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Abstract 

Background  Obstructive sleep apnea hypopnea syndrome (OSAHS) is a common disease that can cause multiple 
organ damage in the whole body. Our aim was to use machine learning (ML) to build an independent polysomnogra-
phy (PSG) model to analyze risk factors and predict OSAHS.

Materials and methods  Clinical data of 2064 snoring patients who underwent physical examination in the Health 
Management Center of the First Affiliated Hospital of Shanxi Medical University from July 2018 to July 2023 were 
retrospectively collected, involving 24 characteristic variables. Then they were randomly divided into training group 
and verification group according to the ratio of 7:3. By analyzing the importance of these features, it was concluded 
that LDL-C, Cr, common carotid artery plaque, A1c and BMI made major contributions to OSAHS. Moreover, five kinds 
of machine learning algorithm models such as logistic regression, support vector machine, Boosting, Random Forest 
and MLP were further established, and cross validation was used to adjust the model hyperparameters to determine 
the final prediction model. We compared the accuracy, Precision, Recall rate, F1-score and AUC indexes of the model, 
and finally obtained that MLP was the optimal model with an accuracy of 85.80%, Precision of 0.89, Recall of 0.75, 
F1-score of 0.82, and AUC of 0.938.

Conclusion  We established the risk prediction model of OSAHS using ML method, and proved that the MLP model 
performed best among the five ML models. This predictive model helps to identify patients with OSAHS and provide 
early, personalized diagnosis and treatment options.
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Introduction
Obstructive sleep apnea hypopnea syndrome (OSAHS) 
is an important disease in the current medical environ-
ment. It affects about 5% of the population [1]. However, 
it is estimated that this is a highly undiagnosed disease 
[2]. The clinical features of the disease are snoring dur-
ing sleep, repeated episodes of upper respiratory tract 

failure resulting in intermittent hypoxia, accompanied by 
symptoms of sleep fragmentation and daytime sleepiness 
[3]. It is associated with chronic cardiovascular disease, 
type 2 diabetes, kidney damage, etc. [4–6]. The physi-
ological and pathologic mechanisms of OSAHS are not 
well understood, but may be multifactorial, including 
sympathetic nervous system overactivity [7], selective 
activation of inflammatory pathways [8], oxidative stress 
[9], vascular endothelial dysfunction [10], and metabolic 
disorders, particularly involving insulin resistance [11] 
and lipid metabolism disorders [12], which may further 
increase cardiovascular risk [13]. Epidemiological stud-
ies have shown that OSAHS is independently associated 
with alterations in glucose metabolism and puts patients 
at increased risk of developing type 2 diabetes [14, 15]. 
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Although several studies have reported an association of 
OSAHS with hyperleptinemia, the adjustment of obesity 
and visceral fat distribution has been inconsistent [16]. 
In addition, it has been reported that body mass index 
(BMI) is an important confounder of the relationship 
between OSAHS and leptin levels [17].

Nocturnal polysomnography (PSG) is one of the stand-
ard tests for diagnosing OSAHs [18]. However, PSG has 
certain limitations: 1.PSG requires professional medical 
personnel to operate, and patients must be monitored 
in the hospital; 2. Patients need to install corresponding 
devices in many parts of the body, which affects the qual-
ity of sleep [19]. If there is a method that does not rely on 
PSG to assess whether snoring patients have OSAHS, it 
will be easier to help diagnose OSAHS.

The fields of artificial intelligence (AI) and machine 
learning (ML), are moving in this direction. In recent 
years, machine learning has been widely developed and 
applied in the medical field with its excellent perfor-
mance [20–22]. It can extract information from com-
plex non-linear data and build models that reveal hidden 
dependencies between factors and disease in a big data 
environment [23]. According to different symptom char-
acteristics, scholars have proposed a variety of OSAHS 
disease identification techniques. For example, Bruno 
Arsenali et  al. develop an algorithm for classification of 
snoring and non-snoring sound events [24]. Takahiro 
Emoto classified snoring data related to OSAHS (SNR) 
based on MLP [25].

Considering OSAHS is associated with a variety of 
chronic diseases, and these inextricable associations will 
be reflected in all aspects of the human body, we attempt 
to identify OSAHS patients with the simplest health 
management data. We apply ML methods to the diagno-
sis of OSAHS, such as: logistic regression, support vec-
tor machines, Boosting, Random Forest, MLP, etc. This 
work, which has never been done before, provides a valu-
able tool for clinicians to assess the risk of OSAHS.

Materials and methods
Study design and subjects
The study retrospectively analyzed 2,166 patients with 
snoring who underwent physical examinations at the 
Health Management Center of the First Affiliated Hos-
pital of Shanxi Medical University from July 2018 to 
July 2023, of whom 102 patients had partial data miss-
ing and were discarded. All of the remaining study sub-
jects underwent PSG monitoring, blood testing and 
carotid artery ultrasound. The AHI (Apnea Hypopnea 
Index) value of the patient was obtained by monitoring 
the patient’s breathing overnight through PSG, so that 
the patient’s symptoms could be graded. OSAHS was 

diagnosed with AHI ≥ 5 times/hour in PSG results [26]. 
Patient details can be found in the supplement materials.

The inclusion criteria were as follows: patients with 
age ≥ 18 years; snoring during night sleep; the patient had 
received PSG monitoring, blood tests and carotid ultra-
sound; patients who have not received OSAHS-related 
treatment; patients sign informed consent forms. The 
exclusion criteria were as follows: patients with incom-
plete baseline data; the patient had no snoring symptoms; 
patients with multiple organ dysfunction syndrome, ure-
mia, severe cardiac heart failure, renal, or cardiac trans-
plantation; pregnant women; the patients did not sign the 
consent form.

Dataset description
Twenty four relevant clinical indicators were collected, 
and a total of 24 candidate variables were included as 
follows:

Age (years): This feature refers to the age of a person 
who is over 18 years old. It is numerical data.
Gender: This feature refers to a person’s gender. The 
number of men is 1628 (78.88%), while the number 
of women is 436 (21.12%). It is nominal data.
Height (cm): This feature refers to the height of a per-
son. It is nominal data.
Weight (kg): This feature refers to the weight of a per-
son. It is nominal data.
BMI (kg/m2): This feature is calculated as weight/
height2. It is numerical data.
RBC (1012/L): This feature refers to the count of red 
blood cells in the blood. It is numerical data.
PLT (109/L): This feature refers to the count of plate-
lets in the blood. It is numerical data.
MPV (fL): This feature refers to the mean volume size 
of platelets in the blood. It is numerical data.
PDW (fL): This feature refers to the dispersion of 
platelet volume size in the blood. It is numerical data.
HB (g/L): This feature refers to the mass of hemo-
globin per unit volume of blood. It is numerical data.
HCT (%): This feature refers to the volume of red 
blood cells per unit volume of blood. It is numerical 
data.
TC (mg/dL): This feature captures the participant’s 
total cholesterol. It is numerical data.
TG (mg/dL): This characteristic refers to the mass of 
triglycerides per unit volume of blood. It is numerical 
data.
LDL-C (mmol/L): This feature captures the partici-
pant’s low-density lipoprotein. It is numerical data.
HDL-C (mmol/L): This feature captures the partici-
pant’s high-density lipoprotein. It is numerical data.
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A1c (%): This feature refers to the proportion of gly-
cosylated hemoglobin. It is numerical data.
SBP (mmHg): This feature captures the participant’s 
systolic blood pressure. It is numerical data.
DBP (mmHg): This feature captures the participant’s 
diastolic blood pressure. It is numerical data.
GPT (U/L): This feature refers to the patient’s alanine 
aminotransferase. It is numerical data.
TBIL (μmol/L): This feature refers to the patient’s 
total bilirubin. It is numerical data.
GGT(U/L): This feature refers to the patient’s gluta-
myltranspeptidase. It is numerical data.
Cr (μmol/L): This feature refers to the patient’s cre-
atinine. It is numerical data.
UA (μmol/L): This characteristic refers to the 
patient’s uric acid. It is numerical data.
Common carotid artery plaque: This feature refers to 
the presence or absence of carotid artery plaque in 
the patient. It is categorical data.

Features ranking
Screening features to further reduce the number of fea-
tures used to generate predictive models can help miti-
gate the risk of model overfitting [27]. Among several 
feature selection methods, we focus on the feature-based 
ranking method, which ranks each feature in descend-
ing order of importance, and we consider the following 
methods. First, we apply the Pearson correlation coeffi-
cient [28] to assess the strength of association between 
all features. We then apply the Information Gain method 
(InfoGain), which assesses the value of a feature by meas-
uring the information gain relative to the class. And we 
employed the Gain Ratio (GR) method, which indicates 
the relevance of a feature and selects the ones that maxi-
mize gain ratio based on the probability of each feature 
value [29]. In addition, we use the built-in random for-
est feature importance function in sklearn library and 
use the sns.barplot() function to sort and output features 
according to their importance.

Machine learning models
All patients were randomly divided in a 7:3 ratio into a 
training set for building the predictive model and a test 
set for model validation. Five representative supervised 
machine learning algorithms were selected for model 
construction in the training dataset: support vector 
machine, random forest, boosting, logistic regression, 
artificial neural network. The working characteristics 
of the subjects of five ML models were plotted using 
the test set, and cross validation was used to adjust the 
model hyperparameters. The AUC values were calculated 
to evaluate the predictive ability of different models in 

the cohort. By comparing the predictive performance of 
machine learning models, the model with the best pre-
dictive performance is selected as the final model. In 
addition, confusion matrix was used to evaluate the per-
formance of the prediction model. The specific process is 
shown in Fig. 1.

Logistic regression
Logistic Regression (LR) [30] logistic regression is 
intended for binary (two-class) classification problems. 
It will predict the probability of an instance belonging 
to the default class, which can be snapped into a 0 or 1 
classification.

Random forest
Random Forest (RF) [31] is a combination of classifica-
tion trees determined by randomly selected samples 
and has good robustness. However, their performance is 
strictly related to a number of parameters, including the 
number of trees in the forest and pruning strategies.

Support vector machine
Support Vector Machine (SVM) [32] use a set of math-
ematical functions that are defined as the kernel. The 
function of kernel is to take data as input and transform 
it into the required form. Different SVM algorithms use 
different types of kernel functions. These functions can 
be different types. For example, linear, nonlinear, polyno-
mial, radial basis function (RBF), and sigmoid. SVM per-
form classification by finding linear decision boundaries 
that are as far away from the data as possible. They work 
great with linearly separable data.

Boosting
Boosting [33] is a very powerful learning method, and it’s 
also a supervised categorical learning method. It com-
bines many "weak" classifiers to produce a strong group 
of classifiers. A weak classifier performs only slightly 
better than random selection, so it can be designed to 
be very simple and not too computationally expensive. 
Many weak classifiers are combined to form an integrated 
strong classifier similar to SVM or neural network. Three 
of the most famous algorithms include AdaBoost, Gradi-
ent Boosting Machine, and XGBoost.

Multilayer perceptron model
A Multilayer Perceptron model (MLP) [34] is a standard 
fully connected neural network model. It consists of input 
and output layers and at least one hidden layer. Its neu-
rons are trained by employing back-propagation learning 
which allows for classification into multiple labels.
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Evaluation metrics
To evaluate the performance of ML models, we measured 
accuracy, precision, recall, F1-score, and AUC metrics 
[35]. Confusion Matrix can help us better understand 
and calculate the above metrics. The confusion matrix is 
shown below:

Confusion Predicted value

Positive Negative

True value Positive TP (True Positive) FN (False Negative)

Negative FP (False Positive) TN (True Negative)

TP (True Positive): indicates the positive example that is correctly predicted. That 
is, the real value of the data is a positive example, and the predicted value is also 
a positive example

TN (True Negative): A negative example of being correctly predicted. That is, the 
real value of the data is a negative example, and the predicted value is also a 
negative example

FP (False Positive): indicates the positive example that is incorrectly predicted. 
That is, the real value of the data is a negative example, but it is wrongly 
predicted as a positive example

FN (False Negative): A negative example of being incorrectly predicted. That is, 
the true value of the data is a positive example, but it is incorrectly predicted to 
be a negative example

Accuracy represents the proportion of correctly classi-
fied samples in the total number of samples.

Accuracy = (TN + TP)/(TN + TP + FN + FP)

Precision Indicates the percentage of the predicted 
positive samples that are actually positive.

Recall indicates the proportion of the actual num-
ber of positive samples in the total positive samples in 
which the prediction result is positive.

The F1-score is a weighted average of accuracy and 
recall rates.

Support is the number of samples for each category 
or the total number of samples for the test set.

An ROC curve (receiver operating characteristic 
curve) is a graph showing the performance of a classifi-
cation model at all classification thresholds. This curve 
plots two parameters: True Positive Rate and False Pos-
itive Rate. AUC stands for "Area under the ROC Curve." 
That is, AUC measures the entire two-dimensional area 
underneath the entire ROC curve (think integral calcu-
lus) from (0,0) to (1,1).

Precision = TP/(TP + FP)

Recall = TP/(TP + FN )

F1 = 2 ∗ Precision ∗ Recall/(Precision + Recall)

Fig. 1  Overview of our machine learning process



Page 5 of 11Ge et al. BMC Health Services Research          (2024) 24:706 	

Statistical analysis
All establishment and analyses of models were per-
formed with Python software (version 3.7.6).  Statistical 
analysis of the clinical data was performed using SPSS 
for Windows (version 23). For the demographic and clini-
cal evaluation data, SPSS 23.0 software was first used for 
processing, and kolmogorov–Smirnov was used to test 
the normality of the data. Then, Student’s t-test was per-
formed on the data conforming to normal distribution, 
and Mann–Whitney  U  test was performed on the non-
normal distribution data. Chi-square test was adopted 
for the data of dichotomous variables. P < 0.05 was con-
sidered statistically significant.

Results
Demographic and clinical characteristics
The demographic and clinical characteristics of OSAHS 
group and non-OSAHS group are summarized in 
Table 1. We found significant differences in gender, BMI, 
PDW, A1c, SBP, DBP and Cr between OSAHS group and 
non-OSAHS group (P < 0.05).

Feature ranking
The heat map in Fig. 2 shows the results of the correla-
tion analysis. In the correlation matrix, we observed 
that the linear relationship between HCT and HB was 
0.95, the linear relationship between LDL-C and TC was 
0.83, the linear relationship between HCT and RBC was 
0.82, the correlation between BMI and Weight was 0.81, 
the linear relationship between RBC and HB was 0.75. 
Then, we ranked the importance of features. In Fig. 3 and 
Table 2, we summarized the importance of features in the 
balanced data set about OSAHS. All methods considered 
indicated that LDL-C, Cr, carotid plaque, A1c, and BMI 
characteristics were more important in the differential 
diagnosis of OSAHS.

Evaluation
In order to fully evaluate the effectiveness of the model, 
we use accuracy, precision, recall rate, F1-score and 
other indicators to evaluate the model. Among all mod-
els, Logistic Regression’s accuracy is 75.00%, precision 
is 0.73, recall is 0.66, F1-score is 0.69, and AUC is 0.739. 

Table 1  Demographic characteristics of snoring patients in OSAHS and non-OSAHS retrospective datasets for machine learning 
model training

The differences between OSAHS group and non-OSAHS group were compared for 24 features, using Student’s t test, and the data were expressed as mean ± SD. The 
results showed significant differences in gender, BMI, PDW, A1c, blood pressure, Cr, UA, and common carotid artery plaque between the two groups

BMI Body Mass Index, RBC Red Blood Cell, PLT Platelet, MPV Mean Platelet Volume, PDW Platelet Distribution Width, HB Hemoglobin, HCT Hematocrit, TC Total 
Cholesterol, TG Triglycerides, LDL-C Low-Density Lipoprotein Cholesterol, HDL-C High density lipoprotein cholesterol, A1c HbA1-glycosylated hemoglobin, SBP Systolic 
Blood Pressure, DBP Diastolic Blood Pressure, GPT Glutamic-pyruvic Transaminase, TBIL Total Bilirubin, GGT​ Gamma Glutamyl Transpeptidase, Cr Creatinine, UA Uric 
Acid
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Support Vector Machine’s accuracy is 87.10%, preci-
sion is 0.89, recall is 0.81, F1-score is 0.85, and AUC is 
0.864. Gradient Boosting’s accuracy is 83.90%, precision 
is 0.85, recall is 0.76, F1-score is 0.81, and AUC is 0.831. 
Adaboost’s accuracy is 85.32%, precision is 0.86, recall is 
0.79, F1-score is 0.83, and AUC is 0.846. Xgboost’s accu-
racy is 84.70%,precision of 0.86, recall of 0.77, F1-score 
of 0.82, and AUC of 0.839. Random Forests’ accuracy is 
80.81%, precision is 0.83, recall is 0.70, F1-score is 0.76, 
and AUC is 0.797. MLP’s accuracy is 85.80%, precision of 
0.89, recall of 0.75, F1-score of 0.82, and AUC is 0.938. 
Compared these models, SVM and MLP performed well 
in various evaluation indicators, but the AUC of MLP 

was higher. MLP performed best across all metrics, so 
we finally concluded that MLP was the better model. To 
predictive performance of the best models and the aver-
age data after ten different iterations are summarized for 
each of the five algorithms with five evaluation measures 
in Table 3. Fig. 4 shows the ROC curves of all models.

Discussion
In this study, in order to simplify the model and avoid 
over-fitting, we first conducted a correlation analysis. 
And then, we assessed the importance of 24 features to 
OSAHS, and we were surprised to find that LDL-C, Cr, 
carotid plaque, A1c and BMI made major contributions 

Fig. 2  Correlation heat map between 24 features
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Fig. 3  Importance ranking of 24 features

Table 2  Features’ order of importance



Page 8 of 11Ge et al. BMC Health Services Research          (2024) 24:706 

to OSAHS. At the same time, combined with the feature 
importance ranking, we find that there was no strong 
correlation between the top five in the feature ranking. 
Studies have shown an increased prevalence of OSAHS 
in patients with metabolomics, chronic kidney disease, 

carotid plaques, diabetes and obesity [36–40], which is 
consistent with our findings. Importantly, we evaluated 
the ability of ML models created by five algorithms to 
distinguish between OSAHS and non-OSAHS diseases, 
namely the commonly used Random Forest, boosting, 

Table 3  Performance Evaluation of ML Models

Fig. 4  ROC curve of the models
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SVM, and logistic regression and MLP methods. Further, 
we obtained relatively good results for all five models by 
adjusting the algorithm and selecting the best parameters 
using GridSearchCV. Among them, the MLP of the five 
best models appeared to outperform the others, with an 
accuracy of 85.80%, a Precision of 0.89, a Recall of 0.75, 
an F1-score of 0.82, and an AUC of 0.938. Although the 
SVM model also performed well, due to its lower AUC 
value than the MLP, we ultimately concluded that the 
MLP performed better. A high AUC score means that 
the model does a good job of distinguishing between 
positive and negative samples, and ROC-AUC is a very 
useful metric when we want to assess the model’s abil-
ity to distinguish between categories. It is not affected 
by the selection of thresholds, and can comprehensively 
consider the performance of the model under various 
thresholds.

An artificial neural network (ANN) is a computational 
structure that functions like a biological neuron and can 
make predictions through computational analysis of mas-
sive data sets. There are several types of artificial neural 
networks, of which MLP is a feedforward network [41]. 
MLP has the advantage of being easy to implement, pro-
viding high-quality models, and having relatively short 
training times [42]. The MLP network consists of an 
input layer, one or more hidden layers, and an output 
layer. Each layer has several processing units (neurons), 
each of which is weighted to the units in the next layer. A 
feedforward network with enough neurons in the hidden 
layer can fit any finite input–output mapping problem. 
This study successfully constructed MLP network, pro-
viding an effective model for snoring patients to further 
diagnose OSAHS.

There are many reasons for snoring at night, possibly 
due to metabolic disorders, especially obesity, which is 
almost 100% involved in snoring; There are also some 
local anatomic causes and some unverifiable causes [43]. 
Due to the variety of causes of snoring, and the patients 
themselves have no subjective cognition of this clinical 
symptom, the etiology of snoring has not caused enough 
awareness of patients. Whether these reasons further 
lead to OSAHS is easy to be ignored. Therefore, our study 
constructed a simple and feasible model to preliminarily 
predict the risk of OSAHS.

As a kind of disease that is not easily detected, OSAHS 
cannot be underestimated [44]. The purpose of this study 
is to be able to detect the possibility of OSAHS from 
snoring symptoms combined with health management 
physical examination, which has not been mentioned in 
previous studies. At present, the latest research in this 
field is to collect snoring through non-contact micro-
phone, and establish a high-accuracy model to quantify 
the snoring events all night. Bruno Arsenali et extracted 

data from snoring to establish a Recurrent Neural Net-
work model [24], and its’ accuracy was 95%, sensitivity 
was 92%, and specificity was 98%. Although this model 
improved the process of snoring detection and obstruc-
tive sleep apnea screening, microphones are still needed 
to monitor the sound emitted during sleep throughout 
the night, which is still not convenient enough to quickly 
predict the occurrence of OSAHS. The advantage of our 
research is that it can help us pay attention to OSAHS 
earlier and further diagnose OSAHS by specialists, which 
helps to intervene the disease earlier and get a good 
prognosis. It is worth noting that our study has achieved 
good results, we successfully established five LM mod-
els, and obtained a more significant performance of 
MLP, which provides a method guidance for future clini-
cal work. However, this model only aroused doctors’ 
attention and suspicion of OSAHS, and the diagnosis of 
OSAHS still depended on PSG method. Of course, there 
are some limitations to this study. Due to the difficulty of 
data extraction and the absence of data, the sample size 
and characteristics of this study did not meet the expec-
tations. In our initial framework, we hope to obtain as 
many examination data as possible, such as common 
carotid intimedia thickness (CIMT), common carotid 
blood flow velocity (CBFV), insulin, neck circumfer-
ence, waist circumference, etc. At the same time, we hope 
to establish a large OSAHS-related database to train a 
more optimized model. However, due to different physi-
cal examination items or data loss, it is difficult to obtain 
relevant data for all patients, so the number of patients 
included in the study is also lower than expected. But our 
research still produced a satisfactory model, which can 
use some common symptoms combined with test results 
to help us predict the presence of OSAHS.

As we all know, machine learning itself is a black box 
model, and we need to further explain and evaluate the 
model in future research. In addition, the reproducibility 
and generalizability of our ML model in OSAHS has not 
been evaluated because we have not performed external 
validation.

As mentioned in this paper, this study builds a machine 
learning model for snoring patients to predict OSAHS 
on the basis of health management examination, and can 
help make good predictions, but it cannot completely 
replace PSG and clinician decision-making, and there is 
still a chance to become a good assistant to clinicians.
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