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Abstract

Background: It is important to find a comorbidity measure with better performance for use with administrative data.
The new method proposed by Elixhauser et al. has never been validated and compared to the widely used Charlson
method in the Asia region. The objective of this study was to compare the performance of three comorbidity measures
using information from different data periods in predicting short- and long-term mortality among patients with acute
myocardial infarction (AMI) and chronic obstructive pulmonary disease (COPD).

Methods: We conducted a retrospective cohort study using National Health Insurance claims data (2001-2002) in
Taiwan. We constructed the Elixhauser, the Charlson/Deyo, and the Charlson/Romano methods based on the
International Classification of Disease, 9th Revision, Clinical Modification codes in the claims data. Two data periods,
including the index hospitalization as well as the index and prior 1-year hospitalizations, were used in the analysis. The
performances were compared using the c-statistics derived from multiple logistic regression models that included age,
gender, race, and whether the patient received surgery or not. The outcomes of interest were in-hospital and 1-year
mortality.

Results: The performance was in the same rank order among both populations regardless of the outcome and data
period: Elixhauser > Charlson/Romano > Charlson/Deyo. In predicting in-hospital mortality, the Elixhauser models
using information from the index hospitalization performed best, even better than the Charlson/Deyo or Charlson/
Romano models using information from the index and prior hospitalizations. Nevertheless, in predicting 1-year
mortality, the Elixhauser models using information from the index and 1-year prior hospitalizations performed better
than using information from the index hospitalization only.

Conclusions: This is so far the first study to validate the Elixhauser method and compare it to other methods in the
Asia region, and is the first to report its differences in data periods between short- and long-term outcomes. The
comorbidity measurement developed by Elixhauser et al. has relatively good predictive validity, and researchers should
consider its use in claims-based studies.

Background

Administrative databases are increasingly used in health
services research, epidemiologic research, and outcome
studies. For control of baseline differences in these obser-
vational data, one major issue is to find a comorbidity
measure with better performance [1-9]. Evidence from
different population and datasets are needed for the gen-
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eralizability of comparative performance [6,10]. However,
there are very limited studies in Asian countries.

Among various methods, the Charlson comorbidity
index (CCI) has been used most widely. It was developed
by considering the impact of comorbidities in predicting
1-year mortality of medical inpatients using comorbidity
data recorded in the medical charts [11]. Two adaptations
for use with International Classification of Disease, 9th
Revision, Clinical Modification (ICD-9-CM) codes in
administrative databases were made by Deyo et al.[12]
(Charlson/Deyo) and Romano et al.[13] (Charlson/
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Romano), both of which defined 17 comorbidity catego-
ries. These two methods distinguish some comorbidities
from complications by identifying whether the diagnosis
codes appear in the admissions prior to the index hospi-
talization [12,13]. The Charlson/Deyo method is used
most widely in the world including Taiwan [6], however,
it has not been compared to other methods in Asian
countries. In addition, the Charlson/Romano method has
been evaluated to be better or no different from the
Charlson/Deyo method in the United States [13-17].

Little literature showed that the new method proposed
by Elixhauser et al.[18] had better performance than the
Charlson/Deyo method in predicting in-hospital mortal-
ity[6,7]. The Elixhauser method, which includes 30 cate-
gories of comorbid conditions, was developed using
administrative data and was reported with the ability to
predict length of stay, hospital charges, and in-hospital
death [18]. The comorbid conditions were considered
only when they did not relate to the diagnosis-related
group (DRG) of each admission, therefore no prior
admission was needed to distinguish between comorbidi-
ties and complications [18]. However, evidence of the
Elixhauser method's performance from different popula-
tions and datasets is still relatively scarce. It also has not
been compared to other methods in Asian countries.

The Charlson based methods was developed earlier
than the Elixhauser method. It had already been widely
used before its adaptation to the administrative data. The
Elixhauser method uses both ICD-9-CM codes and Diag-
nosis-Related Groups (DRGs), and thus is more compli-
cated to use. The Elixhauser method has more variables
than the Charlson based methods, and therefore needs
larger sample size. However, the increasingly used admin-
istrative databases make sample size large enough for
analysis.

Factors influencing the performance of claims-based
comorbidity measures include the dataset, studied popu-
lation, outcome, and data periods [7,19]. Comparative
performance can be examined for one factor, while other
factors are held constant [4,17]. Although several pub-
lished studies have investigated the relative performance
of various claims-based comorbidity measures and fac-
tors influencing performance, evidence from the Asian
region or different administrative datasets is still lacking.
Furthermore, since different outcomes were concerned
by Charlson et al.[12] and Elixhauser et al.[18] (1-year
mortality vs. in-hospital mortality), and different data
periods in claims data were used (index and prior hospi-
talizations vs. index hospitalization only), little is known
about the effect of the combination of these factors.
Therefore, the purpose of this study is to compare the
performance of three claims-based comorbidity mea-
sures, the Elixhauser, the Charlson/Deyo, and the Charl-
son/Romano methods, using National Health Insurance
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claims data in Taiwan. We also assessed the relative per-
formance of the three methods when using different data
periods to predict in-hospital mortality and 1-year mor-
tality.

Methods

Data Sources

Data are collected from the National Health Insurance
inpatient claims data, family registration file, and death
certification data. An encrypted unique identification
number is used to link information of the same patient
from different datasets.

Taiwan had a universal single-payer National Health
Insurance Program since 1995. As of 2002, 97.1% of Tai-
wan's population was enrolled in this program [20]. All
contracted providers must regularly submit claim infor-
mation to get reimbursement. Large computerized data-
bases derived and managed by the Bureau of National
Health Insurance are provided to scientists in Taiwan for
research purposes (http://www.nhi.gov.tw/;  http://
w3.nhri.org.tw/nhird//index.php). The inpatient claims
data include the dates of admission and discharge, sex,
birth date, and diagnosis and procedure codes using the
International Classification of Disease, 9th revision, Clin-
ical Modification (ICD-9-CM). Each inpatient record
includes the principle and up to 4 secondary diagnoses as
well as 3 procedures.

The family registration file is used to identify the race of
the patients (whether the patients are aboriginals or not).
This database is maintained by the government and pro-
vides relatively accurate demographic information on res-
idents (http://www.ris.gov.tw/). The database of death
certificates, managed by the Department of Health in Tai-
wan, is a national registry of all deaths in Taiwan (http://
www.doh.gov.tw/).

Study Populations

The two study populations are inpatients with a principal
diagnosis in the following two disease categories: acute
myocardial infarction (AMI) (ICD-9-CM: 410.x) and
chronic obstructive pulmonary disease (COPD) (ICD-9-
CM: 490.x, 491.x, 492.x, 494.x, 496.x). We used the Clini-
cal Classifications Software (CCS), which is published
and freely downloadable from the website of the Agency
for Healthcare Research and Quality (AHRQ) (http://
www.hcup-us.ahrq.gov[21]), to define each disease cate-
gory. These two disease categories were selected because
they provide common acute and chronic conditions. We
identified the first hospitalizations of cases between 1st
January 2002 and 31st December 2002 as the index hospi-
talizations, and excluded patients younger than 18 years
old and those who were not discharged before 31st
December 2002. There were 8,961 AMI and 32,755
COPD patients who met the criteria.
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Data Periods

There were two data periods used in our analysis. One is
the index hospitalization. The other one is the index and
prior 1-year hospitalizations. The index and prior 1-year
hospitalizations had 1-year lookback period. The index
hospitalization didn't have lookback period. The index
hospitalization was identified as the first hospitalization
of our study population during year 2002. The index and
prior 1-year hospitalizations included the index hospital-
ization and all hospitalizations 1-year before the index
date.

Outcomes of Interest

In-hospital all-cause mortality and 1-year all-cause mor-
tality were selected because they represented short- and
long-term outcomes. The administrative claims data was
linked to death certification data to identify when the
patient died.

Comorbidity Measures

We compared three published claims-based comorbidity
measures [12,13,18]. Two of them are different ICD-9-
CM adaptations of the Charlson method [11], the Charl-
son/Deyo method [12] and the Charlson/Romano
method [13]. Since there is no scoring system of the orig-
inal Elixhauser method [18,22], comorbidity variables are
created as individual categories (the presence or absence
of the comorbidity) of three methods, and findings can be
compared to the previous study which specified the same
approach[6].

The third comorbidity method is developed by Elix-
hauser et al. using administrative data from California
[18]. We identified comorbid conditions in the Elixhauser
method using both ICD-9-CM codes and Diagnosis-
Related Groups (DRGs). The definition codes of the Elix-
hauser method are updated and publicly available from
the Healthcare Cost and Utilization Project (http://
www.ahcpr.gov/data/hcup/comorbid.htm[23]), and we
mapped its DRG codes to Taiwan's version of DRG codes
[24].

Analysis

Two data periods, including the index hospitalization as
well as the index and prior 1-year hospitalizations, were
used to predict in-hospital and 1-year mortality in the
AMI and COPD inpatients. Variables in the baseline
model included age, sex, race (aborigines vs. non-aborigi-
nes), and whether the patient received surgery or not.
The aboriginality is an important risk factor for health
outcomes [25,26]. We used surgical DRGs to identify
whether a patient received surgery, as specified by Elix-
hauser et al. [7,18]. Each of the comorbidity measures was
added to the baseline model. Additional file 1 provides a
visual comparison of components of the models.
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The statistical performance of each model was assessed
using logistic regression [9]. Three comparisons were
made (1) to the baseline model, (2) across comorbidity
measures for the same outcome, population, and data
period, and (3) within the same outcome, population, and
comorbidity measure, but across data periods.

To assess whether adding the comorbidity measure
improved the fit of the regression models, we reported G2
statistics, which resulted from comparing the maximized
likelihood function of a model including the comorbidity
variables with the nested baseline model. The model
comparison statistic has a Chi-squared distribution with
the degree of freedom (df) equal to the difference in
number of parameters [27].

To evaluate model discrimination, we reported c statis-
tics, which represents the area under the receiver-operat-
ing characteristic (ROC) curve. The c-statistic values
range from 0.5 (no greater predictive power than chance)
to 1.0 (perfect prediction). Finally, bootstrapping with
1000 replications was conducted to obtain the 95% confi-
dence interval of the c-statistics. This percentile-based
confidence interval evaluates the variability of the c-sta-
tistic [5,28]. All analyses were performed using SAS ver-
sion 9.1.3 (SAS Institute Inc, Cary, NC) [29].

Results

We studied 8,961 AMI and 32,755 COPD patients. The
proportion of the males and the aborigines in each study
population were similar. The average age of patients was
66.31 in the AMI group, and 72.54 in the COPD group.
Surgery rates were 14.5% in the AMI patients, and 1.17%
in the COPD patients. In-hospital mortality rates were
14.94% in the AMI group, and 3.02% in the COPD group.
One-year mortality was 27.07% in AMI patients, and
22.48% in COPD patients (Table 1). The results are fol-
lowed with three comparisons.

(1). To the baseline model
First, we compared each logistic model of three methods
to the nested baseline model. Table 2 provides the G2 sta-

Table 1: Characteristics of the Study Populations

AMI COPD

(n=28,961) (n=32,755)
Age in years (mean * SD) 66.31+13.36 7254+ 12.10
Male 6,457 (72.06%) 23,650 (72.20%)
Aborigines 161 (1.80%) 1,350 (4.12%)
Patients received surgery 1,299 (14.50%) 382 (1.17%)
In-hospital mortality 1,339  (14.94%) 990  (3.02%)
One-year mortality 2,426 (27.07%) 7,362 (22.48%)

AMI = acute myocardial infarction; COPD = chronic obstructive
pulmonary disease.
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Table 2: G2 statistics indicating the contribution of the comorbidity measures to the nested baseline model

G2t (df¥)
In-hospital mortality One-year mortality
AMI COPD AMI COPD

Baseline model* N/A(4) N/A (4) N/A (4) N/A (4)
Index hospitalization only

Baseline model + Charlson/Deyo 35(16) 59(17) 120 (16) 254 (17)

Baseline model + Charlson/Romano 100 (15) 114 (16) 280 (15) 613 (16)

Baseline model + Elixhauser 216 (33) 269 (33) 394 (33) 856 (33)
Index and prior hospitalizations

Baseline model + Charlson/Deyo 80(19) 98 (20) 336 (19) 1106 (20)

Baseline model + Charlson/Romano 129 (19) 144 (20) 428 (19) 1199 (20)

Baseline model + Elixhauser 194 (33) 200 (33) 496 (33) 1290 (33)

AMI = acute myocardial infarction; COPD = chronic obstructive pulmonary disease.
* Variables in the baseline model included age, sex, race, and whether the patient received surgery.

T All p values of the G2 statistics, < 0.0001.

*Degree of freedom equals to the number of parameters entered in the regression model. Some comorbidity variables were dropped in the

analysis because they had 0% or 100% prevalence.
N/A: Not applicable.

tistic values resulting from comparing the maximized
likelihood function of the nested models. The degree of
freedom equals the number of parameters entered in the
regression model. Some comorbidity variables were
dropped in the analysis because they had 0% or 100%
prevalence. For example, using information from the
index and prior hospitalizations among the AMI patients,
myocardial infarction had 100% prevalence and AIDS
had 0% prevalence. Thus, the degree of freedom in this
model equals 19. All p values of the G2 statistics are sig-
nificant (< 0.0001) in Table 2. The three comorbidity
methods significantly improved the fit of the regression
models for both in-hospital and 1-year mortality in the
two populations. Table 3 provides the c-statistics for each
logistic model. Compared with the baseline model, all
three comorbidity measures improved the model predic-
tion for having higher c-statistic values.

(2). Across comorbidity measures for the same outcome,
population, and data period

Second, we compared three comorbidity methods when
applied to the same outcome, population, and data
period. Table 3 shows that the Elixhauser models per-
formed best in all conditions. Moreover, when using the
index hospitalization only, the Elixhauser models outper

formed the Charlson/Deyo models in all bootstrap repli-
cations. For example, predicting in-hospital mortality in
the AMI patients, when using information from the index
hospitalization, the c-statistic of Elixhauser model is
0.737, which is higher than the Charlson/Deyo (0.712) or
Charlson/Romano (0.723). The Elixhauser models out-
performed the Charlson/Deyo models in all bootstrap
replications (0.729-0.753 vs. 0.701-0.726).

(3). Within the same outcome, population, and comorbidity
measure, but across data periods
Third, we compared model discrimination across data
periods within the same outcome, population, and
comorbidity measure. Since the Charlson/Deyo and the
Charlson/Romano models need information from prior
hospitalizations, they performed better when using infor-
mation from the index and prior hospitalizations com-
pared with the index hospitalization only. In predicting 1-
year mortality in the AMI patients, the Charlson/Deyo
method had higher c-statistic when using information
from the index and prior hospitalizations (0.766) than the
index hospitalization only (0.747).

However, the Elixhauser models showed different pat-
terns between different outcomes. In predicting in-hospi-
tal mortality, the Elixhauser models performed better
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Table 3: C statistics indicating the predictability of each logistic regression model
In-hospital mortality One-year mortality
AMI COPD AMI COPD
c 95% Cl 95% Cl 4 95% ClI 4 95% Cl
Baseline model* 0.707  (0.695-0.720) 0.697 (0.684-0.710) 0.736 (0.726-0.746) 0.670  (0.664-0.676)
Index hospitalization only
Baseline model + Charlson/Deyo 0.712  (0.701-0.726) 0.708  (0.697-0.723) 0.747 (0.738-0.757)  0.681 (0.675-0.687)
Baseline model + Charlson/Romano  0.723  (0.712-0.737)  0.719  (0.707-0.733)  0.759  (0.750-0.769)  0.692  (0.687-0.698)
Baseline model + Elixhauser 0.737  (0.729-0.753)  0.738  (0.729-0.754) 0.767 (0.760-0.778)  0.701 (0.696-0.707)
Index and prior hospitalizations
Baseline model + Charlson/Deyo 0.721 (0.712-0.736) 0.718 (0.707-0.733) 0.766  (0.758-0.776) 0.711 (0.705-0.716)
Baseline model + Charlson/Romano  0.729  (0.719-0.743) 0.726  (0.714-0.740) 0.773  (0.765-0.783) 0.714  (0.708-0.719)
Baseline model + Elixhauser 0.736  (0.729-0.752) 0.731  (0.722-0.747) 0.777  (0.770-0.787) 0.716  (0.711-0.723)

AMI = acute myocardial infarction; COPD = chronic obstructive pulmonary disease.
*Variables in the baseline model included age, sex, race, and whether the patient received surgery.

when using the index hospitalization only. More impor-
tantly, in predicting in-hospital mortality, Table 3 pres-
ents further evidence that the Elixhauser models using
the index hospitalization only performed best, even bet-
ter than the Charlson/Deyo or the Charlson/Romano
models using the index and prior hospitalizations. In the
COPD patients, the Elixhauser method had higher c-sta-
tistic when using information from the index hospitaliza-
tion (0.738) than the index and prior hospitalizations
(0.731). Moreover, it is better than the Charlson/Deyo
models using the index and prior hospitalizations (0.718)
as well as the Charlson/Romano models (0.726).

Nevertheless, in predicting 1-year mortality, the Elix-
hauser models using information from the index and
prior hospitalizations performed better than using infor-
mation from the index hospitalization only.

Discussion

To our knowledge, this is the first study that validates the
Elixhauser method and compares it to other methods in
the Asia region. Further, it is the only investigation that
examines the modeling performance of both in-hospital
and 1-year mortality of the Elixhauser method, and is the
first to report its differences in data periods between
short- and long-term outcomes.

Several implications for risk adjustment can be drawn
from this study. First, this study showed further evidence
of external validity of the Elixhauser method in a different
dataset and population. In every comparison, it was supe-

rior to the Deyo et al. version of the Charlson comorbid-
ity index, which has been used widely for outcome and
epidemiology studies. It also outperformed the Romano
et al. adaptation of the Charlson index, which has been
reported to be better than the Charlson/Deyo method in
several studies [13,15-17]. These findings add to the liter-
ature by providing new evidence on the comparison of
these three methods together.

Second, our findings expand upon the results of two
earlier studies which used the same analytical method in
creating comorbidity variables[6,7], and demonstrate the
same results not only for short-term mortality but also
for long-term mortality. Stukenborg et al. [7] concluded
that the Elixhauser method had better statistical perfor-
mance than the Charlson/Deyo method in predicting in-
hospital mortality by creating comorbidity variables as
individual categories (the presence or absence of the
comorbidity) using California claims data [7]. The same
approach was implemented in Canadian administrative
data for predicting MI inpatient's mortality, and reported
similar findings [6]. Our study suggests that similar
results can also be found in predicting 1-year mortality of
patients with AMI and COPD. However, the Charlson
method may still be a useful tool in many studies because
it provides weighted scores, which is valuable if there are
insufficient cases to use independent categories for mod-
eling.

Third, new findings from different data periods provide
additional insight into the comorbidity measure. Since



Chu et al. BMC Health Services Research 2010, 10:140
http://www.biomedcentral.com/1472-6963/10/140

some diagnoses are included only when they appear in
the prior admissions when using the Charlson/Deyo
method and the Charlson/Romano method [13,30], these
two methods have worse performance using the index
hospitalization only. Some disease categories, such as
congestive heart failure, never present if there is no prior
information [12,13]. This is more important for long-
term mortality since the Charlson/Deyo method using
the index and prior hospitalizations performed better
than using only the index hospitalization in 100% of the
bootstrap replications. However, the Elixhauser method
develops DRG screen, so it can include more secondary
diagnoses, and also distinguishes comorbidities from
complications [18]. Our findings agree with previous
reports [7] that the Elixhauser method using the index
hospitalization performed better than the Charlson/Deyo
method using the index and prior hospitalizations when
predicting in-hospital mortality. Furthermore, similar
results were found when comparing to the Charlson/
Romano method in our study. New findings showed that
the Elixhauser method has different patterns between dif-
ferent outcomes. Prior information may be more impor-
tant when predicting 1-year mortality. This may be
because only the influential or important diagnoses for
the index hospitalization are likely to be recorded, but
some conditions that are not directly related to the index
hospitalization may be important to the long-term sur-
vival.

One limitation of this study is that the administrative
data are claimed for reimbursement purposes rather than
research purposes and thus varied in data quality [31].
The quality of administrative data depends on the gaps in
clinical information, coding procedures, and the billing
context [32]. Another limitation is that only two popula-
tions were investigated. However, we examined one acute
condition and one chronic condition with diverse in-hos-
pital mortality, and found similar results.

Since comparative performance of different comorbid-
ity measures can only be examined when other factors,
such as population, outcome, and data periods, are all the
same. So does the analysis of data periods. The present
study examined three types of comparisons by using a
manageable design which focused on three measures of
comorbidities, two data periods, two diagnoses, and two
outcomes. Moreover, such design could become strength
for its simplicity to be applied to other populations in
Asia or other areas of the world. Similar studies of com-
parative performance are needed and can be applied to
different populations, datasets, outcomes, data periods,
and other case-mix methods.

Conclusion
In the AMI and COPD patients, the comorbidity mea-
surement developed by Elixhauser et al. has good predic-
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tive validity, and researchers should consider its use with
claims-based studies rather than the customarily used
Charlson/Deyo method. In predicting in-hospital mortal-
ity, the Elixhauser method has better discrimination
using the index hospitalization; while in predicting 1-year
mortality, it may perform better using information from
the index and prior 1-year hospitalizations.

Additional material

Additional file 1 Appendix 1. Comparison of the components of the
models
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