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Abstract

Background: Hospitalization costs in clinical trials are typically derived by multiplying the length of stay (LOS) by
an average per-diem (PD) cost from external sources. This assumes that PD costs are independent of LOS. Resource
utilization in early days of the stay is usually more intense, however, and thus, the PD cost for a short hospitalization
may be higher than for longer stays. The shape of this relationship is unlikely to be linear, as PD costs would be
expected to gradually plateau. This paper describes how to model the relationship between PD cost and LOS using
flexible statistical modelling techniques.

Methods: An example based on a clinical study of clevidipine for the treatment of peri-operative hypertension
during hospitalizations for cardiac surgery is used to illustrate how inferences about cost-savings associated with
good blood pressure (BP) control during the stay can be affected by the approach used to derive hospitalization
Costs.

Data on the cost and LOS of hospitalizations for coronary artery bypass grafting (CABG) from the Massachusetts
Acute Hospital Case Mix Database (the MA Case Mix Database) were analyzed to link LOS to PD cost, factoring in
complications that may have occurred during the hospitalization or post-discharge. The shape of the relationship
between LOS and PD costs in the MA Case Mix was explored graphically in a regression framework. A series of
statistical models including those based on simple logarithmic transformation of LOS to more flexible models using
LOcally wEighted Scatterplot Smoothing (LOESS) techniques were considered. A final model was selected, using
simplicity and parsimony as guiding principles in addition traditional fit statistics (like Akaike's Information Criterion,
or AIC). This mapping was applied in ECLIPSE to predict an LOS-specific PD cost, and then a total cost of
hospitalization. These were then compared for patients who had good vs. poor peri-operative blood-pressure
control.

Results: The MA Case Mix dataset included data from over 10,000 patients. Visual inspection of PD vs. LOS revealed
a non-linear relationship. A logarithmic model and a series of LOESS and piecewise-linear models with varying
connection points were tested. The logarithmic model was ultimately favoured for its fit and simplicity. Using this
mapping in the ECLIPSE trials, we found that good peri-operative BP control was associated with a cost savings of
$5,366 when costs were derived using the mapping, compared with savings of $7,666 obtained using the
traditional approach of calculating the cost.

Conclusions: PD costs vary systematically with LOS, with short stays being associated with high PD costs that drop
gradually and level off. The shape of the relationship may differ in other settings. It is important to assess this and
model the observed pattern, as this may have an impact on conclusions based on derived hospitalization costs.

* Correspondence: jackishak@unitedbiosource.com

"United BioSource Corporation, 185 Dorval Ave, Suite 500, Dorval, QC H9S
5J9, Canada

Full list of author information is available at the end of the article

- © 2012 Ishak et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
( B|°Med Central Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:jack.ishak@unitedbiosource.com
http://creativecommons.org/licenses/by/2.0

Ishak et al. BMC Health Services Research 2012, 12:439
http://www.biomedcentral.com/1472-6963/12/439

Background

Data from clinical trials are often used to support eco-
nomic evaluations or to perform post-hoc analyses of
health-economic outcomes (e.g., difference in total cost
of care between interventions). Trials that are not
designed to capture economic data (i.e., charges for ser-
vices and treatments provided during the stay) lack the
detail needed to derive the exact cost of the hospitaliza-
tions. These must, therefore, be approximated using
other information about the hospitalization such as the
length of stay (LOS) multiplied by a per diem (PD) cost.
The PD cost must be obtained from publications or
derived from supplemental data sources where the total
cost and LOS of similar hospitalization are recorded. An
alternative (but cruder) approach to obtain an average
PD cost is to divide an institution’s total costs for a par-
ticular period by the total patient-days [1-4].

Using an average PD cost may result in a biased esti-
mate of the cost of the event if other factors that may in-
fluence the PD costs are not considered [5,6]. These
factors include the reason for hospitalization, the sever-
ity of the patient’s condition, and presence of comorbid-
ities. PD costs can be made more specific by restricting
the calculation to a particular case mix [3,7], or deriving
patient-specific (e.g., by disease severity), disease-specific
[2] or ward-specific [8,9] PD costs. This may not be suf-
ficient, however, since PD costs are also closely asso-
ciated with LOS. [10,11] It has been shown that while
the total cost of hospitalization may increase with LOS,
the average PD cost generally decreases as the LOS
increases [12,13], since the most of the costs accrue im-
mediately after admission or as complications arise, and
drop substantially during the recovery phase of the hos-
pital stay. Using a PD cost that is not adjusted for LOS
can lead to inaccurate total cost estimates, and distort
comparisons of costs between groups, particularly when
LOS differs between the groups.

Adjusting for LOS in the derivation of PD costs is not
necessarily straight-forward due to the potentially com-
plex (e.g., non-linear) relationship between the variables.
One approach to dealing with this may be to categorize
LOS into intervals, and calculate average PD cost within
each of these. The optimal number of intervals and cut-
off points may be difficult to determine and small counts
within some intervals can be limiting. In this paper, we
describe an approach based on flexible statistical model-
ing techniques to predict an LOS-specific PD cost. The
method is described and illustrated with the analyses of
hospitalization costs in a clinical study of clevidipine for
treatment of perioperative (pre-, intra- and post-opera-
tive) hypertension in the setting of cardiac surgery. The
potential impact of the approach to derive PD costs on
the association between blood pressure (BP) control and
total cost is illustrated.
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Methods

Case study: is better peri-operative blood pressure
control associated with lower cost of hospitalization for
cardiac surgery?

The ECLIPSE [14] (Evaluation of CLevidipine In the
Perioperative Treatment of Hypertension Assessing
Safety Events) Trials compared the safety and efficacy of
clevidipine with nitroglycerin, sodium nitroprusside, and
nicardipine in the treatment of perioperative hyperten-
sion in patients undergoing coronary artery bypass graft-
ing (CABG), valve surgery or combined surgeries.
ECLIPSE included three parallel, randomized, open-label
studies conducted at 61 medical centers in the United
States between April 2004 and October 2006.

Efficacy was assessed by degree of control of systolic
BP measured by the portion of the area under the curve
(AUC) of systolic BP over time that fell outside
(either above or below) of the range defining control
(75-145 mm Hg intra-operatively and 85-155 mm Hg
pre- and postoperatively) during the 24-hour period fol-
lowing study drug initiation. The AUC values were normal-
ized per hour and expressed in units of mmHg x min/h;
larger AUC indicated a lesser degree of BP control, and,
hence, greater BP variability [15]. An analysis of the
pooled populations of the trials (N = 1,512) showed that
better BP control by decreasing peri-operative systolic
BP variability was associated with a significant reduction
of 30-day mortality [16]. Data from the trial alone did
not allow examination of whether better BP control was
also associated with lower total cost for the surgery be-
cause medical charges were not recorded during the
trial. Only the LOS of the index hospitalization (i.e., for
CABG, valve replacement or combination surgery) and
occurrences of pre- and post-discharge complications
were available. Thus, supplemental data were required
to derive pre- and post-discharge costs, and examine
the association between the peri-operative BP control
and the total cost.

Derivation of total costs

Data requirements

Total cost was defined as the sum of the cost of the
index hospitalization, and any costs incurred post-
discharge due to complications. The former may be
derived based on the LOS of the hospitalization and PD
costs that take into account the type of surgery per-
formed and any complications that may have occurred,
as these may significantly impact the cost. As no details
are available for post-discharge events, a mean cost for
each type of complication is required.

Complications expected to have an important influence
[15,17,18] on both pre- and post-discharge costs were:
myocardial infarction (MI), stroke, infection, renal failure,
bleeding event(s), and death. These complications were
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selected due to their high costs and potential for providing
detectable cost differences in comparisons between
patients with good vs. poor peri-operative BP control. This
was based on clinical considerations; different complica-
tions have different courses of treatment and recovery,
and thus different patterns of cost and LOS.

The following complication groupings were defined.
The data would not permit analyses for cases where
multiple complications occurred; thus, these cases were
grouped as having two complications or more than two
complications.

1. Death (with or without other complication)

2. MI only

3. Stroke only

4. Infection only

5. Renal failure only

6. Bleeding event only

7. Two complications

8. More than two complications

9. Other (i.e., none of the above, including possibly no
complications)

Patients were classified into one of these groups based on
their experience during the index hospitalization. In
addition to the complications, the index hospitalization cost
was also expected to depend on the type of surgery. Thus,
PD costs were required for 27 different scenarios (3 types
of surgery x 9 complication groups). To further account for
a potential association between PD costs and LOS,
individual-level data were required to derive a suitable map-
ping. As no details were available for post-discharge compli-
cations, a mean cost for hospitalizations for each type of
specific complication (i.e., death, MI, stroke, infection, renal
failure and bleeding event) were also required to be derived
post-discharge cost for patients in ECLIPSE.

Cost data source

Data from the Massachusetts Acute Hospital Case Mix
Database (henceforth, the MA Case Mix Database) were
used to obtain pertinent cost information to derive pre-
and post-discharge costs for patients in the ECLIPSE trial.
The MA Case Mix database includes data on charges,
LOS, diagnoses and procedures, as well as socio-
demographic information for patients of all ages covered
by all payers. This database has been used previously to
evaluate hospitalization costs and LOS for CABG surgery
including post-operative complications [19,20].

To ensure compatibility with the ECLIPSE trials, the
database was restricted to the 2005-2007 [17] period,
and identified patients with a hospitalization for a CABG
(ICD-9-CM procedure codes 36.10-36.19) or Valve Sur-
gery (35.10-35.28, 35.31, 35.32, 35.33, 35.99) or both, with
appropriate DRG codes (N = 18,548). Each hospitalization
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was classified into one of the nine complication groups
based on concurrent diagnoses reported in the
hospitalization record (see Additional file 1 for specific
ICD-90-CM codes used). The cost for each hospitalization
was calculated using the average Massachusetts cost to
charge ratios from Healthcare Utilization Project (HCUP)
National Inpatient Sample files specific for each year of
the data (2005 — 2008) [21]: 0.559084 for 2005, 0.559934
for 2006, and 0.570321 for 2007. The costs were then
inflated to 2009 dollars using the Bureau of Labor Statis-
tics inflation rates for New England [22]: 1.201 for 2005,
1.156 for 2006, and 1.096 for 2007. Finally a PD cost for
each hospitalization was calculated by dividing the cost of
the hospitalization by its LOS.

This produced a dataset including the following vari-
ables: type of cardiac hospitalization, complication
group, LOS and PD Cost, as well as basic demographic
information on patients — i.e., age, sex and race (white,
non-white). To ensure compatibility with the ECLIPSE
data, the distribution of LOS values in each of the com-
plication groups were compared with those in ECLIPSE.
Hospitalizations with LOS falling outside of the range
(minimum- maximum) observed in ECLIPSE were
excluded. A total of 158 (1.5%) observations were
dropped, as these might reflect types of patients that are
not representative of the ECLIPSE populations. For in-
stance, cases with very long LOS may have concomitant
chronic conditions that account for their very late dis-
charge, while cases with very short LOS may be indica-
tive of a transfer to other facility rather than a true
discharge. The resulting dataset, which included 10,450
observations was used to examine the relationship be-
tween PD cost and LOS, as described below.

Mean costs for post-discharge complications were also
derived from the MA Case Mix Database restricted to the
2005-2007 period. Hospitalizations with a principal diag-
nosis corresponding to each type of complication (Appen-
dix A) were identified. For patients with CABG, the
records were restricted to those with a secondary diagno-
sis indicating Aortocoronary Bypass Status (code V45.81).
All charges were adjusted by 0.570321, the mean cost-to-
charge ratio from the 2007 HCUP Nationwide Inpatient
Survey Cost-to-Charge Ratio Files - Massachusetts. These
were then inflated to 2009 dollars by applying an adjust-
ment factor of 1.096 [23]. This yielded a dataset including
post-discharge and complication group. The mean cost
for each type of complication was derived.

Statistical analysis: derivation of appropriate PD cost for
ECLIPSE patients

The traditional approach to deriving a PD Cost would
involve calculating a mean value of observations in the
MA Case Mix dataset for each of the 27 surgery/compli-
cation scenarios defined above. These would then be
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multiplied by the LOS of patients in corresponding sur-
gery/complication groups to obtain the cost of the index
hospitalization. This approach assumes that within each
of the 27 subcategories, PD cost and LOS are independ-
ent, or equivalently, that the hospitalization cost is pro-
portional to LOS.

The validity of this assumption should be examined
using graphical displays, and regression techniques, par-
ticularly models that allow flexible shapes, to explore the
relationship between PD cost and LOS. Since costs are
known to have a skewed distribution [21,24] and are non-
negative (i.e., > 0), the usual linear regression models can-
not be used, as these assume a normal distributions for
the dependent variable. Other models based on log-
normal or gamma distributions are often used. [21] Alter-
natively, a natural log transformation of costs is also pos-
sible. We adopted the latter approach to have the greatest
flexibility in exploring several modelling approaches.

The first step involved exploratory analyses to help
identify an appropriate modelling approach. There were
two main considerations:

1. What statistical techniques can best capture the
observed shape of the relationship between PD cost
and LOS, and

2. Whether the nine complication groups can be
analyzed jointly with a single model including LOS
and complication type as predictors and possible
interaction terms, or whether this is more
appropriately done with separate models for each of
the groups.

Scatter plots of PD costs vs. LOS were created for the
nine groups. A visual examination of these graphs pro-
vided clues about an appropriate shape. This was aided
further by adding LOESS (LOcally wEighted Scatterplot
Smoothing) curves to the plots. A LOESS curve is derived
by fitting a simple model to localized subsets of the data
to build up a function that describes the deterministic part
of the variation in the data, point by point. By overlaying
this function on the scatterplot, the trend and noise can
be visually separated. One of the main features of this
method is that the data analyst is not required to specify a
global function of any form to fit a model to the data, only
to fit segments of the data [23,25]. Based on the shape of
the derived function, however, candidate parametric func-
tions (e.g., linear, quadratic, logarithmic, etc.) may be iden-
tified for formal testing. If a simple functional form does
not seem adequate, piecewise functional forms should be
considered. For instance, piecewise linear models can be
used with knots set at appropriate points to capture
changes in shape.

The parametric functions identified for log of PD costs
vs. LOS are described in the results section. These were
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fitted to the observed data to assess their fit and deter-
mine a final optimal model using the Akaike information
criterion (AIC) [26] and Bayesian information criterion
(BIC) [27] statistics, as well as examination of observed
vs. predicted plots. Parsimony and simplicity were used
as deciding factors to choose between models with com-
parable fit.

Since the aim of the paper is to illustrate the applica-
tion of this approach, the details of the process of deter-
mining candidate models and choosing a final mapping
are described in the results section.

Application in ECLIPSE to compare total cost for patients
with poor vs. good BP control

The mapping between LOS and PD Costs derived in the
previous step was used to derive the cost of the index
hospitalization by multiplying the predicted PD cost by
the LOS observed in ECLIPSE. We also derived the pre-
discharge cost based on an average PD cost that ignores
the relationship with LOS to illustrate the potential impact
on conclusions about BP control and total cost. A post-
discharge cost was derived based on complications occur-
ring after the index hospitalization. For patients with mul-
tiple post-discharge complications, the cost of the most
expensive event was used. The pre- and post-discharge
costs were added to obtain the total cost for each patient
in ECLIPSE. Figure 1 illustrates an example of a patient
who had a bleed followed by a stroke during the index
hospitalization and died after discharge. The PD cost for
the Two Complications group would be use to derive the
pre-discharge cost based on the LOS, and a post-discharge
cost would be based on a hospitalization for death.

The following post-discharge cost values were used for
the patients with CABG procedure only: Infection:
$2,090.63; Bleed: $8,859.85; Renal: $10,067.23; Stroke:
$14,787.09; Renal death: $15,221.99; Stroke death:
$16,087.93; other death: $18,284.28; MI; $18,937.24. The
corresponding cost was added to the pre-discharge cost
to obtain the total cost.

The mean total cost of patients with good vs. poor BP
control in ECLIPSE was compared. Good systolic BP
control was defined as AUC below 10 mm Hg x min/h,
and values above were considered indicative of poor
control. The 10 mm Hg x min/h cutoff was identified in

LOS

Post-discharge
death hospitalization costs

I Death

Discharge

Pre-discharge costs for 2 complications
ndLOS

CABG
Hosp for a given

PTin ECLIPSE

BLEED STROKE

Figure 1 Classification of patients in ECLIPSE to derive total
cost based on pre- and post-discharge events.




Ishak et al. BMC Health Services Research 2012, 12:439
http://www.biomedcentral.com/1472-6963/12/439

exploratory analyses examining variations in costs in
deciles of the AUC variable. This was done with total
costs calculated with the LOS-specific and mean PD
costs (i.e., the traditional crude approach) to illustrate
the potential impact of capturing the actual shape of the
PD cost vs. LOS association.

Results

Patients in ECLIPSE may have undergone coronary ar-
tery bypass grafting (CABG), valve surgery or combined
surgeries. Analyses were performed separately for each
type of surgery. For brevity, results are reported for ana-
lyses for the group of 1,165 ECLIPSE patients who had
only a CABG procedure.

Analysis population from the MA case mix database

Over 10,000 patients undergoing a CABG procedure
were identified from the MA Case Mix Database be-
tween year 2005 and 2007. Table 1 shows the distribu-
tion of patients across complication groups, along with a
basic demographic characterization of the populations in
the MA Case Mix and ECLIPSE.

The majority of patients in both populations are pre-
dominantly in the group with none/other complications
(over 80%); very few patients had more than 2 complica-
tions (less than 0.5%). Complications related to bleeds
were observed more frequently in the ECLIPSE trials
(8.2% vs. 5.4%); infections (0.3% vs. 2.0%) and strokes
(0.3% vs. 1.1%) occurred less frequently in ECLIPSE.
Deaths were less common among MA cases (1.3% vs.
2.2%). The demographic profile of patients is generally
similar, although some variation is apparent within some
complication groups (e.g., infection, > 2 complication
groups). It should be noted, that these groups included
very few patients (e.g., three patients with infection, five
patients with > 2 complications). Thus, we concluded that
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the MA database is adequately representative of the
ECLIPSE patients.

The LOS distributions for MA cases and ECLIPSE
patients are presented in Table 2. Apparent LOS outliers
that far exceeded the range of values observed in
ECLIPSE (158 cases, 1.5%) were excluded. The distribu-
tions of PD costs by complication group are also shown
in Table 2. Large SDs of PD costs (relative to the means),
and the distance between means and medians indicate
the right skew of the cost distributions within complica-
tion groups. Mean PD costs range from approximately
$5,000 for renal complications or stroke to $6,500 for
bleeds. Death for any cause is the most costly post-
operative event but highly variable. The higher PD costs
for the bleeds and none/other groups may be partly
explained by the shorter lengths of stay (approximately
8-10 days compared with 15 days for patients with renal
failure) and is indicative of a non-linear relationship be-
tween PD costs and LOS.

Exploring the relationship between PD cost and LOS in
the MA database

Figure 2 shows the scatter plots of the Ln of PD costs
versus LOS for the nine complication groups, along with
LOESS curves. In each case, the PD cost is higher for
very short LOS compared with PD costs at the longer
LOS values. The shapes tend to curve sharply downward
up to LOS of 14 days, and then continue to curve down-
ward at a slower rate thereafter. Although some devi-
ation from this pattern are seen where data is sparse, the
plots reveal a generally similar pattern in the nine
groups. Thus, a single model was deemed appropriate to
capture the relationship in all of the groups using inter-
action terms between the LOS variable and group indi-
cators to allow flexibility in the shape of the association
across complication types. Thus, the modelled shape for

Table 1 Distribution of Complications and Basic Demographic Profile of MA Case Mix Population and ECLIPSE Trials for

CABG Only Cohorts

ALL ECLIPSE MA Case Mix Database

N (%) Sex Age Mean Race N (%) Sex Age Mean Race

(% Male) (SD) (% Not White) (% Male) (SD) (% Not White)

1,164 76.5 64.4 (10.1) 17.3 10,450 76.0 66.4 (10.8) 16.1
Death 26 (2.2) 654 70.0 (9.7) 134 (1.3) 59.0 73.1 (11.0) 17.2
Bleed(s) 96 (8.2) 74.0 66.7 (9.3) 24.0 561 (54) 77.0 68.7 (11.0) 13.7
M 11 (0.9 455 61.5 (6.4) 116 (1.1) 70.7 66.0 (11.1) 155
None/Other 965 (82.9) 772 63.8 (10.2) 15.8 8,624 (82.5) 76.7 65.8 (10.7) 16.0
Infection 3(03) 66.7 493 (7.8) 204 (2.0 726 66.9 (10.3) 14.7
>2 Complications 5(04) 60.0 66.6 (11.3) 40.0 26 (0.3) 923 71.8 (9.3) 346
Stroke 3(03) 100.0 66.7 (7.6) 333 110 (1.1) 673 69.4 (10.3) 20.0
2 Complications 21 (1.8) 81.0 725 (7.6) 238 212 (2.0) 712 69.7 (10.7) 217
Renal 34 (29) 794 64.7 (9.0) 323 463 (44) 732 70.7 (10.0) 17.7

* Complications sorted in order of increasing PD cost.
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Table 2 Distribution of LOS in the MA Case Mix Population and in ECLIPSE
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Complication Group ECLIPSE MA Case Mix Database
LOS (Days) LOS (Days) PD Costs ($)

N (%) Mean (SD) Min-Med-Max  N* (%) Mean (SD) Min-Med-Max  Mean (SD) Min-Med-Max
ALL 1,164 83 (5.9 1-7-74 10,450 93 (5.1) 1-8-58 - -
Death 6 (2.2) 119 (104) 1-75-32 134 (1.3) 1.1 (8.2) 1-8-32 15,434 (14,562) 2,958 — 10,997 — 89,957
Bleed(s) 6 (8.2) 89 (5.1) 4-8-46 561 (54) 104 (54) 4-9-43 6,503 (2,581) 1,851 - 6,162 - 17,762
M 11 (0.9) 10.5 (3.8) 6-11-17 116 (1.1) 10.1 3.1) 6-10-17 6,353 (2,726) 2,061 - 5,828 — 14,375
None/Other 965 (829) 74 (4.1) 3-7-74 8,624 (82.5) 84 (4.1) 3-7-58 3 (2,288) 30 - 5,883 - 26,193
Infection 3(03) 14 (9.2) 6-12-24 204 (2.0) 12.2 (4.6) 6-12-24 5,968 (2,150) 2,040 - 5914 - 12,062
>2 Compls 5(04) 252 (13.9) 7-22-41 26 (0.2) 256 (8) 10 - 26 - 41 5,804 (1,842) 3,009 - 5333 - 9,753
Stroke 3(0.3) 24 (234) 9-12-51 110 (1.1) 15.1 (5.9) 9-13-46 4,929 (1,730) 1,825 - 4,587 - 10,773
2 Compls 21 (1.8) 249 (18) 6-17-62 212 (2.0) 188 (9.1) 6-17-57 5,208 (2,156) 1,842 - 4,881 - 15,161
Renal 34 (29) 113 (74) 6-0-42 463 (4.4) 5(6.9) 6-14-42 5035 (1,895) 1,802 - 4,798 - 13,252

* 158 (1.5%) observations were excluded to match the range of LOS in ECLIPSE.

Min = Mini

mum; Med = Median; Max = Maximum.
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the smaller groups borrow strength from the larger ones,
while still allowing the shapes observed in the under-
lying data to exert influence.

The shape implied by the LOESS curves can be para-
meterized in different ways. A piecewise model could be
used to capture the initial sharp decline up to day 14
and the subsequent slower decline or flattened pattern.
A few variations are possible: the segments in the piece-
wise model may be best captured by linear equations
(i.e., the overall model would consist of two straight lines
connected at the knot), or a more complex form like a
quadratic equation for each segment may provide better
fit. The scatter plots leave some doubt as to whether the
shape of the relationship changes after day 30; thus, a
second knot could be added at this point. Alternatively,
it may be that variability noted after day 14 is spurious
and due to the sparseness of data; therefore, the true
model may be that for hospitalizations lasting two
weeks or longer, the PD cost is relatively constant.
Thus, a flat line may work best as a second segment in
the overall model. Finally, a logarithmic model (i.e., log
of PD Cost vs. log of LOS) may capture the observed
shape equally well, as the observed pattern resembles
the functional form of the log function. Based on these
considerations, the following models were fitted and
compared:

e Diecewise linear with knot at 14 days and knot at
30 days

e Diecewise linear with knot at 14 days

e Diecewise linear with knot at 14 days, horizontal
after 14 days

e DPiecewise quadratic with knot at 14 days

e Diecewise quadratic with knot at 14 days, horizontal
after 14 days

e Logarithmic

A piecewise quadratic function with knots at days 14
and 30 was not considered due to the greater complexity
of the model relative to the available data points past
day 30.

Model fitting and selection

Each of the six candidate models was fitted to the MA data.
The models included an intercept, indicators for complica-
tion groups, appropriate terms for the parameterization of
LOS, and an interaction between the latter and complica-
tion groups. For instance, in one model, LOS was log-
transformed; thus, the interaction terms with complication
group allowed the coefficient for Ln LOS to change, build-
ing in a change in shape. For comparison, an intercept-only
(or horizontal line) model was also fitted, as this reflects
the relationship implied by the traditional approach.
Figure 3 illustrates each of the candidate models using
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the fitted curves and the underlying data for the renal
complication group.

The goodness-of-fit statistics (AIC and BIC) for each
of the six candidate models along with the traditional
model assuming constant PD cost for all LOS are sum-
marized in Table 3. The traditional model had the poor-
est fit (i.e., largest AIC and BIC values), while the
piecewise linear and logarithmic models had the better
fits. The piecewise quadratic models were not consid-
ered further, as they had the largest BIC values; thus, the
added complexity of the model did not contribute to a
better fit. Similarly, adding a knot on day 30 led to no
improvement in fit; in fact, the BIC statistic for this
model suggests considerable loss in fit. Thus, the final
choice was between the piecewise linear and logarithmic
models (model C and F in Table 3), which had compar-
able fit, but favoring its simplicity and smoothness, we
opted for the logarithmic model.

The fitted final model is summarized in Table 4. The
coefficients represent a change in Ln PD cost for a unit
increase in the predictor. Predicted values from the con-
stant and logarithmic models are plotted in Figure 4,
overlaid with the mean of the observed Ln PD cost for
each LOS in the MA database for each complication

group.

Application: comparison of total hospitalization cost for
patient with poor vs. good BP control

We used the final logarithmic model and the traditional
(constant) model fitted to each complication group to
calculate PD costs for patients in the ECLIPSE trials and
added post-discharge costs to obtain the total pre- and
post-hospitalization cost. The mean total costs for
patients with poor vs. good perioperative BP control for
patients in the CABG group are summarized in Figure 5.
Estimated costs with the crude and modeled approach
were similar for patients with good BP control, but dif-
fered by over $2,000 for the poor BP control group. This
leads to a 43% overestimation of the cost savings asso-
ciated with good BP control.

Discussion

Derivation of hospitalization costs is a common require-
ment in health economic modeling exercises, as these
are often not available in the primary data source being
used as the basis for the model. If suitable external data
can be identified with both costs and LOS, the approach
described in this paper can be applied to improve the ac-
curacy of calculations by explicitly modeling the rela-
tionship between PD costs and LOS. In addition to LOS,
other factors, such as types of complications occurring
during the hospitalization can also be useful, as long as
these are captured in both sources of data.
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Figure 3 Candidate Models for the CABG-only with Renal Complication Group in the MA Case Mix Database.

Modeling the relationship between PD costs and LOS  functions (e.g., logarithmic) and piecewise modeling are
is likely to require consideration of methods that can ac-  two possible approaches. Other methods, such as spline
commodate non-linear functional forms. Non-linear models [28] and fractional polynomial models [29] may
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Table 3 Fit Statistics for Candidate Models (MA claims)
Model

Fit Statistics

AIC BIC
(A) Piecewise linear with knots 7,666.8 79206
at 14 and 30 days
(B) Piecewise linear with a knot 7,664.9 7,868.0
at 14 days
(C) Piecewise linear with a knot 7,665.3 7,803.1
at 14 days and horizontal tail
(D) Piecewise quadratic with a 76269 79606
knot at 14 days
(E) Piecewise quadratic with a 76214 78245
knot at 14 days and horizontal tail
(F) Logarithmic 7,666.0 7,803.8
(G) Constant (Traditional) 9,605.0 96776

AIC: Akaike Information Criterion BIC: Bayesian Information Criterion.

also work well. Parsimony and simplicity should be con-
sidered as guiding principles in the process of selecting
an approach and ultimately a final model. In our ex-
ample, we did this by adopting the logarithmic model
over a piecewise linear model, since the gain in fit was
negligible relative to the increased complexity. This
specific functional form may not be appropriate in
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other disease or therapeutic areas; careful analysis is
required in each case to determine the best fit. Ultim-
ately, selecting a “best fitting” model remains some-
what subjective. There is no single standard by which
to judge “best”, and goodness-of-fit statistics may yield
ambiguous or contradictory results. The choice of the
model must be defensible using statistical and substan-
tive considerations such as model complexity and
interpretability.

The selection of an appropriate data source for PD
costs is an important consideration. Where possible, a
population that is comparable to that of the trial to
which the results will apply should be used. Some com-
promise is likely to be required as only few sources may
be available, and even then patient profiles may differ
somewhat. Restricting or matching the populations may
be useful, but should not be done at the cost of signifi-
cant loss in data. In our example, we identified patients
in the MA database with similar complications as those
in ECLIPSE, and we truncated the LOS distributions to
match the trials. This was done mainly for precautionary
reasons, to avoid or minimize the impact of potential
outliners. Relatively few observations were lost.

Some limitations of our analyses should be noted. For
the estimation of pre-discharge costs by type of

Table 4 Logarithmic and Constant Models for Ln PD Cost (MA Database)

Logarithmic Model (F)

Constant Model (G)

Estimate (SE) P-Value Estimate (SE) P-Value

Intercept 9.281 (0.271) <.0001 8445 (0.037) <.0001
Ln(LOS) —0.315 (0.101) 0.002 NA NA
Complication Group Death 1.365 (0.281) <.0001 0.903 (0.049) <.0001

Bleed 0.25 (0.281) 0375 0.258 (0.04) <.0001

Ml 0.107 (0.362 0.769 0.219 (0.051) <.0001

None/Other 0.110 (0.271 0.685 0.218 (0.037) <.0001

Infection 0.384 (0315 0.224 0.179 (0.045) <.0001

>2 Compls —0.17 (0.699) 0.808 0.173 (0.083) 0.038

2 Compls —0.053 (0.307) 0.864 0.034 (0.045) 0444

Renal —0.086 (0.288) 0.765 0.013 (0.041) 0.759

Stroke Reference* Reference*
Ln(LOS) x Compl. Group Death —0.313 (0.106) 0.003

Bleed —0.054 (0.107) 0611

MI —0.005 (0.146) 0973

None/Other —0.042 (0.102) 0677

Infection —0.113 (0.121) 035

>2 Compls 0.16 (0.225) 0477

2 Compls 0.049 (0.113) 0.662

Renal 0.032 (0.108) 0.765

Stroke Reference*

* Patients with stroke are used as the reference category for indicators of complication: coefficients represent difference in log PD costs for each type of

complication relative to stroke.
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Figure 4 Predicted Means from Logarithmic and Constant Models with Observed Means Ln PD cost versus LOS by Complication Group

complication using the MA database, we know that the
procedure was performed at that hospital admission, but
we do not know if the events considered to be complica-
tions were present before or after the procedure. The
complication group that was a mixture of ‘no complica-
tion’ patients with ‘other complication’ patients is a

large, heterogeneous group. The nature of the ‘other’
complications is not considered in this analysis. We
assumed that a common model was appropriate across
complication groups. This was based on visual inspec-
tion of the scatter plots, and was not tested formally.
We had no substantive clinical or economic reasons to
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Figure 5 Estimated Total Cost Savings Comparison for Model-based and Traditional Methods.

believe otherwise, and the small size of some complica-
tion groups precluded the possibility of fitting separate
models. We used regression terms for complication
group and an interaction between this and LOS to allow
some flexibility in the shape of the relationship across
groups. Most of these terms were not statistically signifi-
cant, however. This is likely due to collinearity between
LOS and complication groups, as occurrence of the lat-
ter will lead to an increase of the former. The small size
of some groups also limits the power to detect some of
these interactions. We chose not to simplify the model
by collapsing these complication groups because costs
varied among different complications, and we wanted the
PD cost model to be representative of the principles on
which our exploratory analysis was based - that total cost
should be a function of the LOS of the hospitalization,
and should also appropriately reflect major complications
that occurred.

PD costs are not independent of LOS in the MA Case
Mix Database for those patients undergoing cardiac sur-
gery. Fit statistics and substantive contextual considera-
tions were used to select a suitable model of the
relationship between PD cost and LOS in the MA Data-
base to assign total costs to the ECLIPSE patients. This
model had a logarithmic shape, which differs substan-
tially from the horizontal shape used in the traditional/
crude approach. The two models led to considerably dif-
ferent results in analyses of cost savings associated with
“good” versus “poor” BP control.

Unbiased cost estimates are necessary to ascertain the
true potential cost savings of therapeutic interventions
such as BP control. Model-based methods capture

dependence of PD cost on LOS, thus mitigating bias in-
herent in the traditional method of cost and cost savings
estimation.

Conclusions

PD costs are not independent of LOS in the example
presented in this paper. This is likely to be the case in
most situations where LOS can vary considerably across
hospitalizations. The shape of the relationship between
PD cost and LOS should not be assumed to be linear.
The process described in this paper can be used to
examine the shape of the relationship and model it with
flexible techniques.

Unbiased cost estimates are necessary to ascertain the
true potential cost savings of interventions such as BP
control. Model-based methods capture dependence of
PD cost on LOS, thus mitigating bias inherent in the
traditional method of cost and cost savings estimation.

Endnotes

“DRGs 104 through 109, 545 and 546 (2005-2006
data). The description labels for these DRGs are: DRG
104 cardiac valve and other major cardiothoracic proce-
dures with cardiac catheterization, DRG 105 cardiac
valve and other major cardiothoracic procedures without
cardiac catheterization; DRG 106 coronary bypass with
PTCA; DRG 107 coronary bypass with cardiac
catheterization; DRG 108 other cardiothoracic proce-
dures without congenital anomaly; DRG 109 coronary
bypass without cardiac catheterization; DRG 545 cardiac
valve procedure with major complications; and DRG 546
coronary bypass with major complications. For 2007,
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selected data also included DRGs 547 through 550 that
replaced DRGs 106 through 109 from the 2005-2006
version.

PThis value is 10% of the reported cost $20,906.23 for
post-discharge infection; we assumed that only a small
proportion would require re-hospitalization.

Additional file

[ Additional file 1: Appendix A. ICD-9 CODES for ECLIPSE Complications. ]
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