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Abstract
Background Routine health information is the pillar of the planning and management of health services and plays a 
vital role in effective and efficient health service delivery, decision making, and program improvement. Little is known 
about evidence-based actions to successively advance the use of information for decision making. Therefore, this 
study aimed to assess the level and determinants of routine health data utilization among health workers in public 
health facilities in the Harari region, Ethiopia.

Methods An institutional-based cross-sectional study design was used from June 1 to July 31, 2020. A total of 410 
health care providers from two hospitals and five health centers were selected using a simple random sampling 
technique. Data were collected through a structured questionnaire complemented by an observational checklist. 
The collected data were thoroughly checked, coding, and entered into Epi-data version 4.6 before being transferred 
to Stata version 14 for analysis. Frequency and cross-tabulations were performed. To measure factors associated with 
routine use of health data, bivariate and multivariate logistic regression analyzes were performed. The odds ratio with 
a 95% CI was calculated, and then a p-value of less than 0.05 was considered significant.

Result The general utilization of routine health data was 65.6%. The use of routine health data was significantly 
associated with healthcare workers who had a positive attitude towards data [AOR = 4 (2.3–6.9)], received training 
[AOR = 2.1 (1.3–3.6)], had supportive supervision [AOR = 3.6 (2.1–6.2)], received regular feedback [AOR = 2.9 (1.7–5.0)] 
and perceived a culture of information use [AOR = 2.5 (1.3–4.6)].

Conclusions Sixty percent of health professionals had used routine health data utilization. Training, supervision, 
feedback, and the perceived culture of information were independently associated with the use of routine health data 
utilization. Therefore, it is critical to focus on improving data utilization practices by addressing factors that influence 
the use of routine health data.
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Introduction
A health information system (HIS) is a system that inte-
grates data collection, processing, reporting, and use of 
the information necessary to improve the effectiveness 
and efficiency of health services through better manage-
ment at all levels of the health system [1, 2]. Data from 
public, private and community health facilities and health 
organizations produced at systematic intervals encom-
pass routine health information systems (RHIS) [1, 2]. 
These data provide an image of health status, health ser-
vices, and health resources. The main purpose of a RHIS 
is to generate quality information that stakeholders in 
the health system can use to make evidence-based deci-
sions [1, 2]. It is also the pillar for planning and managing 
health services at various levels of the health system, as it 
can play a vital role in efficient and efficient service deliv-
ery, decision making, and the improvement of programs 
[1, 2].

Data utilization is one of the essential components of 
HIS; it is the analysis, synthesis, and review of data as part 
of decision-making [3, 4]. Accurate, complete, and timely 
health information is used to identify strengths and gaps 
in the health system’s functions and services and, accord-
ingly, to take actions that improve performance [3, 4]. 
This will be achieved by collecting, processing, and ana-
lyzing a series of performance indicators captured mainly 
through RHIS [3, 4]. In that, it helps managers and health 
professionals deliver effective clinical management, dis-
ease prioritization, planning, drug executives, and moni-
toring services [5–7].

There is a growing global awareness of the importance 
of using routine health data for decision-making [3, 7]. 
Many countries have taken steps to improve their routine 
health information performance by building capacity, 
investing in data sources, and leveraging the digital revo-
lution [6, 8, 9]. Despite all these efforts, many develop-
ing countries’ RHIS are unable to provide the necessary 
information [2, 10]. Data generated at the peripheral level 
often goes underutilized, remaining confined to reports 
and shelves [11–13]. Weak organizational culture, lim-
ited resources, and inadequate infrastructure allocated 
for RHIS further exacerbate the issue [11–13]. In many 
developing countries, data producers lack the skills to 
analyze and interpret data, leading to poor problem 
identification, resource allocation, and planning [2, 3, 
13]. This, in turn, resulted in the failure of many health 
programs [4, 14]. In Africa, the utilization by health care 
providers of routine health data is notably low, ranging 
from 10 to 65% [4, 15–17].

In Ethiopia, despite notable improvements in RHIS 
collections, reporting and dissemination, the use of rou-
tine health information for decision-making remains 
low [4, 15–17]. Poor data quality, poor access to data, 
lack of capacity of health managers and providers in core 

competencies for data use, centralization and fragmen-
tation of health information systems, and poor identifi-
cation of information needs remain the main barriers 
in the country to translating data into action [4, 15–17]. 
A recent finding showed that only 45.8% of healthcare 
workers adequately utilize data produced in health facili-
ties [18].

Taking into account the above facts, in Ethiopia, the 
use of local data has been a priority and essential in the 
transformation process of transforming the health sector 
[19]. The country has been intensely dedicated to rein-
forcing its national HIS through different actions. The 
Federal Ministry of Health (FMOH) has implemented the 
information revolution, aimed at bringing about a funda-
mental attitudinal and cultural change with respect to the 
practical use of data [20, 21].

Several studies have stated that the core determinants 
of routine health information utilization are technical, 
behavioral, and organizational factors [22–24]. How-
ever, little is known about evidence-based actions to 
successively progress the use of information for deci-
sion making around improving the quality, effectiveness, 
and efficiency of health service delivery. Therefore, this 
study aimed to assess routine use of health information 
and associated factors among health professionals work-
ing in public health facilities in the Harari region, eastern 
Ethiopia. This will have potential to drive positive change 
in healthcare delivery, data management practices, deci-
sion-making processes, and overall health system per-
formance in the Harari Region, and in other healthcare 
facilities and regions across Ethiopia.

Materials and methods
Study design and setting
An institutional-based cross-sectional study design was 
conducted in 410 healthcare workers from 1 June to 30 
July 2020, in the Harari region of eastern Ethiopia. The 
Harari region is located 515  km from Addis Ababa to 
the east. There are 12 public health facilities and a total 
of 1143 healthcare workers have worked in public health 
facilities in the region. All public health facilities in the 
region have implemented the DHIS2 system for the col-
lection and reporting of routine data since 2018.

Study population and sample approach
Study populations were healthcare workers in selected 
public health facilities in the Harari region of eastern 
Ethiopia. Healthcare workers who have worked for at 
least six months in selected public health facilities and 
are willing to participate in the study were included in the 
study.

The sample size was determined using both single and 
double population proportion formulas. The following 
assumptions were used to calculate the sample size for 
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the first objective: 95% confidence level (1.96), 5% error 
margin, and proportion (P) of routine use of health data 
were 45.8% from a similar study conducted in Northern 
Ethiopia [18]. Accordingly, the sample size was calculated 
using the formula: n = (z (α/2))2 p(1-p)/d2, and after add-
ing 10% nonresponse rate, the calculated sample size was 
420. The sample size for the second objective was deter-
mined using a double population proportion using Epi 
Info 7 statistical packages with a 95% CI, a power of 80%, 
and a 1:1 ratio of exposed to nonexposed. However, the 
final sample size for the study was the largest sample cal-
culated from a single population proportion.

A simple random sampling technique was used to 
select the study participants. Of the 12 public health 
facilities (10 health centers and two hospitals), two hos-
pitals and five health centers were selected using the lot-
tery method. After proportional allocation of samples to 
each facility, 420 participants were selected using simple 
random sampling.

Data collection and quality control
Data were collected using a pre-tested structured ques-
tionnaire adapted from the Performance of routine infor-
mation system management (PRISM) framework tools 
[25]. The questionnaire contains sociodemographic, level 
of utilization of routine health data, technical, behavioral, 
and organizational-related questions. The questionnaire 
was prepared and administered in English. Additionally, 
a facility observation checklist was used to assess RHIS-
related resources. To maintain data quality, two days of 
training were given to data collectors and supervisors on 
the content of the questionnaire and the objective of the 
study. A pretest was conducted outside the study area 
on about 5% of the sample size. Daily and strict supervi-
sion was provided by supervisors and investigators. The 
collected data were checked for inconsistency and com-
pleteness of entry. Finally, double data entry was per-
formed by two data clerks and cross-validated.

Operational definition
Level routine health data utilization
It was defined as the use of routine health data for eight 
dimensions (for treating patients, disease prioritization, 
drug acquisition, day-to-day monitoring of health ser-
vice activities, checking data quality, planning, and per-
formance evaluation). Then, it was measured using items 
on a 5-point Likert scale (1 denoting never, 2 seldom, 3 
sometimes, 4 often and 5 always). Finally, the partici-
pant who scored above the mean score of the healthcare 
worker was considered to have ‘a good level of data utili-
zation’ or vice versa.

Attitude
The degree to which the respondent feels or perceives the 
usefulness of data use and collection, their responsibility, 
and the burden of data collection. It was measured using 
5-point Likert scale measures ranging from ‘strongly dis-
agree’ to ‘strongly agree’, and the median score was used 
to label healthcare workers as having a favorable attitude 
if they scored above the median score for an otherwise 
unfavorable attitude.

Culture of information use
the degree to which healthcare workers perceived the 
presence of committed managers to seek feedback on 
affected staff emphasizes data quality, the presence of 
PMT and use of RHIS data, and incentives for good per-
formance. It was measured by 5-point Likert scale mea-
sures, ranging from ‘strongly disagree’ to ‘strongly agree’. 
Finally, the median score of the healthcare worker was 
used to classify as perceived good promotion of the infor-
mation culture for those who scored above or equal to 
the median score, or vice versa.

Self-competence
Respondents rate their level of competence to perform 
RHIS tasks from 0 to 10 (if they can check data quality, 
calculate percentages or rates, plot trends on the chart, 
explain the implications of the results of data analysis, 
and use data to identify performance gaps). The cut in the 
median score was used to classify the confidence of the 
healthcare worker as “strong perceived self-competence” 
for those scoring above the median score or vice versa.

Data management and analysis
Data were verified for completeness and entered using 
Epi-data version 4.6, then exported to STATA version 
14. Internal consistency was checked for all computed 
items (with Cronbach’s alpha). 0.83 for perceived culture 
of information use, 0.89 for perceived self-competence, 
0.80 for attitude toward data use, and 0.81 for routine 
health data. Frequency and cross-tabulations were used 
to describe the data. Bivariate analysis and multivariate 
analysis were performed using the backward method. The 
odds ratio along with the 95% confidence interval (CI) 
were estimated. The Hosmer-Lemeshow goodness-of-fit 
test was used to test for model fitness, and a multicol-
linearity test was carried out using the Variance Inflation 
Factor (VIF). Finally, variables with a p-value < 0.05 in 
multivariate logistic regression were considered signifi-
cantly associated factors.

Results
Sociodemographic characteristics of study participants
Of the 420 healthcare workers approached, 410 (96%) 
participated in the study of which the majority (62.9%) 
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were hospital employees. Just over half (54%) of the 
respondents were male. The mean age was 29.6 (± 6) 
years, ranging from 20 to 56 years. Most of the respon-
dents had a degree (83%) and worked in hospitals (62.9%). 
The majority of the respondents (88.3%) were technical 
staff, while the rest 11.7% were members of the perfor-
mance monitoring team (PMT). The average monthly 
salary of the respondents was ETB 4000 (Table 1).

Technical characteristics
A total of 235 (57.3%) participants received training 
on RHIS of which 36% and 43% were on data analysis 
and information utilization, respectively. Most of the 
respondents used paper-based data collection formats. 
Regarding the usability of data collection tools, 63.9% 
of respondents described/perceived it as user-friendly 
(Table 2).

Behavioral and organizational characteristics
More than half (52.9%) and 58.7% of the participants 
received supportive supervision and feedback on the 
performance of the RHIS tasks, respectively. Of the total 
of the respondents, 159 (38.8%) of them described that 
there had been weak leadership. Regarding the attitude 
of the respondents towards RHIS tasks and data use, 36% 
of the respondents believed that performing RHIS tasks 
was a tedious (repetitive) action, 51% of the participants 
did not perceive their role and their responsibility to col-
lect data, while 52.8% of the participants perceived the 
benefits of using routine health data. In general, 49.5% 
of the participants have a favorable attitude toward RHIS 
tasks based on the median score of the healthcare worker 
(Table 3).

Regarding perceived data quality, 58% of partici-
pants perceived the exitance of good quality. Moreover, 
just about 53.4% of the respondents had a strong self-
competence in performing RHIS tasks. Regarding the 
culture of information about 229 (55.9%), respondents 
perceived the presence of a good culture of information 
use (Table 3).

Level of utilization of routine health data
In this study, the level of routine health data utilization 
was measured by computing the values of nine different 

Table 1 Socio-demographic characteristics of healthcare 
workers working at selected public health facilities of Harari 
Region, Ethiopia, 2020. (n = 410)
Variables Respondents Frequency Percent
Age < 25 48 11.7

25–30 245 59.8
> 31 117 28.5

Sex Female 189 46.1
Male 221 53.9

Level of education Diploma 56 13.7
Degree 340 82.9
Masters and above 14 3.4

Position Regular services providers 362 88.3
Management members/ PMT 48 11.7

Working 
experience

< 5 234 57.1
5–9 140 34.1
>=10 36 8.8

Monthly salary < 4000 ETB 32 7.8
4000–7000 ETB 207 50.5
> 7000 ETB 171 41.7

Table 2 Technical characteristics of healthcare workers working 
at public health facilities of Harari Region, Ethiopia, 2020 (n = 410)
Variables Respondents Frequency Percent
Training on RHIS Yes 235 57.3

No 175 42.7
Types of training 
received

Data managements 15 6.4
Data analysis 85 36.2
Data presentation 35 14.9
Information use 100 42.6

Perceived data col-
lection formats

User-friendly 262 63.9
Complex 148 36.1

Primary formats/
tools at working 
unit

Paper-based 307 74.9
Electronic-based 103 25.1

Table 3 Behavioural and organizational characteristics of 
healthcare workers working at public health facilities of Harari 
Region, Ethiopia, 2020 (n = 410)
Behavioral 
aspects

Respondents Frequency Per-
cent

Attitude towards 
RHIS tasks

Favorable attitude 207 50.5
Unfavorable attitude 203 49.5
Total 410 100

Perceived self-
competence to 
performs RHIS task

Strong perceived 
self-competence

191 46.6

Weak perceived 
self-competence

219 53.4

Total 410 100
Perception on 
data quality

Good 238 58
Poor 172 42
Total 410 100

Supportive su-
pervision on RHIS 
tasks

Yes 217 52.9
No 193 47.1
Total 410 100

Perceived leader-
ships of facility

Strong 251 61.2
Weak 159 38.8
Total 410 100

Perceived culture 
of information use

Good 229 55.9
Poor 181 44.1
Total 410 100

Regular feedback Yes 240 58.5
No 170 41.5
Total 410 100
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dimensions of routine health data utilization. Conse-
quently, of the total of the respondents, 269 (65.6%) of 
the respondents had a good utilization of routine health 
data, since they scored above the mean value (Table 4).

Determinants factors of routine health data utilization
In the bivariate logistic regression analysis, sex, posi-
tion, training, perceived data collection format, attitude, 
perceived self-competence, a culture of information use, 
feedback, supervision, perceived data quality and lead-
ership were factors associated with the utilization of 
routine health data at a p-value of less than 0.25. Conse-
quently, these variables were subjected to a multivariate 
logistic regression analysis (Table 5).

In multivariate analysis, the odds of good utilization 
of routine health data were almost three times higher 
among healthcare workers who had worked in the health 
center compared to hospital staff [AOR = 2.9; 95% CI: 
(1.6– 5.4)]. Furthermore, the chances of good utilization 
of routine health data among trained individuals were 
twice that of those without RHIS training [AOR = 2.1; 
95% CI: (1.3– 3.6)]. Respondents with a favorable atti-
tude towards the execution of RHIS tasks were four times 
more likely to use routine health data compared to their 
counterparts [AOR = 4.0; 95% CI: (2.3–6.9)]. Further-
more, the oddity of good utilization routine health data 
was two and half times [AOR = 2.5; 95% CI: (1.4–4.6)] 
more likely higher among health professionals who per-
ceived the presence of information culture in their facility 
than their counterparts (Table 5).

Discussion
This study aimed to identify the level of utilization of 
routine health data and its determinant factors among 
healthcare workers. Thus, the study revealed that about 
two thirds (65.5%) of healthcare workers were good users 
of routine health data. It is higher than the study 45.8% 

in Northwest Ethiopia [18], 57.9% in Easter Wallaga [26], 
38.4% in Northern Ethiopia [27], in Kenya 48.1% [28], 
and Uganda 59% [17]. These might be attributed to better 
implementation of the information revolution, particu-
larly in terms of use of digital health. The other reason 
could be attributed to the presence of different stake-
holders providing technical assistance on RHIS (CBMP 
project, and others). However, this finding is lower than 
studies in the north Gondar zone in the Amhara region 
(78.5%) [29] and the Hadiya zone (69.3%) [30]. This could 
be due to the difference in the type of facility and the par-
ticipants and the criteria used to measure data utilization.

Training in basic RHIS tasks was found to be one of 
the technical determinants of routine use of health data. 
This factor was repeatedly mentioned as crucial to the 
utilization of the data by various studies done in differ-
ent places [13, 18, 31]. This because trained healthcare 
workers had the potential to compile, analyze, and use 
data in their day-to-day decision-making [32], these con-
tribute to improved self-competence and motivation of 
Healthcare workers [12, 13]. Furthermore, participants 
from health centers were three times more likely to be a 
good user of routine data compared to participants from 
hospitals. The finding corresponds to studies conducted 
in Northern Ethiopia [18, 29]. This might be due to the 
great attention paid by the government to district health 
facilities [29].

Furthermore, participants who had regular feedback 
were 3.6 times more likely to use routine data than their 
counterparts. This finding corresponds to previous stud-
ies conducted in a different place [26, 27, 31]. Health-
care workers better understand the value of data and are 
motivated to use data if they are provided feedback regu-
larly [13]. Supportive supervision was also the organiza-
tional factor that was distinctly associated with routine 
data utilization. This factor was also mentioned as vital 
to the use of data utilization by various studies [12, 28, 
29]. This could be attributable, since supervision enables 
healthcare workers to identify the gaps and improve the 
performance [18].

Perceived culture information use was another major 
determinant of routine data utilization. This finding is 
in line with various studies [14, 31, 33]. If an organiza-
tion actively promotes the value of evidence-based deci-
sion making and incentives to collect and use data, the 
motivation and attitude of data users toward data use is 
more likely fostered [4, 33]. Furthermore, the attitude of 
healthcare workers toward RHIS tasks was found to be a 
determinant of the use of routine health data. These fac-
tors have been repeatedly reported by others as the main 
determinant of data utilization [33]. If healthcare workers 
do not realize the value of using data or do not appreciate 
the usefulness of the data they collected and utilized for 
decision making [32].

Table 4 Mean score and relative important index for routine 
health data utilization among healthcare workers in public health 
facilities of Harari Region, Eastern Ethiopia, 2020 (n = 410)
Dimension of RHIS data utilization Mean score Rela-

tive im-
portant 
index

Treating patients/ clinical services 3.98 0.80
Disease’s prioritization 3.81 0.76
Planning 3.81 0.76
Monitoring performance 3.32 0.66
Data quality checking 3.61 0.72
Health education 3.88 0.78
Drug procurement 3.32 0.66
Dept. performance evaluation 2.88 0.58
Total
Overall level of routine health data utilization = 65.6%
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Conclusion
Routine health data utilization was found among two-
thirds of healthcare workers and was below the rec-
ommended level. Additionally, the type of facility, the 
training, supervision and feedback, the perceived culture 
of information and the attitude of the healthcare worker 
toward the RHIS tasks were independent predictors 
of routine use of health data. Therefore, it is critical to 
focus on improving data utilization practices by address-
ing factors that influence the use of routine health data. 
By prioritizing these areas, healthcare systems can pro-
mote effective data utilization, enhance decision-making, 
and ultimately improve overall healthcare delivery and 
outcomes.
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