36,167

19 357 5,812 26,076

20 510 4,734 21,390

21 691 224,573 948,271

22 900 558,804 2,984,012

28 3,013 1213370 5,627,758



Table 7 Detailed cost of the instances

Instance 1 2 3 4 5 6

Waiting time (min) 75 45 65 75 90 95

Waiting time cost (euro) 875 525 758 875 1050 1,108

Overtime (min) 20 30 55 115 20 63

Overtime cost (euro) 500 750 1,375 2,875 500 1,575

Vacant time (min) 135 105 75 90 140 100

Vacant time cost (euro) 2,025 1,575 1,125 1,350 2100 1,500

Total cost (euro) 3,400 2,850 3,258 5,100 3650 4,183
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That is why it is so important to reduce the number of
binary sequencing variables when solving large problems
with reduced computer effort.

Variation of the number of surgeons and ORs
This problem can be solved by varying the number of
ORs and surgeons and by minimizing the total surgical
cost (OR idling, surgeon waiting, and overtime). If the
number of surgeons and ORs is constant, the idling time
of the ORs is zero since they are never vacant. Then, the
waiting time for the surgeon increases since the surgeon
has to wait for both the cleanup and preparation of an
OR to be completed before starting the next operation.
The final configuration will depend on the resources

available on a surgical day, and the manager must decide
Figure 2 Gantt diagram of instances 1–6. Each panel refers to one instanc
the schedule of the surgeons and the lower Gantt diagram is the schedule of
on and evaluate the best possible option. The manager
may choose to perform the surgeries with fewer sur-
geons or staff or use the same number of surgeons and
ORs if they are available that day.
In Figure 3, we present instance 5 using one extra

surgeon (3 Surgeons and 3 ORs). Having the same
number of surgeons as ORs meant that the cost in-
creased from €3,650 to €4,083 (€1,800 for overtime
and €2,283 for vacant time). There is no single answer
as to whether it is better to have more ORs than surgeons
on a given day: this situation should be evaluated for each
instance with the use of the mathematical model.

Importance of differentiated surgery times in a teaching
hospital
Not all surgeons are the same. In the context of a teach-
ing hospital, this matter becomes very important. Ac-
cording to Bridges et al. [6], who compared 14,452 cases
in terms of operating time, that time was longer in
10,787 procedures when a resident performed the sur-
gery rather than it being done by an experienced sur-
geon. As with any other process, an experienced surgeon
usually works faster than a student. Some faculty sur-
geons have performed operations for many years, and
the residents are still learning. We incorporate this fea-
ture in our model by trying to represent actual behavior
at teaching hospitals. In Table 3, we assign different
e. Every panel has a pair of Gantt diagrams, the upper Gantt diagram is
each operation room.



Figure 3 Gantt diagram of the instance 5 using the same number of surgeons and rooms. The upper Gantt diagram is the schedule of the
surgeons and the lower Gantt diagram is the schedule of each operation room.
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operation durations to different surgeons, assuming that
each surgeon may perform each operation faster or
slower than the projected time.
The misguided assumption that all surgeons perform

equally can create significant scheduling problems. This
is especially important in a teaching hospital, where resi-
dents perform many operations during the surgical day.
In the next example, we planned the surgical day under
the false assumption that surgeon 1 and surgeon 2 (the
resident) perform their operations in the same amount
of time. When we reviewed the results (see Figure 4), we
found that there would be no overtime: all the staff
would finish early at a total cost of €1,725. In this
situation, the planner could even consider including
additional surgeries. However, when the surgeons
followed the sequence obtained, the residents took more
time, and the result was completely different: there was
considerable overtime, and an increase in the total cost
of up to €6,048. In the previous section (Table 6), we
solved instance 5 by considering from the outset the
difference among surgeons in terms of skill: the result-
ing cost was €3,650, which is significantly lower than
€6,048.
The objective with the above example is to highlight the

problem with a commonly accepted assumption when
scheduling, whereby the duration of a surgery is independ-
ent of the surgeon’s skill. This could result in additional
Figure 4 Problems of assume that the surgeons perform the surgerie
and operation rooms) of the instance 5 assuming that all the surgeons per
of follow the previous sequence, with surgeons that perform the surgeries
costs owing to unforeseen delays or cancellations of
surgery through limitations with the extra time. For
this reason, it is important to differentiate between
surgeons.

Rescheduling
Many changes can occur in the course of a day at a
hospital, such as the duration of surgeries and the
starting time of those procedures. A rescheduling pro-
cedure based on fixed the variables xsr’ qsr’ and tss relates
to the completed surgeries and surgeries that have
already begun. The start time and duration of the
surgeries are modified according to new information,
and scheduling can be solved up to optimality in only a
few seconds using a deterministic approach. With our
model, we can handle uncertainties in surgery duration
and modify the schedule immediately after the occur-
rence of unexpected events during the surgical day. The
values of the fix variables allow the determination of
other values related to the general precedence for the
same surgeon, for different surgeons, for different ORs,
and for the same OR, thereby decreasing the overall
solution time.
Figure 5 presents the rescheduling in instance 6.

When surgery G has a delay of 25 minutes, the algo-
rithm fixes the variables associated with surgeries E, A,
and C, and it determines the new start of surgery G. It
s in the same time. On the left part are the Gantt diagram (surgeons
form the surgeries in the same time. On the right part are the results
in different times.



Figure 5 Gantt diagrams of the rescheduling of instance 6. The hatched surgeries (A, E, C) are fixed, and the surgery G is delayed 25 minutes.
The upper Gantt diagram is the schedule of the surgeons and the lower Gantt diagram is the schedule of each operation room.
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then optimizes the remaining surgeries. The optimal
situation with this example was achieved in 15 seconds.
A smaller instance could be solved faster, and resched-
uling based on the first surgery would take the same
amount of time as normal scheduling. If we recall the
optimal outcome for instance 6, presented in Figure 2,
surgeon 2 should perform surgery B at OR 2 after that
surgeon completes surgery G; though surgery B now
becomes assigned to surgeon 3.
The rescheduling tool allows the OR planner to deal

with new conditions that arise during the surgical day,
implementing the required modifications to the schedule,
Figure 6 Screenshot of the configuration page of the software interfa
thereby decreasing the cost impact and avoiding sur-
gery cancellation. An example is provided in a video
(see Additional file 1).

Software interface
We developed a user-friendly interface in AIMMS [14] to
deal with this complex optimization problem (see Figure 6).
We included a guide to help users become familiar with
the process. Additionally, we added a rescheduling capabil-
ity, and we facilitated the changes to the experimental data.
Our solution tool provides the manager with the possibility
of easily changing parameters and obtaining high-quality
ce.
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results faster. The video presents a brief overview of
the interface and its rescheduling capabilities in real
time (see Additional file 1).
We used the simulation software Enterprise Dynamics

to facilitate the evaluation of the different schedules per-
formed by various surgeons. The interface allows the
planner to visualize any schedule in 3-D (see Figure 7)
and to evaluate different dispatching policies for sur-
geons and surgeries, as indicated in Table 4. The simula-
tion model aims to mimic the behavior of the OR,
allowing the planner to easily change the parameters of
the simulation and to set a predefined schedule; alterna-
tively, the planner may introduce dispatching rules and
see their effects in the accrued costs at the end of the
simulation (see Additional file 2).

Discussion
We presented the model we developed to physicians,
who provided useful feedback. We took their suggestions
into consideration and made some improvements to the
model, such as limiting the amount of overtime available
and the maximum number of operations that could be
performed by a surgeon in a day. In addition, the physi-
cians noted that it was unrealistic to perform one surgery
and then immediately begin the next one. Accordingly, we
added some pause time (PT) to the model; in some of the
results, this time was the only waiting time cost present.
The main problem with our model arises from the fact

that a surgeon sometimes moves from one OR to
another OR. This procedure is currently only done in
special cases at the Toledo teaching hospital, such as
when the surgeons are in a hurry: the surgeons them-
selves prefer to perform all their scheduled operations in
the same OR.
Figure 7 Screenshot of the 3D simulation. The left part is the diagram o
The problem with using a single surgeon for surgical
operations in parallel ORs has already been examined
[13,27]. Mancilla [27] presented an interesting discussion
on this topic, arriving at the conclusion that the use of
parallel ORs depends on ratios: the cost ratio (cost of
waiting/cost of idling) and the “setup to surgery time
ratio”. The problem in limiting the mobility of surgeons
is that during the cleanup time and preparation time for
the next patient, the surgeon is not occupied. Therefore,
there is a significant time saving if surgeons move from
one OR to another, avoiding idling costs. If all the opera-
tions by one surgeon are scheduled in the same OR, a
major benefit of the scheduling is lost.

Uncertainty with times
If our model is used to develop OR schedules, having an
accurate estimate of the operating time required for each
surgery type is a prerequisite to its effective use. However,
assessing an operation’s execution time is not easy because
it depends on the patient’s pathology, which may be known
only partially, and on the surgeon’s expertise [28,29].
Since there are no historical data—either on the

probabilities or distribution of the surgery duration for
each patient—we followed the strategy of finding a
fast, accurate solution using the time estimated by the
chief of surgery. Asking the head of surgical services to
provide a forecast concerning the three times (pre-
paration, surgery, and cleanup) for each operation in-
creases the complexity in using the system; it also
increases the complexity of the model without obtain-
ing a better solution since all the data are used for the
estimate. Having an information system that stores all
records relating to surgeons and patients would help
increase the accuracy of such estimates.
f the simulation and the right part is the 3D visualization.
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Interesting approaches has been done in the stochastic
field such as Batun [13], however, obtaining a more ro-
bust solution usually has the requirement of a high
computational cost. Since the aim of this paper is to deal
with the daily scheduling, using a deterministic approach
to generate a good solution in a reasonable time was
preferred.
Despite the use of a stochastic or deterministic model

approach is advisable to periodically update the solution
with the most recent data.
In case that the actual time of the surgery differs from

the predicted model, the solution will be affected and it
will be necessary to run the scheduling again with the
new information. In order to take the best decision, for
example changing the beginning of the next surgery, or
the surgeon that will perform the surgery, in case of that
it is needed in the rescheduling phase the minimum
pause time constraint could be relaxed to minimize the
impacts of the delays.
Limitation of the model
The main limitation with our model is that we first need
to define the set of surgeries that should be sequenced
each day. A future developmental step would be to select
from the entire waiting list which surgeries should be
performed according to their urgency (time on the wait-
ing list).
Using historical data to feed the model could help the

decision maker to obtain accurate predictions of the
duration of the surgeries performed by each surgeon.
However, the same operation can have different times
even when performed by the same surgeon because
every patient is different: according to the head of the
medical service, “Nobody knows what they might find
when they enter the operation room”. Although we de-
veloped a general model for a teaching hospital, there
are still many specific considerations that need to be
studied and implemented in the final program for it to
be used on a daily basis.
Conclusions
The principal contribution of this paper is the develop-
ment of an effective computer aided framework based
on a mixed integer lineal programming and a simulation
model for the daily schedule of the ORs of a teaching
hospital managing multiples surgeries performed by dif-
ferent surgeons.
The MILP model is able to deal with scheduling differ-

ent types of surgeries in parallel ORs and with multiple
surgeons. Using this model, decisions are made on an
operative level because the capacity of the resources
(ORs and surgeons) and the operations that need to be
performed are known 24 hours in advance.
Our model provides high-quality results within a rea-
sonable time for the decision maker, and it allows a new
schedule to be created if any circumstances change. By
incorporating the advantages of model formulation, we
can easily allow surgeons to specialize in only certain
types of operations and deal with real-world problems
without incurring additional computational costs.
The daily surgical scheduling in ORs with multiple

surgeons is still a complex issue for the managing dir-
ector of a hospital. Our tool was specifically designed to
help managers analyze and evaluate possible profitable
results within a reasonable time frame. There are several
specific requirements that are significant to a manager-
director that could be examined in future research to-
ward more accurately representing real situations. Some
future considerations could be the stochastic duration of
the surgeries themselves, different operation durations
depending on the surgeon, and the upstream and down-
stream resources necessary to support surgical activities,
such as preoperative and postoperative actions.
These and other practical considerations provide an

opportunity to continue research in this area: the prom-
ising results in terms of savings and publications repre-
sent more opportunities for operation research in health
management. In addition, it is necessary to convince the
decision makers about the advantage of health-care op-
eration research; they need to know that it is worth
investing their time and money in further studies of this
nature even in the face of current ongoing cuts in the
public health-care system.

Appendix
Spanish health system
Spanish hospitals provide an interesting study case since
the country’s population is markedly older than most
nations in Europe: 17.5% of the Spanish population is
65 years old, and the median age is 42.6 years [30]. Spain
has one of the highest life expectancies in the European
Union, where the average is 81.8 years; at 84.7 years, the
country also has the highest female life expectancy in
Europe. The implication of this aging population is that
more elderly patients will need to undergo surgery and
have to be placed on a surgery waiting list.
The Spanish health-care system is both public and private:

according with the last report of 2013 there are 452 public
hospitals and 311 private hospitals. The system incorporates
4,201 ORs for the country’s around 47 million inhabitants.
Every year, 24,342 surgeons perform 4.74 million operations
(1,129 surgeries per OR per year) [31].
The last official Spanish stats from 2013 counts that

there are 20,721 residents doctors, from which 5,698 are
working and studying to become surgical specialists in
Spanish hospitals, and many of them perform surgeries
every day [31].
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Additional files

Additional file 1: Video with a quick overview of the interface and
real time solving.

Additional file 2: Video with a quick overview of the 3D simulation.
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