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Abstract 

Background Governments worldwide are facing growing pressure to increase transparency, as citizens demand 
greater insight into decision-making processes and public spending. An example is the release of open healthcare 
data to researchers, as healthcare is one of the top economic sectors. Significant information systems development 
and computational experimentation are required to extract meaning and value from these datasets. We use a large 
open health dataset provided by the New York State Statewide Planning and Research Cooperative System (SPARCS) 
containing 2.3 million de-identified patient records. One of the fields in these records is a patient’s length of stay (LoS) 
in a hospital, which is crucial in estimating healthcare costs and planning hospital capacity for future needs. Hence it 
would be very beneficial for hospitals to be able to predict the LoS early. The area of machine learning offers a poten-
tial solution, which is the focus of the current paper.

Methods We investigated multiple machine learning techniques including feature engineering, regression, and clas-
sification trees to predict the length of stay (LoS) of all the hospital procedures currently available in the dataset. 
Whereas many researchers focus on LoS prediction for a specific disease, a unique feature of our model is its ability 
to simultaneously handle 285 diagnosis codes from the Clinical Classification System (CCS). We focused on the inter-
pretability and explainability of input features and the resulting models. We developed separate models for newborns 
and non-newborns.

Results The study yields promising results, demonstrating the effectiveness of machine learning in predicting LoS. 
The best  R2 scores achieved are noteworthy: 0.82 for newborns using linear regression and 0.43 for non-newborns 
using catboost regression. Focusing on cardiovascular disease refines the predictive capability, achieving an improved 
 R2 score of 0.62. The models not only demonstrate high performance but also provide understandable insights. 
For instance, birth-weight is employed for predicting LoS in newborns, while diagnostic-related group classification 
proves valuable for non-newborns.

Conclusion Our study showcases the practical utility of machine learning models in predicting LoS during patient 
admittance. The emphasis on interpretability ensures that the models can be easily comprehended and replicated 
by other researchers. Healthcare stakeholders, including providers, administrators, and patients, stand to benefit 
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Introduction
Democratic governments worldwide are placing an 
increasing importance on transparency, as this leads to 
better governance, market efficiency, improvement, and 
acceptance of government policies. This is highlighted by 
reports from the Organization for Economic Co-opera-
tion and Development (OECD) an international organi-
zation whose mission it is to shape policies that foster 
prosperity, equality, opportunity and well-being for all 
[1]. Openness and transparency have  been recognized 
as pillars for democracy, and also for fostering sustain-
able development goals [2], which is a major focus of the 
United Nations (https:// susta inabl edeve lopme nt. un. org/ 
sdg16).

An important government function is to provide for 
the healthcare needs of its citizens. The U.S. spends about 
$3.6 trillion a year on healthcare, which represents 18% 
of its GDP [3]. Other developed nations spend around 
10% of their GDP on healthcare. The percentage of GDP 
spent on healthcare is rising as populations age. Conse-
quently, research on healthcare expenditure and patient 
outcomes is crucial to maintain viable national econo-
mies. It is advantageous for nations to combine investiga-
tions by the private sector, government sector, non-profit 
agencies, and universities to find the best solutions. A 
promising path is to make health data open, which allows 
investigators from all sectors to participate and contrib-
ute their expertise. Though there are obvious patient pri-
vacy concerns, open health data has been made available 
by organizations such as New York State Statewide Plan-
ning and Research Cooperative System (SPARCS) [4].

Once the data is made available, it needs to be suitably 
processed to extract meaning and insights that will help 
healthcare providers and patients. We favor the creation 
and use of an open-source analytics system so that the 
entire research community can benefit from the effort 
[5–7]. As a concrete demonstration of the utility of our 
system and approach, we revealed that there is a growing 
incidence of mental health issues amongst adolescents in 
specific counties in New York State [8]. This has resulted 
in targeted interventions to address these problems in 
these communities [8]. Knowing where the problems 
lie allows policymakers and funding agencies to direct 
resources where needed.

Healthcare in the U.S. is largely provided through pri-
vate insurance companies and it is difficult for patients 

to reliably understand what their expected healthcare 
costs are [9, 10]. It is ironic that consumers can readily 
find prices of electronics items, books, clothes etc. online, 
but cannot find information about healthcare as easily. 
The availability of healthcare information including costs, 
incidence of diseases, and the expected length of stay for 
different procedures will allow consumers and patients 
to make better and more informed choices. For instance, 
in the U.S., patients can budget pre-tax contributions to 
health savings accounts, or decide when to opt for an 
elective surgery based on the expected duration of that 
procedure.

To achieve this capability, it is essential to have the 
underlying data and models that interpret the data. Our 
goal in this paper is twofold: (a) to demonstrate how to 
design an analytics system that works with open health 
data and (b) to apply it to a problem of interest to both 
healthcare providers and patients. Significant advances 
have been made recently in the fields of data mining, 
machine-learning and artificial intelligence, with growing 
applications in healthcare [11]. To make our work con-
crete, we use our machine-learning system to predict the 
length of stay (LoS) in hospitals given the patient infor-
mation in the open healthcare data released by New York 
State SPARCS [4].

The LoS is an important variable in determining health-
care costs, as costs directly increase for longer stays. The 
analysis by Jones [12] shows that the trends in LoS, hos-
pital bed capacity and population growth have to be care-
fully analyzed for capacity planning and to ensure that 
adequate healthcare can be provided in the future. With 
certain health conditions such as cardiovascular disease, 
the hospital LoS is expected to increase due to the aging 
of the population in many countries worldwide [13]. 
During the COVID-19 pandemic, hospital bed capac-
ity became a critical issue [14], and many regions in the 
world experienced a shortage of healthcare resources. 
Hence it is desirable to have models that can predict the 
LoS for a variety of diseases from available patient data.

The LoS is usually unknown at the time a patient is 
admitted. Hence, the objective of our research is to 
investigate whether we can predict the patient LoS from 
variables collected at the time of admission. By build-
ing a predictive model through machine learning tech-
niques, we demonstrate that it is possible to predict the 
LoS from data that includes the Clinical Classifications 

significantly. The findings offer valuable insights for cost estimation and capacity planning, contributing to the overall 
enhancement of healthcare management and delivery.
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Software (CCS) diagnosis code, severity of illness, and 
the need for surgery. We investigate several analytics 
techniques including feature selection, feature encoding, 
feature engineering, model selection, and model train-
ing in order to thoroughly explore the choices that affect 
eventual model performance. By using a linear regres-
sion model, we obtain an  R2 value of 0.42 when we pre-
dict the LoS from a set of 23 patient features. The success 
of our model will be beneficial to healthcare providers 
and policymakers for capacity planning purposes and to 
understand how to control healthcare costs. Patients and 
consumers can also use our model to estimate the LoS for 
procedures they are undergoing or for planning elective 
surgeries.

Background
Stone et  al. [15] present a survey of techniques used to 
predict the LoS, which include statistical and arithmetic 
methods, intelligent data mining approaches and opera-
tions-research based methods. Lequertier et al. [16] sur-
veyed methods for LoS prediction.

The main gap in the literature is that most methods 
focus on analyzing trends in the LoS or predicting the 
LoS only for specific conditions or restrict their analy-
sis to data from specific hospitals. For instance, Sridhar 
et  al. [17] created a model to predict the LoS for joint 
replacements in rural hospitals in the state of Montana 
by using a training set with 127 patients and a test set 
with 31 patients. In contrast, we have developed our 
model to predict the LoS for 285 different CCS diagno-
sis codes, over a set of 2.3 million patients over all hos-
pitals in New York state. The CCS diagnosis code refers 
to the code used by the Clinical Classifications Software 
system, which encompasses 285 possible diagnosis and 
procedure categories [18]. Since the CCS diagnosis codes 
are too numerous to list, we give a few examples that we 
analyzed, including but not limited to abdominal hernia, 
acute myocardial infarction, acute renal failure, behavio-
ral disorders, bladder cancer, Hodgkins disease, multiple 
sclerosis, multiple myeloma, schizophrenia, septicemia, 
and varicose veins. To the best of our knowledge, we 
are not aware of models that predict the LoS on such a 
variety of diagnosis codes, with a patient sample greater 
than 2 million records, and with freely available open 
data. Hence, our investigation is unique from this point 
of view.

Sotodeh et al. [19] developed a Markov model to pre-
dict the LoS in intensive care unit patients. Ma et  al. 
[20] used decision tree methods to predict LoS in 11,206 
patients with respiratory disease.

Burn et. al. examined trends in the LoS for patients 
undergoing hip-replacement and knee-replacement in 
the U.K. [21]. Their study demonstrated a steady decline 

in the LoS from 1997–2012. The purpose of their study 
was to determine factors that contributed to this decline, 
and they identified improved surgical techniques such as 
fast-track arthroplasty. However, they did not develop 
any machine-learning models to predict the LoS.

Hachesu et  al. examined the LoS for cardiac disease 
patients [22] and found that blood pressure is an impor-
tant predictor of LoS. Garcia et  al. determined factors 
influencing the LoS for undergoing treatment for hip 
fracture [23]. B. Vekaria et al. analyzed the variability of 
LoS for COVID-19 patients [24]. Arjannikov et  al. [25] 
used positive-unlabeled learning to develop a predictive 
model for LoS.

Gupta et  al. [26] conducted a meta-analysis of previ-
ously published papers on the role of nutrition on the 
LoS of cancer patients, and found that nutrition status is 
especially important in predicting LoS for gastronintes-
tinal cancer. Similarly, Almashrafi et  al. [27] performed 
a meta-analysis of existing literature on cardiac patients 
and reviewed factors affecting their LoS. However, 
they did not develop quantitative models in their work. 
Kalgotra et al. [28] use recurrent neural networks to build 
a prediction model for LoS.

Daghistani et  al. [13] developed a machine learning 
model to predict length of stay for cardiac patients. They 
used a database of 16,414 patient records and predicted 
the length of stay into three classes, consisting of short 
LoS (< 3  days), intermediate LoS ( 3–5  days) and long 
LoS (> 5  days). They used detailed patient information, 
including blood test results, blood pressure, and patient 
history including smoking habits. Such detailed informa-
tion is not available in the much larger SPARCS dataset 
that we utilized in our study.

Awad et  al. [29] provide a comprehensive review of 
various techniques to predict the LoS. Though sim-
ple statistical methods have been used in the past, they 
make assumptions that the LoS is normally distributed, 
whereas the LoS has an exponential distribution [29]. 
Consequently, it is preferable to use techniques that do 
not make assumptions about the distribution of the 
data. Candidate techniques include regression, classi-
fication and regression trees, random forests, and neu-
ral networks. Rather than using statistical parametric 
techniques that fit parameters to specific statistical dis-
tributions, we favor data-driven techniques that apply 
machine-learning.

In 2020, during the height of the COVID-19 pandemic, 
the Lancet, a premier medical journal drew widespread 
rebuke [30–32]  for publishing a paper based on ques-
tionable data. Many medical journals published expres-
sions of concern [33, 34]. The Lancet itself retracted the 
questionable paper [35], which is available at [36] with 
the stamp “retracted” placed on all pages. One possible 
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solution to prevent such incidents from occurring is for 
top medical journals to require authors to make their 
data available for verification by the scientific community. 
Patient privacy concerns can be mitigated by de-identify-
ing the records made available, as is already done by the 
New York State SPARCS effort [4]. Our methodology and 
analytics system design will become more relevant in the 
future, as there is a desire to prevent a repetition of the 
Lancet debacle. Even before the Lancet incident, there 
was declining trust amongst the public related to medi-
cine and healthcare policy [37]. This situation continues 
today, with multiple factors at play, including biased news 
reporting in mainstream media [38]. A desirable solu-
tion is to make these fields more transparent, by releasing 
data to the public and explaining the various decisions 
in terms that the public can understand. The research 
in this paper demonstrates how such a solution can be 
developed.

Requirements
We describe the following three requirements of an ideal 
system for processing open healthcare data

1. Utilize open-source platforms to permit easy replica-
bility and reproducibility.

2. Create interpretable and explainable models.
3. Demonstrate an understanding of how the input fea-

tures determine the outcomes of interest.

The first requirement captures the need for research to 
be easily reproduced by peers in the field. There is grow-
ing concern that scientific results are becoming hard for 
researchers to reproduce [39–41]. This undermines the 
validity of the research and ultimately hurts the fields. 
Baker termed this the “reproducibility crisis”, and per-
formed an analysis of the top factors that lead to irrepro-
ducibility of research [39]. Two of the top factors consist 
of the unavailability of raw data and code.

The second requirement addresses the need for the 
machine-learning models to produce explanations of 
their results. Though deep-learning models are popular 
today, they have been criticized for functioning as black-
boxes, and the precise working of the model is hard to 
discern. In the field of healthcare, it is more desirable 
to have models that can be explained easily [42]. Unless 
healthcare providers understand how a model works, 
they will be reluctant to apply it in their practice. For 
instance, Reyes et al. determined that interpretable Arti-
ficial Intelligence systems can be better verified, trusted, 
and adopted in radiology practice [43].

The third requirement shows that it is important for 
relevant patient features to be captured that can be 
related to the outcomes of interest, such as LoS, total 

cost, mortality rate etc. Furthermore, healthcare provid-
ers should be able to understand the influence of these 
features on the performance of the model [44]. This is 
especially critical when feature engineering methods 
are used to combine existing features and create new 
features.

In the subsequent sections, we present our design for 
a healthcare analytics system that satisfies these require-
ments. We apply this methodology to the specific prob-
lem of predicting the LoS.

Methods
We have designed the overall system architecture as 
shown in Fig. 1. This system is built to handle any open 
data source. We have shown the New York SPARCS as 
one of the data sources for the sake of specificity. Our 
framework can be applied to data from multiple sources 
such as the Center for Medicare and Medicaid Services 
(CMS in the U.S.) as shown in our previous work [6]. We 
chose a Python-based framework that utilizes Pandas 
[45] and Scikit learn [46]. Python is currently the most 
popular programming language for engineering and sys-
tem design applications [47].

In Fig. 2, we provide a detailed overview of the neces-
sary processing stages. The specific algorithms used in 
each stage are described in the following sections.

Recent research has shown that it is highly desirable for 
machine learning models used in the healthcare domain 
to be explainable to healthcare providers and profession-
als [48]. Hence, we focused on the interpretability and 
explainability of input features in our dataset and the 
models we chose to explore. We restricted our investiga-
tion to models that are explainable, including regression 
models, multinomial logistic regression, random forests, 
and decision trees. We also developed separate models 
for newborns and non-newborns.

Brief description of the dataset
During our investigation, we utilized open-health data 
provided by the New York State SPARCS system. The 
data we accessed was from the year 2016, which was 
the most recent year available at the time. This data was 
provided in the form of a CSV file, containing 2,343,429 
rows and 34 columns. Each row contains de-identified 
in-patient discharge information. The dataset columns 
contained various types of information. They included 
geographic descriptors related to the hospital where 
care was provided, demographic descriptors such as 
patient race, ethnicity, and age, medical descriptors 
such as the CCS diagnosis code, APR DRG code, sever-
ity of illness, and length of stay. Additionally, payment 
descriptors were present, which included information 
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about the type of insurance, total charges, and total 
cost of the procedure.

Detailed descriptions of all the elements in the data 
can be found in [49]. The CCS diagnosis code has been 
described earlier. The term “DRG” stands for Diagnos-
tic Related Group [49], which is used by the Center for 
Medicare and Medicaid services in the U.S. for reim-
bursement purposes [50].

The data includes all patients who underwent inpa-
tient procedures at all New York State Hospitals [51]. The 
payment for the care can come from multiple sources: 
Department of Corrections, Federal/State/Local/Veter-
ans Administration, Managed Care, Medicare, Medicaid, 
Miscellaneous, Private Health Insurance, and Self-Pay. 
The dataset sourced from the New York State SPARCS 
system, encompassing a wider patient population beyond 
Medicare/Medicaid, holds greater value compared to 
datasets exclusively composed of Medicare/Medicaid 
patients. For instance, Gilmore et al. analyzed only Medi-
care patients [52].

We examine the distribution of the LoS in the data-
set, as shown in Fig. 3. We note that the providers of the 
data have truncated the length of stay to 120 days. This 
explains the peak we see at the tail of the distribution.

Data pre‑processing and cleaning
We identified 36,280 samples, comprising 1.55% of the 
data where there were missing values. These were dis-
carded for further analysis. We removed samples which 
have Type of Admission = ‘Unknown’ (0.02% samples). 
So, the final data set has 2,306,668 samples. ‘Payment 
Typology 2’, and ‘Payment Typology 3’, have missing val-
ues (> = 50% samples), which were replaced by a ‘None’ 
string.

We note that approximately 10% of the dataset con-
sists of rows representing newborns. We treat this group 
as a separate category. We found that the ‘Birth Weight’ 
feature had a zero value for non-newborn samples. 
Accordingly, to better use the ‘Birth Weight’ feature, 
we partitioned the data into two classes: newborns and 
non-newborns. This results in two classes of models, 
one for newborns and the second for all other patients. 
We removed the ‘Birth Weight’ feature in the input for 
the non-newborn samples as its value was zero for those 
samples.

The column ‘Total Costs’ (and in a similar way, ‘Total 
Charges’) are usually proportional to the LoS, and it 
would not be fair to use these variables to predict the 
LoS. Hence, we removed this column. We found that the 
columns ’Discharge Year’, ’Abortion Edit Indicator’’ are 

Fig. 1 Shows the system architecture. We use Python-based open-source tools such as Pandas and Scikit-Learn to implement the system
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redundant for LoS prediction models, and we removed 
them. We also removed the columns ‘CCS Diagnosis 
Description’, ‘CCS Procedure Description’, ‘APR DRG 
Description’, ‘APR MDC Description’, and ‘APR Severity 
of Illness Description’ as we were given their correspond-
ing numerical codes as features.

Since the focus of this paper is on the prediction of the 
LoS, we analyzed the distribution of LoS values in the 
dataset.

We developed regression models using all the LoS val-
ues, from 1–120. We also developed classification models 
where we discretized the LoS into specific bins. Since the 
distribution of LoS values is not uniform, and is heavily 
clustered around smaller values, we discretized the LoS 
into a small number of bins, e.g. 6 to 8 bins.

We utilized 10% of the data as a holdout test-set, which 
was not seen during the training phase. For the remain-
ing 90% of the data, we used tenfold cross-validation in 
order to train the model and determine the best param-
eters to use.

Feature encoding
Many variables in the dataset are categorical, e.g., the 
variable “APR Severity of Illness Description” has the 

values in the set [Major, Minor, Moderate, Extreme]. 
We used distribution-dependent target encoding tech-
niques and one-hot techniques to improve the model 
performance [53]. We replaced categorical data with 
the product of mean LoS and median LoS for a category 
value. The categorical feature can then better capture the 
dependence distribution of LoS with the value of the cat-
egorical feature.

For the linear regression model [54], we sampled a set 
of 6 categorical features, [‘Type of Admission’, ‘Patient 
Disposition’, ‘APR Severity of Illness Code’, ‘APR Medical 
Surgical Description’, ‘APR MDC Code’] which we tar-
get encoded with the mean of the LoS and the median of 
the LoS. We then one-hot encoded every feature (all fea-
tures are categorical) and for each such one-hot encoded 
feature, created a new feature for each of the features 
in the sampled set, by replacing the ones in the one-
hot encoded feature with the value of the correspond-
ing feature in the sampled set. For example, we one-hot 
encoded ‘Operating Certificate Number’, and for samples 
where ‘Operating Certificate Number’ was 3, we created 
6 features, each where samples having the value 3 were 
assigned the target encoded values of the sampled set fea-
tures, and the other samples were assigned zero. We used 

Fig. 2 Shows the processing stages in our analytics pipeline
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such techniques to exploit the linear relation between 
LoS and each feature.

According to the sklearn documentation [55], a ran-
dom forest regressor is “a meta estimator that fits a num-
ber of decision tree regressors on various sub-samples 
of the dataset and uses averaging to improve the predic-
tive accuracy and control over-fitting”. The random for-
est regressor leverages ensemble learning based on many 
randomized decision trees to make accurate and robust 
predictions for regression problems. The averaging of 
many trees protects against single trees overfitting the 
training data.

The random forest classifier is also an ensemble learn-
ing technique and uses many randomized decision trees 
to make predictions for classification problems. The ’wis-
dom of crowds’ concept suggests that the decision made 
by a larger group of people is typically better than an 
individual. The random forest classifier uses this intui-
tion, and allows each decision tree to make a prediction. 
Finally, the most popular predicted class is chosen as the 
overall classification.

For the Random Forest Regressor [56, 57] and Random 
Forest Classifier [58], we only used a similar distribution 
dependent target encoding as a random forest classifier/ 

regressor is unsuitable for sparse one-hot encoded 
columns.

Multinomial logistic regression is a type of regres-
sion analysis that predicts the probabilities of the dif-
ferent possible outcomes of a categorically distributed 
dependent variable, given a set of independent variables. 
It allows for more than two discrete outcomes, extend-
ing binomial logistic regression for binary classification 
to models with multiple class membership. For the multi-
nomial logistic regression model [59], we used only one-
hot encoding, and not target encoding, as the target value 
was categorical.

Finally, we experimented with combinations of target 
encoding and one-hot encoding. We can either use tar-
get encoding, or one-hot encoding, or both. When both 
encodings are employed, the dimensionality of the data 
increases to accommodate the one-hot encoded fea-
tures. For each combination of encodings, we also experi-
mented with different regression models including linear 
regression and random forest regression.

Feature importance, selection, and feature engineering
We experimented with different feature selection 
methods. Since the focus of our work is on developing 

Fig. 3 Distribution of the length of stay in the dataset
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interpretable and explainable models, we used SHAP 
analysis to determine relevant features.

We examine the importance of different features in 
the dataset. We used the SHAP value (Shapley Additive 
Explanations), a popular measure for feature importance 
[60]. Intuitively, the SHAP value measures the difference 
in model predictions when a feature is used versus omit-
ted. It is captured by the following formula.

where ∅i is the SHAP value of feature i , p is the predic-
tion by the model, n is the number of features and S is 
any set of features that does not include the feature i . 
The specific model we used for the prediction was the 
random forest regressor where we target-encoded all fea-
tures with the product of the mean and the median of the 
LoS, since most of the features were categorical.

Classification models
One approach to the problem is to bin the LoS into dif-
ferent classes, and train a classifier to predict which 
class an input sample falls in. We binned the LoS into 
roughly balanced classes as follows: 1 day, 2 days, 3 days, 
4–6 days, > 6 days. This strategy is based on the distribu-
tion of the LoS as shown earlier in Figs. 3 and 4.

We used three different classification models, compris-
ing the following:

∅i(p) =

S⊆N/i

|S|!(n− |S| − 1)!

n!
(p(S ∪ i)− p(S))

1. Multinomial Logistic Regression
2. Random Forest Classifier
3. CatBoost classifier [62].

We used a Multinomial Logistic Regression model [59] 
trained and tested using tenfold cross validation to clas-
sify the LoS into one of the bins. The multinomial logis-
tic regression model is capable of providing explainable 
results, which is part of the requirements. We used the 
feature engineering techniques described in the previous 
section.

We used a Random Forest Classifier model trained and 
tested using tenfold cross validation to classify the LoS 
into one of the bins. We used a maximum depth of 10 so 
as to get explainable insights into the model.

Finally, we used a CatBoost Classifier model trained 
and tested using tenfold cross validation to classify the 
LoS into one of the bins.

Regression models
We used three different regression models with the fea-
ture engineering techniques mentioned above (Feature 
encoding section). These comprise:

1. Linear regression
2. Catboost regression
3. Random forest regression

Fig. 4 A density plot of the distribution of the length of stay. The area under the curve is 1. We used a kernel density estimation with a Gaussian 
kernel [61] to generate the plot
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The linear regression was implemented using the 
nn.Linear() function in the open source library PyTorch 
[63]. We used the ‘Adam’ optimization algorithm [64] in 
mini-batch settings to train the model weights for linear 
regression.

We investigated CatBoost regression in order to create 
models with minimal feature sets, whereby models with 
a low number of input features would provide adequate 
results. Accordingly, we trained a CatBoost Regres-
sor [65] in order to determine the relationship between 
combinations of features and the prediction accuracy as 
determined by the  R2 correlation score.

The random forest regression was implemented using 
the function RandomForestRegressor() in scikit learn 
[55].

Model performance measures
For the regression models, we used the following metrics 
to compare the model performance.

1. The  R2 score and the p-value. We use a significance 
level of α = 0.05 (5 %) for our statistical tests.  If the 
p-value is small, i.e. less than α = 0.05, then the  R2 
score is statistically significant.

For classifier models, we used the following metrics to 
compare the model performance.

1. True positive rate, false negative rate, and F1 score 
[66].

2. We computed the Brier score using Brier’s original 
calculation in his paper [67]. In this formulation, for 
R classes the Brier score B can vary between 0 and R, 
with 0 being the best score possible.

 where ŷi,c is the class probability as per the model 
and Ii,c = 1 if the i th sample belongs to class c and 
Ii,c = 0 if it does not belong to class c.

3. We used the Delong test [68] to compare the AUC 
for different classifiers.

These metrics will allow other researchers to rep-
licate our study and provide benchmarks for future 
improvements.

Results
In this section we present the results of applying the 
techniques in the Methods section.

B =
1

N

∑
i

∑
c
(ŷi,c − Ii,c)

2

Descriptive statistics
We provide descriptive statistics that help the reader 
understand the distributions of the variables of interest.

Table  1 summarizes basic statistical properties of the 
LoS variable.

Figure 5 shows the distribution of the LoS variable for 
newborns.

Table 2 shows the top 20 APR DRG descriptions based 
on their frequency of occurrence in the dataset.

Figure 6 shows the distribution of the LoS variable for 
the top 20 most frequently occurring APR DRG descrip-
tions shown in Table 2.

Feature encoding
We experimented with different encoding schemes 
for the categorical variables and for each encoding we 
examined different regression techniques. Our results 
are shown in  Table  3. We experimented with the three 
encoding schemes shown in the first column. The last 
row in the table shows a combination of one-hot encod-
ing and target encoding, where the number of columns 
in the dataset are increased to accommodate one-hot 
encoded feature values for categorical variables.

Feature importance, selection and feature engineering
We obtained the SHAP plots using a Random Forest 
Regressor trained with target-encoded features.

Figures 7 and 8 show the SHAP values plots obtained 
for the features in the newborn partition of the dataset. 
We find that the features, “APR DRG Code”, “APR Sever-
ity of Illness Code”, “Patient Disposition”, “CCS Procedure 
Code”, are very useful in predicting the LoS. For instance, 
high feature values for “APR Severity of Illness Code”, 
which are encoded by red dots have higher SHAP val-
ues than the blue dots, which correspond to low feature 
values.

A similar interpretation can be applied to the features 
in the non-newborn partition of the dataset. We note 
that “Operating Certificate Number” is among the top-10 
most important features in both the newborn and non-
newborn partitions. This finding is discussed in the Dis-
cussion section.

Table 1 Descriptive statistics regarding the LoS variable

Mean 5.41

std. deviation 7.97

Minimum 1

25th percentile 2

50th percentile 3

75th percentile 6

Maximum 120
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From Fig.  9, we observe that as the severity of ill-
ness code increases from 1–4, there is a corresponding 
increase in the SHAP values.

To further understand the relationship between the 
APR Severity of Illness code and the LoS, we created 
the plot in Fig.  10. This shows that the most frequently 
occurring APR Severity of Illness code is 1 (Minor), and 
that the most frequently occurring LoS is 2 days. We pro-
vide this 2-D projection of the overall distribution of the 
multi-dimensional data as a way of understanding the 
relationship between the input features and the target 
variable, LoS.

Similarly, Fig.  11 shows the relationship between the 
birth weight and the length of stay. The most common 
length of stay is two days.

Classification
We obtained a classification accuracy of 46.98% using 
Multinomial Logistic Regression with tenfold cross-
validation in the 5-class classification task for non-new-
born cases. The confusion matrix in Fig.  12 shows that 
the highest density of correctly classified samples is in 
or close to the diagonal region. The regions where out 
model fails occurs between adjacent classes as can be 
inferred from the given confusion matrix.

For the newborn cases, we obtained a classification 
accuracy of 60.08% using Random Forest Classification 
model with tenfold cross-validation in the 5-class classi-
fication task. The confusion matrix in Fig. 13 shows that 
the majority of data samples lie in or close to the diagonal 

Fig. 5 This figure depicts the distribution of the LoS variable for newborns

Table 2 This table depicts the frequency of occurrence of the 
top 20 APR DRG descriptions in the dataset

APR DRG Description Frequency

Neonate birthwt > 2499 g, normal newborn or neonate w 
other problem

195,238

Vaginal delivery 142,275

Septicemia & disseminated infections 93,349

Cesarean delivery 74,561

Heart failure 56,708

Other pneumonia 40,890

Knee joint replacement 39,824

Chronic obstructive pulmonary disease 38,023

Schizophrenia 36,329

Cellulitis & other skin infections 33,235

Hip joint replacement 32,888

Cardiac arrhythmia & conduction disorders 32,472

Kidney & urinary tract infections 29,801

RENAL FAILURE 29,118

CVA & precerebral occlusion w infarct 25,731

Bipolar disorders 25,429

Seizure 25,290

Major depressive disorders & other/unspecified psychoses 23,541

Percutaneous coronary intervention w/o AMI 22,261

Alcohol abuse & dependence 22,151



Page 11 of 29Jain et al. BMC Health Services Research          (2024) 24:860  

region. The regions where our model does not do well 
occurs between adjacent classes as can be inferred from 
the given confusion matrix,

The density plot in Fig.  14 shows the relationship 
between the actual LoS and the predicted LoS. For a LoS 
of 2  days, the centroid of the predicted LoS cluster is 
between 2 and 3 days.

A quantitative depiction of our model errors is shown 
in Fig. 15. The values in Fig. 15 are interpreted as follows. 
Referring to the column for LoS = 2, the top row shows that 
51% of the predicted LoS values for an actual stay of 2 days is 
also 2 days (zero error), and that 23% of the predicted values 
for LoS equal to 2 days have an error of 1 day and so on. The 
relatively high values in the top row indicates that the model 
is performing well, with an error of less than 1 day. There are 
relatively few instances of errors between 2 and 3 days (typi-
cally less than 10% of the values show up in this row). The 
only exception is for the class corresponding to LoS great 
than 8 days. The truncation of the data to produce this class 
results in larger model errors specifically for this class.

Regression
Figures  16 and 17 show the scatter plots for the linear 
regression models. The exact line represents a line with 
slope 1, and a perfect model would be one that produced 
all points lying on this line.

Figure  18 shows a density plot depicting the relation-
ship between the predicted length of stay and the actual 
length of stay.

Most of the existing literature on LoS stay prediction 
is based on data for specific disease conditions such as 
cancer or cardiac disease. Hence, in order to understand 
which CCS diagnosis codes produce good model fits, we 
produced the plot in Fig. 19.

We provide the following descriptions in Tables 4 and 5 
for the 3 CCS Diagnosis Codes in Fig. 19 with the top  R2 
Scores using linear regression.

Similarly, the following table shows the 3 CCS Diagno-
sis Codes in Fig. 19 for the lowest  R2 Scores using linear 
regression.

Models with minimal feature sets
We trained a CatBoost Regressor [65] on the complete 
dataset in order to determine the relationship between 
combinations of features and the prediction accuracy as 
determined by the  R2 correlation score. This is shown in 
Fig. 20

We can infer from Fig. 20 that only four features (‘’APR 
MDC Code’, ’APR Severity of Illness Code’, ’APR DRG 
Code’, ’Patient Disposition’) are sufficient for the model to 

Fig. 6 A 3-d plot showing the distribution of the LoS for the top-20 most frequently occuring APR DRG descriptions. The x-axis (horizontal) depicts 
the LoS, the y-axis shows the APR DRG codes and the z-axis shows the density or frequency of occurrence of the LoS

Table 3 The regression results produced by varying the 
encoding scheme and the model. This data is for non-newborns

Encodings Model R2 Score

One Hot Linear Regression 0.36

Target Random Forest Regressor 0.396

One Hot and Target Linear Regression 0.42
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Fig. 7 SHAP Value plot for newborns

Fig. 8 1-D SHAP plot, in order of decreasing feature importance: top to bottom (for non-newborns)
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reach very close to its maximum performance. We obtain 
similar concurring results when using other regression 
models for the same experiment.

Classification trees
We used a random forest tree approach to generate the 
trees in Figs. 21 and 22.

Fig. 9 A 2-D plot showing the relationship between SHAP values for one feature, “APR Severity of Illness Code”, and the feature values themselves 
(non-newborns)

Fig. 10 A density plot showing the relationship between APR Severity of Illness Code and the LoS. The color scale on the right determines 
the interpretation of colors in the plot. We used a kernel density estimation with a Gaussian kernel [61] to generate the plot
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Model performance measures
Regression
We used tenfold cross validation to determine the regres-
sion scores. The results are summarized in Tables 6 and 7.

Classification
We computed the multi-class classifier metrics for logis-
tic regression, using one-hot encoding for non-new-
borns. The results are presented in Table  8. The first 
row represents the accuracy of the classifier when Class 
0 is compared against the rest of the classes. A similar 

Fig. 11 A density plot showing the distribution of the birth weight values (in grams) versus the LoS. The colorbar on the right shows 
the interpretation of color values shown in the plot. We used a kernel density estimation with a Gaussian kernel [61] to generate the plot

Fig. 12 Confusion matrix for classification of non-newborns. The number inside each square along the diagonal represents the number of correctly 
classified samples. The color is coded so lighter colors represent lower numbers
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Fig. 13 Confusion matrix for classification of newborns. The number inside each square along the diagonal represents the number of correctly 
classified samples. The color is coded so lighter colors represent lower numbers

Fig. 14 Shows the density plot of the predicted length of stay versus actual length of stay for the classifier model for non-newborns. We used 
a kernel density estimation with a Gaussian kernel [61] to generate the plot
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Fig. 15 Shows the distribution of correctly predicted LoS values for each class used in our model. Along the columns, we depict the different 
classes used in the model, consisting of LoS equal to 1, 2, 3 …8, and more than 8. Each row depicts different errors made in the prediction. 
For instance, the top row depicts an error of less than or equal to one day between the actual LoS and the predicted Los. The second row 
from the top depicts an error which is greater than 1 and less than or equal 2 days. And so on for the other rows, for non-newborns

Fig. 16 Scatter plot showing an instance of a linear regression fit to the data (newborns). The  R2 score is 0.82. The blue line represents an exact fit, 
where the predicted LoS equals the actual LoS (slope of the line is 1)
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Fig. 17 Scatter plot for linear regression. (non-newborns). The  R2 score is 0.42. The blue line represents an exact fit, where the predicted LoS equals 
the actual LoS (slope of the line is 1)

Fig. 18 Shows the density plot of the predicted length of stay versus actual length of stay for the classifier model for non-newborns. We used 
a kernel density estimation with a Gaussian kernel [40] to generate the plot. The best fit regression line to our predictions is shown in green, 
whereas the blue line represents the ideal fit (line of slope 1, where actual LoS and predicted LoS are equal)
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interpretation applies to the other rows in the table, ie 
one-versus-rest. The macro average gives the balanced 
recall and precision, and the resulting F1 score. The 
weighted average gives a support (number of samples) 
weighted average of the individual class metric. The 
overall accuracy is computed by dividing the total num-
ber of accurate predictions, which is 49,686 out of a total 
number of 105,932 samples, which yields a value of 0.47.

For the category of non-newborns, Fig.  23  provides 
a graphical plot that visualizes the ROC curves for the 
different multiclass classifiers we developed.

In Table 9 we compare the performance of our mul-
ticlass classifier using logistic regression developed on 
2016 SPARCS data against 2017 SPARCS data.

In order to compare the performance of the different 
classifiers, we computed the AUC measures reported in 
Table  10. Figure  24 visualizes the data in Table  10 and 
Fig. 25 visualizes the data in Table 11. In Tables 12 and 
13 we report the results of computing the Delong test for 
non-newborns and newborns respectively. In Tables  14 
and 15 we report the results of computing the Brier 
scores for non-new borns and newborns respectively.

Model parameters
In Table 16 we present the parameter and hyperparam-
eter values used in the different models.

Additional results shown in the Appendix/Supplementary 
material
Due to space restrictions, we show additional results in 
the Appendix/Supplementary Material. These results are 
in tabular form and describe the  R2 scores for different 
segmentations of the variables in the dataset, e.g. accord-
ing to age group, severity of illness code, etc.

Discussion
The most significant result we obtain is shown in 
Figs. 21 and 22, which provides an interpretable work-
ing of the decision trees using random forest modeling. 
Figure 21 for newborns shows that the birth weight fea-
tures prominently in the decision tree, occurring at the 
root node. Low birth weights are represented on the left 

Fig. 19 This figure shows the three CCS diagnosis codes that produced the top three  R2 scores using linear regression. These are 101, 100 and 109. 
The three CCS Diagnosis codes that produced the lowest  R2 scores are 159, 657, and 659

Table 4 CCS Diagnosis codes, descriptions and  R2 Scores for the 
top 3 CCS codes in Fig. 19

CCS Diagnosis 
Code

CCS Diagnosis Description R2 Score

101 Coronary atherosclerosis and other 
heart disease

0.617

100 Acute myocardial infarction 0.538

109 Acute cerebrovascular disease 0.497

Table 5 CCS Diagnosis codes, descriptions and  R2 Scores for the 
lowest 3 CCS codes in Fig. 19

CCS Diagnosis Code CCS Diagnosis Description R2 Score

159 Urinary tract infections 0.209

657 Mood disorders 0.182

659 Schizophrenia and other psychotic 
disorders

0.135
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Fig. 20 The labels for each row on the left show combinations of different input features. A CatBoost regression model was developed using 
the selected combination of features. The  R2 correlation scores for each model is shown in the bar graph

Fig. 21 A random forest tree that represents a best-fit model to the data for newborns. With 4 levels of the decision tree, the  R2 score is 0.65

Fig. 22 A random forest tree using only a tree of depth 3 that represents a best-fit model to the data for non-newborns. The  R2 score is 0.28. 
We can generate trees with greater depth that better fit the data, but we have shown only a depth of 3 for the sake of readability in the printed 
version of this paper. Otherwise, the tree would be too large to be legible on this page. The main point in this figure is to showcase the ease 
of interpretation of the working of the model through rules
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side of the tree and are typically associated with longer 
hospital stays. Higher birth weights occur on the right 
side of the tree, and the node in the bottom row with 
189,574 samples shows that the most frequently occur-
ring predicted stay is 2.66 days. Figure 22 for non-new-
borns shows that the features of “APR DRG Code”, “APR 
Severity of Illness Code” and “Patient Disposition” are 
the most important top-level features to predict the 
LoS. This provides a relatively simple rule-based model, 
which can be easily interpreted by healthcare providers 
as well as patients. For instance, the right-most branch 
of the tree classifies the input data into a relatively high 
LoS (46  days) when the branch conditions APR DRG 
Code is greater than 813.55 and the APR Severity of Ill-
ness Code is less than 91.

The results in Fig.  19 and Table  4 show that if 
we restrict our model to specific CCS Diagnosis 

descriptions such as “coronary atherosclerosis and 
other heart disease”, we obtain a good  R2 Score of 0.62. 
The objective of our work is not to cherry-pick CCS 
Diagnosis codes that produce good results, but rather 
to develop a single model for the entire SPARCS dataset 
to obtain a birds-eye perspective. For future work, we 
can explicitly build separate models for each CCS Diag-
nosis code, and that could have relevance to specific 
medical specialties, such as cardiovascular care.

Similarly, the results in Fig.  19 and Table  5 show 
that there are CCS Diagnosis codes corresponding 
to schizophrenia and mood disorders that produce a 
poor model fit. Factors that contribute to this include 
the type of data in the SPARCS dataset, where infor-
mation about patient vitals, medications, or a patient’s 
income level is not provided, and the inherent vari-
ability in treating schizophrenia and mood disorders. 
Baeza et  al. [69] identified several variables that affect 
the LoS in psychiatric patients, which include psychiat-
ric admissions in the previous years, psychiatric rating 
scale scores, history of attempted suicide, and not hav-
ing sufficient income. Such variables are not provided 
in the SPARCS dataset. Hence a policy implication is 
to collect and make such data available, perhaps as a 
separate dataset focused on mental health issues, which 
have proven challenging to treat.

Figures  16 and 17 show that a better regression fit is 
obtained when a specific CCS Diagnosis code is used 
to build the model, such as “Newborn” in Fig.  16. To 
put these results in context, we note that it is difficult 
to obtain a high  R2 value for healthcare datasets in gen-
eral, and especially for large numbers of patient samples 
that span multiple hospitals. For instance, Bertsimas [70] 
reported an  R2 value of 0.2 and Kshirsagar [71] reported 
an  R2 value of 0.33 for similar types of prediction prob-
lems as studied in this paper.

Further details for a segmentation of  R2 scores by the 
different variable categories are shown in the Appen-
dix/Supplementary Material section. For instance, the 
table corresponding to Age Groups shows that there is 
close agreement between the mean of the predicted LoS 
from our model and the actual LoS. Furthermore, the 
mean LoS increases steadily from 4.8 days for Age group 
0–17 to 6.4  days for ages 70 or older. A discussion of 
these tables is outside the scope of this paper. However, 
they are being provided to help other researchers form 
hypotheses for further investigations or to find support-
ing evidence for ongoing research.

Table  3 shows that the best encoding scheme is to 
combine target encoding with one-hot encoding and 
then apply linear regression. This produces an  R2 score 
of 0.42 for the non-newborn data, which is the best fit 
we could obtain. This table also shows that significant 

Table 6 This table summarizes the  R2 scores for three different 
regression models we investigated. This computation is for non-
newborns

Model name R2 score p value

Catboost regression 0.432  < 1 e -2

Random Forest Regression 0.396  < 1 e -2

Linear Regression 0.42  < 1 e -2

Table 7 This table summarizes the  R2 scores for three different 
regression models we investigated. This computation is for 
newborns

Model name R2 score p value

Catboost regression 0.730  < 1 e -2

Random Forest Regression 0.767  < 1 e -2

Linear Regression 0.82  < 1 e -2

Table 8 Evalution of multi-class classifier metrics for logistic 
regression for non-newborns. The macro-averaged scores are 
computed using the arithmetic mean of all the per-class scores. 
The weighted average scores are computed by using the 
support values as the weights

Precision Recall F1‑score Support

Class 0 0.45 0.56 0.50 16,685

Class 1 0.44 0.40 0.42 21,235

Class 2 0.57 0.11 0.19 18,520

Class 3 0.38 0.49 0.43 25,161

Class 4 0.59 0.71 0.65 24,331

Macro avg 0.49 0.46 0.44 105,932

Weighted avg 0.48 0.47 0.45 105,932



Page 21 of 29Jain et al. BMC Health Services Research          (2024) 24:860  

improvements can be obtained by exploring the search 
space which consists of different strategies of feature 
encoding and regression methods. There is no theoretical 
framework which determines the optimum choice, and 
the best method is to conduct an experimental search. 
An important contribution of the current paper is to 
explore this search space so that other researchers can 
use and build upon our methodology.

The distribution of errors in Fig.  15 shows that the 
truncation we employed at a LoS of 8  days produces 
artifacts in the prediction model as all stays of greater 
than 8  days are lumped into one class. Nevertheless, 
the distribution of LoS values in Fig.  4 shows that 
a relatively small number of data samples have LoS 
greater than 8  days. In the future, we will investigate 

Fig. 23 This figure applies to data concerning non-newborns. We show the multiclass ROC curves for the performance of the catboost classifier 
for the different classes shown. The area under the ROC curve is 0.7844

Table 9 In the first scenario, we developed a multiclass classifier 
using logistic regression with the 2016 SPARCS dataset. The 
performance of the classifier is shown for the year 2016. In the 
second scenario, we used this trained classifier against the 2017 
SPARCS dataset. This table compares the performance of the 
classifier for the categories of newborns and non-newborns in 
these two scenarios

Category: Newborns Year Accuracy

2016 0.605

2017 0.604

Category: Non-newborns Year Accuracy

2016 0.606

2017 0.590

Table 10 We report the AUC scores for the three different classifiers we used, logistic regression, random forest and catboost. This is 
for the case of non-newborns. The last column computes the average AUC over the previous columns

Binary classes used Average AUC 

Classifier used One vs. rest for 
class 0

One vs. rest for 
class 1

One vs. rest for 
class 2

One vs. rest for 
class 3

One vs. rest for 
class 4

Logistic Regression 0.561 0.573 0.534 0.498 0.595 0.5522

Random Forest 0.832 0.762 0.702 0.719 0.885 0.78

Catboost 0.842 0.767 0.705 0.721 0.887 0.7844
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different truncation levels, and this is outside the scope 
of the current paper. By using our methodology, the 
truncation level can also be tuned by practitioners in 
the field, including hospital administrators and other 
researchers.

Our results in Fig. 7 show that certain features are not 
useful in predicting the LoS. The SHAP plot shows that 
features such as race, gender, and ethnicity are not use-
ful in predicting the LoS. It would have been interest-
ing if this were not the case, as that implies that there 
is systemic bias based on race, gender or ethnicity. For 
instance, a person with a given race may have a smaller 
LoS based on their demographic identity. This would 
be unacceptable in the medical field. It is satisfying to 
see that a large and detailed healthcare dataset does not 
show evidence of bias.

To place this finding in context, racial bias is an impor-
tant area of research in the U.S., especially in fields such 

as criminology and access to financial services such as 
loans. In the U.S., it is well known that there is a dispro-
portional imprisonment of black and Hispanic males 
[72]. Researchers working on criminal justice have deter-
mined that there is racial bias in the process of sentencing 
and granting parole, with blacks being adversely affected 
[73]. This bias is reinforced through any algorithms that 
are trained on the underlying data. There is evidence that 
banks discriminate against applicants for loans based on 
their race or gender [74].

This does not appear to be the case in our analy-
sis of the SPARCS data. Though we did not specifi-
cally investigate the issue of racial bias in the LoS, the 
feature analysis we conducted automatically provides 
relevant answers. Other researchers including those in 
the U.K [21] have also determined that gender does not 
have an effect on LoS or costs. Hence the results in the 
current paper are consistent with the findings of other 

Table 11 We report the AUC scores for the three different classifiers we used, logistic regression, random forest and catboost. This is 
for the case of newborns. The last column computes the average AUC over the previous columns

Binary classes used Average AUC 

Classifier used One vs. rest for 
class 0

One vs. rest for 
class 1

One vs. rest for 
class 2

One vs. rest for 
class 3

One vs. rest for 
class 4

Logistic Regression 0.498 0.541 0.504 0.424 0.643 0.522

Random Forest 0.589 0.635 0.550 0.671 0.954 0.6798

Catboost 0.664 0.615 0.565 0.673 0.964 0.6962

Table 12 This table uses data for non-newborns. We report the results of using the Delong test to conduct a pairwise comparison 
of the AUCs generated by two models at a time. For each model, measured the performance of binary classifiers, designated as “One 
vs. rest for Class 0”, “One vs. rest for Class 1” and so on. A positive value for the Delong test statistic indicates that the AUC for the first 
model is larger than the AUC for the second model

Binary classes used Models compared Delong test statistic p‑value

One vs. rest for Class 0 Logistic regression vs. Random Forests -153.156 0.0

Random Forests vs. Catboost -29.575 0.0

Catboost vs. Logistic regression 157.182 0.0

One vs. rest for Class 1 Logistic regression vs. Random Forests -139.057 0.0

Random Forests vs. Catboost -16.858 0.0

Catboost vs. Logistic regression 143.066 0.0

One vs. rest for Class 2 Logistic regression vs. Random Forests -104.347 0.0

Random Forests vs. Catboost -8.677  < 1 e -10

Catboost vs. Logistic regression 106.118 0.0

One vs. rest for Class 3 Logistic regression vs. Random Forests -143.625 0.0

Random Forests vs. Catboost -2.68 0.004

Catboost vs. Logistic regression 144.197 0.0

One vs. rest for Class 4 Logistic regression vs. Random Forests -187.196 0.0

Random Forests vs. Catboost -10.278  < 1 e -10

Catboost vs. Logistic regression 188.001 0.0
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researchers in other countries working on entirely differ-
ent datasets.

From Table 6 we see that in the case of data concern-
ing non-newborns, the catboost regression performs the 
best, with an  R2 score of 0.432. The p-value is less than 
0.01, indicating that the correlation between the actual 
and predicted values of LoS through catboost regres-
sion is statistically significant. Similarly, the p-values 
for linear regression and random forest regression indi-
cate that these models produce predictions that are sta-
tistically significant, i.e. they did not occur by random 
chance.

From Table  7 that refers to data from newborns, the 
linear regression performs the best, with an  R2 score of 
0.82. The p-value is less than 0.01, indicating that the 
correlation between the actual and predicted values of 
LoS through linear regression is statistically significant. 
Similarly, the p-values for random forest regression and 
catboost regression indicate that these models produce 
predictions that are statistically significant.

We examine the performance of classifiers on non-
newborn data, as shown in Tables  10 and 12. The 
Delong test conducted in Table  12 shows that there is 
a statistically significant difference between the AUCs 

Fig. 24 A bar chart that depicts the data in Table 10 for non-newborns

Fig. 25 A bar chart that depicts the data in Table 11
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of the pairwise comparisons of the models. Hence, we 
conclude that the catboost classifier performs the best 
with an average AUC of 0.7844. We also note that there 
is a marginal improvement in performance when we use 
the catboost classifier instead of the random forest clas-
sifier. Both the catboost classifier and the random for-
est classifier perform better than logistic regression. We 
conclude that the best performing model for non-new-
borns is the catboost classifier, followed by the random 
forest classifier, and then logistic regression.

In the case of newborn data, we examine the perfor-
mance of the classifiers as shown in Tables  11 and 13. 
From Table 13, we note that the p-values in all the rows 
are less than 0.05, except for the binary class “one vs. rest 
for class 3”, random forests vs. catboost. Hence, for this 
particular comparison between the random forest classi-
fier and the catboost classifier for “one vs. rest for class 3”, 
we cannot conclude that there is a statistically significant 
difference between the performance of these two classi-
fiers. From Table 11 we observe that the AUCs of these 
two classifiers are very similar. We also note that only 
about 10% of the dataset consists of newborn cases.

From Table 14 we note that the Brier score for the cat-
boost classifier is the lowest. A lower Brier score indicates 
better performance. According to the Brier scores for the 
non-newborn data, the catboost classifier performs the 
best, followed by the random forest classifier and then 
logistic regression. Table 15 shows that for newborns, the 

Table 14 We report the Brier scores computed for the 
performance of the different classifier models we developed. This 
table uses data from non-newborns

Type of classifier Brier score

Logistic Regression 0.754

Random Forest classifier 0.644

Catboost classifier 0.635

Table 15 We report the Brier scores computed for the 
performance of the different classifier models we developed. This 
table uses data from newborns

Type of classifier Brier score

Logistic Regression 0.780

Random Forest classifier 0.532

Catboost classifier 0.635

Table 16 Model parameter and hyperparameter values used

Type of Model Parameter Value

Logistic Regression

Adam optimzer, Learning rate 1e-3

Adam optimizer, Weight decay 1e-4

Adam optimizer, Number of epochs 10

Random Forest Regression Number of estimators 10

Maximum depth 10

Decision Tree Regression Maximum depth 5

Table 13 This table uses data for newborns. We report the results of using the Delong test to conduct a pairwise comparison of the 
AUCs generated by two models at a time. For each model, we measured the performance of binary classifiers, designated as “One 
vs. rest for Class 0”, “One vs. rest for Class 1” and so on. A positive value for the Delong test statistic indicates that the AUC for the first 
model is larger than the AUC for the second model

Binary classes used Models compared Delong test statistic p‑value

One vs. rest for Class 0 Logistic regression vs. Random Forests -11.83  < 1 e -10

Random Forests vs. Catboost -12.102  < 1 e -10

Catboost vs. Logistic regression 21.475  < 1 e -10

One vs. rest for Class 1 Logistic regression vs. Random Forests -24.305  < 1 e -10

Random Forests vs. Catboost 6.823  < 1 e -10

Catboost vs. Logistic regression 18.098  < 1 e -10

One vs. rest for Class 2 Logistic regression vs. Random Forests -9.958  < 1 e -10

Random Forests vs. Catboost -5.077 1.920 e -07

Catboost vs. Logistic regression 13.541  < 1 e -10

One vs. rest for Class 3 Logistic regression vs. Random Forests -28.775  < 1 e -10

Random Forests vs. Catboost -0.914 0.180

Catboost vs. Logistic regression 29.66  < 1 e -10

One vs. rest for Class 4 Logistic regression vs. Random Forests -35.148  < 1 e -10

Random Forests vs. Catboost -8.06  < 1 e -10

Catboost vs. Logistic regression 36.011  < 1 e -10
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random forest classifier performs the best, followed by 
the catboost classifier and logistic regression. The perfor-
mance of the random forest classifier and catboost classi-
fier are very similar.

From a practical perspective, it may make sense to use 
a catboost classifier on both newborn and non-newborn 
data as it simplifies the processing pipeline. The ultimate 
decision rests with the administrators and implementers 
of these decision systems in the hospital environment.

Burn et  al. observe [21] that though the U.S. has 
reported similar declines in LoS as in the U.K, the overall 
costs of joint replacement have risen. The U.K. govern-
ment created policies to encourage the formation of spe-
cialist centers for joint replacement, which have resulted 
in reduction in the LoS as well as delivering cost reduc-
tions. The results and analysis presented in our current 
paper can help educate patients and healthcare consum-
ers about trends in healthcare costs and how they can 
be reduced. An informed and educated electorate can 
press their elected representatives to make changes to the 
healthcare system to benefit the populace.

Hachesu et  al. examined the LoS for cardiac disease 
patients [22] where they used data from around 5000 
patients and considered 35 input variables to build a 
predictive model. They found that the LoS was longer 
in patients with high blood pressure. In contrast, our 
method uses data from 2.5 million patients and considers 
multiple disease conditions simultaneously. We also do 
not have access to patient vitals such as blood pressure 
measurements, due to the limitation of the existing New 
York State SPARCS data.

Garcia et al. [23] conducted a study of elderly patients 
(age greater than 60) to understand factors governing the 
LoS for hip fracture treatment. They used 660 patient 
records and determined that the most significant vari-
able was the American Society of Anesthesiologists (ASA) 
classification system. The ASA score ranges from 1–5 and 
captures the anesthesiologist’s impression of a patient’s 
health and comorbidities at the time of surgery. Garcia 
et  al. showed a monotonically increasing relationship 
between the ASA score and the LoS. However, they did 
not build a specific predictive model. Their work shows 
that it is possible to find single variables with significant 
information content in order to estimate the LoS. The 
New York SPARCS dataset that we used does not contain 
the ASA score. Hence a policy implication of our research 
is to alert the healthcare authorities include such vari-
ables such as the ASA score where relevant in the datasets 
released in the future. The additional storage required is 
very small (one additional byte per patient record).

Arjannikov et  al. [25] developed predictive models by 
binarizing the data into two categories, e.g. LoS <  = 2 days 
or LoS > 2 days. In our work, we did not employ such a 

discretization. In contrast, we used continuous regression 
techniques as well as classification into more than two bins. 
It is preferable to stay as close to the actual data as possible.

Almashrafi et al. [27] and Cots et al. [75] observed that 
larger hospitals tended to have longer LoS for patients 
undergoing cardiac surgery. Though we did not spe-
cifically examine cardiac surgery outcomes, our feature 
analysis indicated that the hospital operating certificate 
number had lower relevance than other features such as 
DRG codes. Nevertheless, the SHAP plots in Fig.  7 and 
Fig. 8 show that the hospital operating certificate number 
occurs within the top 10 features in order of SHAP val-
ues. We will investigate this relationship in more detail in 
future research, as it requires determining the size of the 
hospital from the operating certificate number and creat-
ing an appropriate machine-learning model. The Appen-
dix contains results that show certain operating certificate 
numbers that produce a good model fit to the data.

A major focus of our research is on building interpret-
able and explainable models. Based on the principle of 
parsimony, it is preferable to utilize models which involve 
fewer features. This will provide simpler explanations 
to healthcare professionals as well as patients. We have 
shown through Fig.  20 that a model with five features 
performs just as well as a model with seven features. 
These features also make intuitive sense and the model’s 
operation can be understood by both patients and health-
care providers.

Patients in the U.S. increasingly have to pay for medi-
cal procedures out-of-pocket as insurance payments 
do not cover all the expenses, leading to unexpectedly 
large bills [76]. Many patients also do not possess health 
insurance in the U.S., with the consequence that they get 
charged the highest [77]. Kullgreen et.al. observe that 
patients in the U.S. need to be discerning healthcare con-
sumers [78], as they can optimize the value they receive 
from out-of-pocket spending. In addition to estimating 
the cost of medical procedures, patients will also benefit 
from estimating the expected duration for a procedure 
such as joint replacement. This will allow them to budget 
adequate time for their medical procedures. Patients and 
consumers will benefit from obtaining estimates from 
an unbiased open data source such as New York State 
SPARCS and the use of our model.

Other researchers have developed specific LoS models 
for particular health conditions, such as cardiac disease 
[22], hip replacement [21], cancer [26], or COVID-19 
[24]. In addition, researchers typically assume a prior 
statistical distribution for the outcomes, such a Weibull 
distribution [24]. However, we have not made any 
assumptions of specific prior statistical distributions, 
nor have we restricted our analysis to specific diseases. 
Consequently, our model and techniques should be more 
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widely applicable, especially in the face of rapidly chang-
ing disease trajectories worldwide.

Our study is based exclusively on freely available 
open health data. Consequently, we cannot control the 
granularity of the data and must use the data as-is. We 
are unable to obtain more detailed patient information 
such as their physiological variables such as blood pres-
sure, heartrate variability etc. at the time of admittance 
and during their stay. Hospitals, healthcare providers, 
and insurers have access to this data. However, there is 
no mandate for them to make this available to research-
ers outside their own organizations. Sometimes they sell 
de-identified data to interested parties such as pharma-
ceutical companies [79]. Due to the high costs involved in 
purchasing this data, researchers worldwide, especially in 
developing countries are at a disadvantage in developing 
AI algorithms for healthcare.

There is growing recognition that medical researchers 
need to standardize data formats and tools used for their 
analysis, and share them openly. One such effort is the 
organization for Observational Health Data Sciences and 
Informatics (OHDSI) as described in [80].

Twitter has demonstrated an interesting path forward, 
where a small percentage of its data was made available 
freely to all users for non-commercial purposes through 
an API [81]. Recently, Twitter has made a larger propor-
tion of its data available to qualified academic researchers 
[82]. In the future, the profit motives of companies need 
to be balanced with considerations for the greater pub-
lic good. An advantage of using the Twitter model is that 
it spurs more academic research and allows universities 
to train students and the workforce of the future on real-
world and relevant datasets.

In the U.S., a new law went into effect in January 2021 
requiring hospitals to make pricing data available pub-
licly. The premise is that having this data would provide 
better transparency into the working of the healthcare 
system in the U.S. and lead to cost efficiencies. How-
ever, most hospitals are not in compliance with this law 
[83]. Concerted efforts by government officials as well 
as pressure by the public will be necessary to achieve 
compliance. If the eventual release of such data is not 
accompanied by a corresponding interest shown by acad-
emicians, healthcare researchers, policymakers, and the 
public it is likely that the very premise of the utility of this 
data will be called into question. Furthermore, merely 
dumping large quantities of data into the public domain 
is unlikely to benefit anyone. Hence research efforts such 
as the one presented in this paper will be valuable in 
demonstrating the utility of this data to all stakeholders.

Our machine-learning pipeline can easily be applied to 
new data that will be released periodically by New York 
SPARCS, and also to hospital pricing data [83]. Due to 

our open-source methodology, other researchers can eas-
ily extend our work and apply it to extract meaning from 
open health data. This improves reproducibility, which 
is an essential aspect of science. We will make our code 
available on Github to interested researchers for non-
commercial purposes.

Limitations of our models
Our models are restricted to the data available through 
New York State SPARCS, which does not provide detailed 
information about patient vitals. More detailed physi-
ological data is available through the Multiparameter 
Intelligent Monitoring in Intensive Care (MIMIC) frame-
work [84], though for a smaller number of patients. We 
plan to extend our methodology to handle such data in 
the future. Another limitation of our study is that it does 
not account for patient co-morbidities. This arises from 
the de-identification process used to release the SPARCS 
data, where patient information is removed. Hence we 
are unable to analyze multiple hospital admissions for a 
given patient, possibly for different conditions. The main 
advantage of our approach is that it uses large-scale pop-
ulation data (2.3 million patients) but at a coarse level 
of granularity, where physiological data is not available. 
Nevertheless, our approach provides a high-level view of 
the operation of the healthcare system, which provides 
valuable insights.

Conclusion
There is growing interest in using data analytics to 
increase government transparency and inform policy-
making. It is expected that the meaning and insights 
gained from such evidence-based analysis will translate 
to better policies and optimal usage of the available infra-
structure. This requires cooperation between computer 
scientists, domain experts, and policy makers. Open 
healthcare data is especially valuable in this context 
due to its economic significance. This paper presents an 
open-source analytics system to conduct evidence-based 
analysis on openly available healthcare data.

The goal is to develop interpretable machine learning 
models that identify key drivers and make accurate pre-
dictions related to healthcare costs and utilization. Such 
models can provide actionable insights to guide health-
care administrators and policy makers. A specific illus-
tration is provided via a robust machine learning pipeline 
that predicts hospital length of stay across 285 disease 
categories based on 2.3 million de-identified patient 
records. The length of stay is directly related to costs.

We focused on the interpretability and explainability of 
input features and the resulting models. Hence, we devel-
oped separate models for newborns and non-newborns, 
given differences in input features. The best performing 
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model for non-newborn data was catboost regression, 
which used linear regression and achieved an  R2 score 
of 0.43. The best performing model for newborns and 
non-newborns respectively was linear regression, which 
achieved an  R2 score of 0.82. Key newborn predictors 
included birth weight, while non-newborn models relied 
heavily on the diagnostic related group classification. This 
demonstrates model interpretability, which is important 
for adoption. There is an opportunity to further improve 
performance for specific diseases. If we restrict our analy-
sis to cardiovascular disease, we obtain an improved  R2 
score of 0.62.

The presented approach has several desirable quali-
ties. Firstly, transparency and reproducibility are enabled 
through the open-source methodology. Secondly, the 
model generalizability facilitates insights across numer-
ous disease states. Thirdly, the technical framework can 
easily integrate new data while allowing modular exten-
sions by the research community. Lastly, the evidence 
generated can readily inform multiple key stakeholders 
including healthcare administrators planning capacity, 
policy makers optimizing delivery, and patients making 
medical decisions.
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