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Abstract

Background: Blood samples are usually collected daily from different collection points, such hospitals and health
centers, and transported to a core laboratory for testing. This paper presents a project to improve the collection
routes of two of the largest clinical laboratories in Spain. These routes must be designed in a cost-efficient manner
while satisfying two important constraints: (i) two-hour time windows between collection and delivery, and (ii)
vehicle capacity.

Methods: A heuristic method based on a genetic algorithm has been designed to solve the problem of blood
sample collection. The user enters the following information for each collection point: postal address, average
collecting time, and average demand (in thermal containers). After implementing the algorithm using C
programming, this is run and, in few seconds, it obtains optimal (or near-optimal) collection routes that specify the
collection sequence for each vehicle. Different scenarios using various types of vehicles have been considered.
Unless new collection points are added or problem parameters are changed substantially, routes need to be
designed only once.

Results: The two laboratories in this study previously planned routes manually for 43 and 74 collection points,
respectively. These routes were covered by an external carrier company. With the implementation of this algorithm,
the number of routes could be reduced from ten to seven in one laboratory and from twelve to nine in the other,
which represents significant annual savings in transportation costs.

Conclusions: The algorithm presented can be easily implemented in other laboratories that face this type of
problem, and it is particularly interesting and useful as the number of collection points increases. The method
designs blood collection routes with reduced costs that meet the time and capacity constraints of the problem.

Keywords: Blood sample transportation, Vehicle routing problem, Genetic algorithm, Operations research
Background
One of the main challenges in healthcare systems today is
to deliver high-quality services with limited resources.
Therefore, optimization problems in healthcare have
attracted the attention of many researchers, in particular
from the area of Operations Research (OR). A survey on
the application of OR in healthcare concludes that, al-
though many healthcare problems have been successfully
solved using OR techniques, many more still need the
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reproduction in any medium, provided the or
attention of researchers to provide effective and realistic
solutions [1].
This paper presents a project to improve the logistics of

blood sample collection at two important clinical labora-
tories in Catalonia, a region in the Northeast of Spain.
Clinical laboratories perform blood analyses to gather in-
formation about the physical and chemical properties of
blood. This information is essential for physicians to diag-
nose and manage certain diseases and conditions. One of
the fundamental features of every clinical analysis refers to
quality assurance. As a matter of fact, in 2003 (later revised
in 2007) the International Organization for Standardization
developed the ISO 15189 standard with the requirements
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for quality and competence in clinical laboratories. The
standard involves the design of quality systems for the en-
tire analytic process. This process consists of three phases:
(1) a pre-analytical phase with analysis request, collection,
transportation, and preparation; (2) an intra-analytical
phase with testing; and (3) a post-analytical phase with re-
sults transmission, interpretation, and action. Special atten-
tion must be given to the pre-analytical phase, where most
of the errors occur [2]. In the case of blood analyses, sam-
ples are usually collected daily from different collection
points, such hospitals and health centers, and transported
in thermal containers to a core laboratory for testing in the
pre-analytical phase. Inadequate transportation and hand-
ling is a common pre-analytical error [3]. According to [4],
blood must be carried to the laboratory under proper
temperature (to preserve its properties), correct positioning
(to avoid hemolysis) and within a given time window (less
than two hours). Failing to do so may alter testing results,
leading to misdiagnosis and inappropriate treatment. Blood
transportation, therefore, poses a challenging logistics
problem, where time is crucial to guarantee the quality of
the samples.

Laboratories of study
With the objective of improving healthcare delivery and
bringing services closer to users, the Catalan Government
established, some decades ago, a network of centers called
sample collection modules made up of different facilities
from where samples of blood and other clinical specimens
could be collected for analysis. In recent years, to rational-
ize resources and search for economies of scale, there has
been a centralization of testing processes. As a result, a
small number of laboratories concentrate all analytic pro-
cesses. This has lead to higher levels of efficiency while in-
creasing the technical capabilities of these laboratories.
One of such laboratory is Catlab, located in the Vallès
Occidental region in Catalonia (Spain). Catlab was created
after the merger of the Terrassa Health Consortium
(“Consorci Sanitari de Terrassa”, CST) and the Terrassa
Mutual Company (“Hospital Universitari Mútua Terrassa”,
HUMT) to provide high quality and technological ad-
vanced clinical services. This central laboratory was lo-
cated in the Logistics Park of Health in Viladecavalls,
a municipality near Terrassa, the capital of the Vallès
Occidental region. Catlab currently processes around
7.6 million clinical analyses annually, but has capacity
to reach 11 million. With a 5.5 million euro investment in
equipment and technology, it serves more than eight hun-
dred thousand people in the region. Catlab receives blood
samples daily from 43 collection modules dispersed across
the Vallès Occidental region. These modules are clustered
into four groups according to the company responsible for
their management, namely, CST, HUMT, Sabadell Health
Catalan Institute (ICS Sabadell), and Cerdanyola Health
Catalan Institute (ICS Cerdanyola). Currently, each of the
four companies schedules their collections and plans the
routes independently, using a different carrier company.
This is executed manually with few cost considerations,
sometimes resulting in expensive daily deliveries.
The difficulties encountered by Catlab managers when

designing collection routes motivated this joint work. The
process was later replicated at another laboratory of the
Doctor Robert Health Center (“CAP Doctor Robert”).
This other laboratory, located in Badalona (a city in the
Barcelona metropolitan area) concentrates all analytic
processes from 74 surrounding collection modules.

Methods
The blood sample collection problem
The Blood Sample Collection Problem (BSCP) aims to
find the routes to collect blood samples from different lo-
cations and to deliver them to a clinical laboratory for ana-
lysis. The BSCP is a variant of the well-known Capacitated
Vehicle Routing Problem (VRP) [5] with two additional
features: (i) routes are open, and (ii) time per route is con-
strained. In a regular VRP, a fleet of vehicles is based at a
single depot to serve demands for a set of geographically
dispersed customers. Each vehicle, whose capacity cannot
be exceeded, leaves the depot, visits some customers, and
returns to the depot. The problem consists in finding the
sequence of deliveries (routes) so that all customers are
served and the total distance traveled by all vehicles is
minimized.
The VRP is a non-deterministic polynomial-time hard

(NP-hard) problem [6], which implies a non-polynomial
increase in the size of the solution space when the number
of nodes is increased. Although significant research effort
has been dedicated to the VRP, the problem still gets the
attention of many researchers [7].
In a VRP, routes are closed in the sense that vehicles

start and finish at the depot. In the BSCP, however, this
is not the case since routes are covered by an external
carrier company whose vehicles start at the first collec-
tion point, visit other collection points, and finish at
the laboratory. This is called Capacitated Open VRP
(COVRP) in OR literature and has also been studied
extensively. The reader is referred to [8] for a review of
solution methods proposed to solve the COVRP. The
second distinctive feature in the BSCP is a time con-
straint imposed on the duration of each route. This
time constraint is an upper bound determined by the
maximum time that blood samples can last without de-
terioration, that is, two hours [9].
Considering these two additional constraints, the BSCP

can be defined as a Capacitated Time-Constrained Open
Vehicle Routing Problem (CTCOVRP). The capacity con-
straint is determined by the number of thermal containers
that a vehicle can transport, whereas the time constraint is
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given by the two-hour time window between the first col-
lection and delivery to the laboratory. The objective of the
BSCP is to find a set of open routes to collect all blood
samples within two hours that satisfies the vehicle-
capacity constraint and minimizes total logistics costs. In
the case of the laboratories studied in this paper, these
costs derive primarily from the number of vehicles used
by the external carrier company. Another possible object-
ive function could include other distance- or time-related
costs associated to these routes.
Prior to solving the BSCP, the following input data

is needed:

� Location of each collection point and the clinical
laboratory;

� Travel distances and times between every pair of
collection points, and between all collection points
and the laboratory. This data was obtained with a
web application that uses Google Maps developed
by the authors; which can be found at http://vrp.upf.
edu/;

� Average daily demand, in thermal containers
(see Figure 1), for each collection point;

� Vehicle capacities, in thermal containers (i.e., 10,
16 or 25);

� Time constraint between the first collection point
and laboratory (i.e., 2 hours);

� Average stopping time at each collection point: this
time, which is usually between 10 and 15 minutes,
consists in parking the vehicle at the center, filling
up the corresponding forms, picking up the
containers with blood samples, and loading them
into the vehicle.

The CTCOVRP can therefore be described as the fol-
lowing optimization problem:
Figure 1 Thermal containers. Thermal containers to deliver blood
samples to the laboratory.
� Objective function: Minimize the number of
vehicles.

Subject to:

� Feasible Routes: All routes start at a collection point
and finish at the laboratory (i.e., Open VRP);

� Time Constraint: the time between collection at the
first point and the delivery to the laboratory must be
no greater than two hours;

� Capacity Constraint: total demand in thermal
containers transported by a vehicle must be no greater
than its maximum capacity (i.e., 10, 16 or 25).

Besides the BSCP, there exist other real applications of
the CTCOVRP. For instance, a special version of the
school bus problem known as the bus route generation
problem [10]. Another application is found in the retailing
industry, where many retailers outsource its distribution
to third-party logistics providers that deliver goods from a
depot to the stores without returning to the depot.
In the context of healthcare, and in particular, in the area

of laboratory management, only one paper seems to de-
scribe a similar problem [11]. However, their authors only
solve a small problem by complete enumeration, something
infeasible in this study due to the large number of collec-
tion points (e.g., a case with 50 collection points would rep-
resent choosing routes among more than 3 × 1068 different
possible combinations).

Solution approach
The choice of a solution method or algorithm to solve an
optimization problem of this type must consider both the
solution quality (i.e., the cost of the solution) and the time
to obtain it. Routing problems in general are difficult to
solve in reasonable time. Therefore, heuristic methods are
preferred since they are able to obtain excellent results in
reduced time [7]. A heuristic is a computational method
tailored to solve large optimization problems, like the one
presented in this paper, known to be very complicated to
solve optimally. Starting from an initial solution, a heuris-
tic method searches iteratively for better solutions using a
series of rules and conditions. Heuristics share many desir-
able features that prove to be excellent to solve complex
problems: most of them are simple, easy to implement, ro-
bust and highly effective on difficult problems [12].
The algorithm designed to solve the BSCP is a heuristic

based on a Genetic Algorithm (GA) [13]. GAs are robust
and effective algorithms computationally simple and easy
to implement. They generate new solutions using tech-
niques inspired by natural evolution [14]. Each solution is
obtained by decoding the chromosome of each individual.
This chromosome has an associated fitness level corre-
lated with the objective function. The GA produces a

http://vrp.upf.edu/;
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series of generations and the most fit individual of the last
generation is the final solution. New generations are ob-
tained by combining individuals of the current generation
in a process called crossover. In some cases, random mu-
tations of the individuals occur to explore new solutions.
The framework for the GA used to solve the BSCP is

depicted in Figure 2. An individual’s chromosomes are
represented by n random keys (genes) that are real-valued
numbers in the interval [0,1]. This type of GA is known as
Random Key Genetic Algorithm (RKGA), and it was first
introduced to solve sequencing problems [14].
In a RKGA, there is an initial population of p individ-

uals, that is, p strings (or vectors) of n randomly generated
numbers between 0 and 1. Using a deterministic algo-
rithm, called decoder, the algorithm translates each indi-
vidual’s random-key vector to obtain a corresponding
feasible solution of the BSCP with its corresponding cost.
This decoder, in other words, decodes solutions encoded
as vectors of keys into feasible solutions for this problem.
The population is then partitioned into two groups: a
small group called the elite individuals with the pe best in-
dividuals (around 10-20%), and a second group called the
non-elite individuals, with the p − pe remaining individuals
(with pe < p − pe). Next, this population is evolved to ob-
tain the next generation. Figure 3 illustrates the transition
of a new generation. First, all elite individuals are copied
as they are. With this, the algorithm ensures that the best
solutions are maintained in the population. Then pm ran-
dom individuals, called mutants, are added. Mutants are
Figure 2 Algorithm framework. Framework for the genetic algorithm use
generated randomly like the individuals of the initial popu-
lation. This operation, essential in GAs, enables the proced-
ure to escape from local minima. Finally, the remainder of
the population is composed of p − pe − pm additional indi-
viduals generated through the process of mating, or cross-
over. The original RKGA selects two parents randomly
from the entire population. However, in this paper a variant
called Biased Random Key Genetic Algorithm (BRKGA)
[15], where one of the parents is always selected at random
from the elite group of individuals, has been used. The
other parent is selected at random from the non-elite popu-
lation. Since pe < p − pe, the probability of choosing an elite
individual is larger than that of choosing a non-elite indi-
vidual, that is, 1/pe > 1/(p − pe). The given elite individual
has then a higher likelihood to pass on its characteristics to
future generations. The crossover, detailed below, will also
contribute to this end. Repetition in the selection of a mate
is allowed so that an individual may produce more than
one offspring in the same generation.
Mating is done using parameterized uniform crossover

[16], that is, each random key (gene) of the child is chosen
from one of its parents’ keys with a certain probability (de-
fined by the user). The probability of inheriting the key of
the elite parent must be larger than 0.5 to favor elite par-
ent’s characteristics over the non-elite parent’s. Figure 4
shows a crossover when the probability of choosing a gene
from the elite parent is 0.6. In the example, the new indi-
vidual is obtained as follows. n (five in this case) random
numbers between 0 and 1 are generated, one for each gene
d to solve the BSCP.



Figure 3 New generation transition. Transition of a new generation in the BRKGA.
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(that is, 0.86, 0.42, 0.33, 0.19 and 0.66). If the random num-
ber is below 0.6, the child inherits the gene of the elite par-
ent; otherwise it inherits the gene of the non-elite parent.
When the next generation is complete with p individ-

uals, these individuals are decoded into feasible routes
and their costs are calculated, again using the decoder.
This process is then repeated several times until a final
solution is obtained. In practice, the algorithm stops
when it reaches 100 generations without improvement.
Increasing the running time will unlikely provide better
results as shown in the Results Section. Note that a
BRKGA can be used to solve a myriad of optimization
problems; the only portion of the algorithm that needs
to be adapted to each particular problem is the decoder.
The decoder for this vehicle routing problem is quite

simple to obtain: each individual (solution) is composed of
a string of real-valued numbers (random keys) in the
interval [0,1]. These values are sorted obtaining a sequen-
cing order. Routes are then obtained by cutting the se-
quence just at the point before problem constraints
(capacity and time) are violated. For example, consider the
Figure 4 Crossover example. A crossover when the probability of
choosing a gene from the elite parent is 0.6.
child generated in the crossover in Figure 4 with the fol-
lowing random keys p = (0.36, 0.89, 0.59, 0.11, 0.62). The
sequence obtained by sorting the keys of the chromosome
is 4 − 1 − 3 − 5 − 2, which slightly differs from those of its
parents (4 − 1 − 5 − 3 − 2 and 4 − 3 − 1 − 5 − 2, respect-
ively). Suppose now that each point has one container to
be delivered and the vehicle’s capacity is two containers.
Therefore, three routes are obtained: 4-1-lab, 3-5-lab, and
2-lab. In the route construction, when cutting the se-
quence, both capacity and time constraints are considered.
Since all collection points must be within two hours of the
laboratory, the decoder always obtains feasible solutions
from individuals.

Results
The BRKGA has been implemented using the C program-
ming language, and run on an Intel(R) Core(TM)2 T7500
with 2.2 GHz and 3 GB of RAM memory. For managerial
reasons, the 43 collection modules were divided into two
groups: a first group that includes all CST and HUMT
centers (i.e., 18 centers); and a second group that includes
all ICS Sabadell and ICS Cerdanyola centers (i.e., 25 cen-
ters). Two different scenarios were then considered when
calculating collection routes:
I. Two separately calculated sets of routes, one for

CST + HUMT centers and the other for ICS centers.
II. A jointly calculated set of routes for all 43 centers

(CST + HUMT + ICS).
Each scenario was run twice assuming a vehicle capacity

of 16 and 25 thermal containers, respectively. Table 1
shows both the current routes and the routes obtained
after running the BRKGA until the stopping criterion was
reached (that is, after 100 generations without a solution
improvement). The algorithm was really fast in obtaining
these routes, spending only between 1 and 27 seconds for



Table 1 Number of routes for Catlab

Current solution BRKGA solution

Vehicle capacity = 16 Vehicle capacity = 25

Scenario I CST + HUMT 5 3 3

ICS 5 5 4

Scenario II CST + HUMT + ICS - 7 7

Number of routes for Catlab under Scenarios I and II using vehicles with two different capacities (16 and 25 thermal containers, respectively).
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the different scenarios. The current routes for the four
companies are ten in total, distributed as follows: two
routes for CST, three routes for HUMT, three routes for
ICS Sabadell, and two routes for ICS Cerdanyola. These
routes use vehicles with capacity of 16 and/or 25 thermal
containers indistinctively.
When the vehicle used to collect blood samples has a

capacity of 16 thermal containers, the implementation of
the algorithm reduces the number of routes from 10 to 8
for Scenario I and to 7 for Scenario II. Figure 5 maps the
current 5 routes used by Catlab for CST +HUMT in Sce-
nario I, while Figure 6 shows the solution proposed by the
BRKGA using only 3 routes. When the vehicle has a cap-
acity of 25 containers, on the other hand, the number of
routes obtained is reduced to 7 for both scenarios.
To benchmark these results, the mathematical formula-

tion for the CTCOVRP was implemented on a commer-
cial solver (IBM ILOG CPLEX Optimizer 11.2) [17]. This
Figure 5 Current routes for CST + HUMT scenario. Current five routes u
pushpin represents Catlab’s central laboratory.
type of software can handle relatively small problem in-
stances using exact methods. As problem size increases,
the computational time needed to solve a problem opti-
mally grows exponentially, and CPLEX can only provide
upper and lower bounds of the optimal solution. Table 2
shows the results given by CPLEX.
The BRKGA performs considerably well: when vehicle

capacity is 16, it obtains optimal solutions in all cases. Note
that in Scenario II, the lower bound found by CPLEX is
non-integer (6.43) which implies that the optimal solution
has at least 7 routes (it has actually 7 because the BRKGA
solution is 7). When vehicles with capacity of 25 are used,
the BRKGA provides high-quality solutions. Since these so-
lutions are close to the lower bounds obtained by CPLEX,
it is very likely that they are also optimal. The cost of using
a vehicle is around €60 per route for 16-container vehicles,
and €67 per route for 25-container vehicles. Reducing 3
routes every day, for a total of approximately 250
sed by Catlab for the collection centers of CST and HUMT. The



Figure 6 Routes proposed by the BRKGA for CST + HUMT scenario. The three routes proposed by the BRKGA for the collection centers of
CST and HUMT. The pushpin represents Catlab’s central laboratory.
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working days, implies annual savings in transportation
of over €45,000, which represents 30% of the total an-
nual transportation cost.
CAP Doctor Robert’s laboratory, on the other hand, col-

lects blood samples from 74 collection modules. This col-
lection is also carried out by an external carrier company,
but unlike Catlab, they consider all collection points
jointly when planning the routes. The route planning is
done manually resulting in twelve different routes. In their
case, they can use three types of vehicles with capacities
10, 16, and 25 thermal containers, respectively. Table 3
shows the results in number of routes. The BRKGA re-
duces the number of routes from 12 to 10 or 9 depending
Table 2 Upper and lower bounds on the number of
routes for Catlab using CPLEX

CPLEX solution

Vehicle
capacity = 16

Vehicle
capacity = 25

Scenario I CST + HUMT 4(3) 4(2)

ICS 5* 6(3)

Scenario II CST + HUMT + ICS 13(6.43) 14(5)

Upper (lower) bound obtained by CPLEX after running the program for 1 hour
(Scenario I: CST + HUMT), 2 hours (Scenario I: ICS), and 3 hours (Scenario II:
CST + HUMT + ICS), respectively. A number with an asterisk represents the
optimal solution (i.e., upper and lower bounds coincide).
on the vehicle used. The improvement, in this case, repre-
sents savings of around 20% in transportation costs.

Discussion
Clinical laboratories provide essential public health ser-
vices, obtaining invaluable information for physicians to
prevent, diagnose and treat diseases. The demand for
these services in particular, and for healthcare in general
will continue to increase, and so will the costs, due to
aging population and advances in medical knowledge
and technology, among other factors [18]. Public re-
sources for healthcare will remain insufficient to meet
such increasing demand and costs. Therefore, policy
makers, healthcare providers and, consequently, labora-
tory managers need to allocate limited resources effi-
ciently to continue striving for excellence. An important
part of the total laboratory expense derives from oper-
ational aspects in the daily activities of the laboratory.
Their management and the problems encountered
Table 3 Number of routes for CAP Doctor Robert

Current
solution

BRKGA solution

Vehicle
capacity = 10

Vehicle
capacity = 16

Vehicle
capacity = 25

CAP Dr. Robert 12 10 9 9

Number of routes for CAP Doctor Robert using vehicles with three different
capacities (10, 16 and 25 thermal containers, respectively).
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resemble the traditional manufacturing-related problems
in Operations Management. Thus, the use of OR tech-
niques, tools and theories can benefit substantially health
care management. Many successful examples have been
documented in literature [19-21], but there is still much
potential for improvement in laboratory management.
The main benefits of applying OR methodologies, and,

in this case, a solution method based on the BRKGA, are
not only in terms of money savings in transportation.
They also lead to a better management and decision mak-
ing when problem circumstances change (e.g., the addition
or modification of collection points), and to an improved
quality service (e.g., by ensuring the two-hour time con-
straint on routes). Strategically, these methods are crucial
for a better planning in case that a new laboratory merger
had to be implemented due to the current economic
turmoil.
The BRKGA is an algorithm that has been used success-

fully in numerous applications such as job-shop and project
scheduling problems, assembly line balancing, tollbooth lo-
cations, etc. The core functioning of this approach is very
similar regardless of the application since its architecture
can be divided in a problem-independent component and a
problem-specific part. This makes the algorithm really flex-
ible: one only needs to set up few parameters (number of
genes, size of population, percentage of elite individuals and
mutants, and probability of inheriting elite genes), and con-
struct a decoder that maps each random-key vector into a
feasible solution for the problem being considered. This
type of GA generally produces results that are as good as or
better than those found using standard GAs [15].
Conclusions
This paper has presented the operational problem of
blood sample collection faced by two large laboratories,
and used an advanced optimization technique to solve it.
In particular, a Biased Random Key Genetic Algorithm
has been implemented to find a set of collection routes
that reduces approximately between 20% and 30% of the
total logistics costs for two of the largest clinical labora-
tories in Spain. These routes, optimal in most cases,
need to be calculated only once as long as the volume of
samples to be collected in the different centers does not
vary excessively, or new collection centers are not added.
This work is easily replicable to other laboratories that

need to collect samples from different centers. A spread-
sheet file with postal addresses, average demands and col-
lecting times is the only data required to run the algorithm.
Similarly, this model can also be adapted to other routing
problems faced by clinical laboratories or health centers
with slight changes in the constraints or the objective func-
tion. In general, the application of such OR techniques is
particularly interesting and relevant as the problem size
increases, since the difference between their solutions and
those manually-obtained can be quite significant.
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