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Abstract 

Background  Operating rooms (ORs) are one of the costliest units in a hospital, therefore the cumulative conse‑
quences of any kind of inefficiency in OR management lead to a significant loss of revenue for the hospital, staff 
dissatisfaction, and patient care disruption. One of the possible solutions to improving OR efficiency is knowing a reli‑
able estimate of the duration of operations. The literature suggests that the current methods used in hospitals, e.g., 
a surgeon’s estimate for the given surgery or taking the average of only five previous records of the same procedure, 
have room for improvement.

Methods  We used over 4 years of elective surgery records (n = 52,171) from one of the major metropolitan hospitals 
in Australia. We developed robust Machine Learning (ML) approaches to provide a more accurate prediction of opera‑
tion duration, especially in the absence of surgeon’s estimation. Individual patient characteristics and historic surgery 
information attributed to medical records were used to train predictive models. A wide range of algorithms such 
as Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were tested for predicting operation duration.

Results  The results show that the XGBoost model provided statistically significantly less error than other compared 
ML models. The XGBoost model also reduced the total absolute error by 6854 min (i.e., about 114 h) compared 
to the current hospital methods.

Conclusion  The results indicate the potential of using ML methods for reaching a more accurate estimation of opera‑
tion duration compared to current methods used in the hospital. In addition, using a set of realistic features in the ML 
models that are available at the point of OR scheduling enabled the potential deployment of the proposed approach.

Keywords  Operating room, Operation duration, Prediction models, Individual patient characteristics, Extreme 
gradient boosting

Introduction
The operating room (OR) is one of the pivotal units and 
valuable assets in hospitals. ORs contribute to about 42% 
of the revenue generated by a hospital while consum-
ing over 30% of the total hospital costs [1, 2]. The OR 
administration is a complicated process and ORs’ mis-
management can affect hospital costs and care delivery 
at different levels, e.g., surgery cancellations [3], nurs-
ing staff turnovers due to conflict planning [4], and also 
staff overtime work and dissatisfaction [5]. Also from a 
patient’s standpoint, scheduling inefficiencies increase 
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the waiting time for surgery and cause stress and anxiety 
as a result of surgery cancellations [6]. Therefore, opti-
mising OR efficiency is a priority for many hospitals.

One aspect that helps to optimise OR usage is having a 
more precise booking of OR schedules [7, 8]. It has been 
shown that accurate estimation of operation durations 
may result in a higher efficiency of ORs [9, 10]. However, 
the OR schedules usually rely on simple methods to esti-
mate operation duration despite their limitations [11, 12]. 
Such simple methods include using the historical data for 
a given procedure and then simply calculating an average 
duration [8], using the surgeon’s estimate for the given 
operation [8], or taking the average duration of only the 
most recent records (e.g., previous 5 records) of the same 
procedure [1, 13]. However, given the considerable vari-
ation in operation characteristics, and hence their dura-
tions, such simple methods may not result in a reliable 
estimate of each operation duration and make it even 
more challenging to derive an accurate OR schedule.

There have been several attempts to provide models 
for better operation duration prediction. Existing models 
can be categorised into three main groups with several 
underlying issues. The first category of models focuses 
on predicting the duration of the surgical procedure 
instead of predicting the whole operation time (i.e., the 
time from patients entering the OR to leaving the room) 
[8, 10, 14–17]. The main limitation of these approaches is 
that the surgical procedure duration does not capture the 
entire operation duration due to the fact that an opera-
tion also includes other activities that contribute to the 
total duration, such as anaesthesia induction time and 
patient recovery time (i.e., the time from the end of the 
operation until the patient exits the OR) [18]. Besides, 
an operation may involve multiple procedures that are 
not necessarily undertaken sequentially throughout the 
operation. Another category of models focuses only on 
a limited number of subspecialties [19–22]. The main 
challenge of this approach is that, in reality, the clinical 
administrative team has to manage ORs with a broader 
range of specialties. Another group of models employ 
variables that may not be available preoperatively such 
as the order of an operation in a session, the cancellation 
status of prior operations, and the time that operations 
start. As a main drawback, this information may be avail-
able in the historical data, however, they are not possibly 
available at the time of using the models for OR schedul-
ing in a real-world application setting.

In this paper, we focused on providing machine learn-
ing (ML) models to predict the operation duration (i.e., 
“wheels in” to “wheels out”) for each elective surgery, 
regardless of the number of procedures involved in the 
operation. We investigated the application of a wide 
range of ML algorithms to provide a comprehensive 

evaluation of the ML models for the problem at hand. In 
order to develop a deployable ML model that can be used 
to assist administrators at the time of OR scheduling, we 
restricted the model to those variables that are available 
preoperatively.

Materials and methods
Data sources
The data for this study was extracted from one of the 
major metropolitan hospitals in Australia. The hospi-
tal comprises 783 beds, 15 operating theatres that are 
available 24  h/day, 5 endoscopy suites, 2 interventional 
theatres, a dedicated emergency obstetric theatre, 20 
preoperative holding bays and 37 post anaesthetic care 
unit bays. The data was extracted from the Theatre Man-
agement System (Department of Health, Government 
of Western Australia) which is populated exclusively by 
interfaces with the web-based Patient Administration 
System (webPAS) and included over 70,000 de-identified 
records of patients undertaking elective surgeries (i.e., 
planned surgeries), from November 2014 to June 2020. 
The study was approved by the FSH QI Medical Anaes-
thesia & Pain Medicine Committee (Quality activity 
29,238) and CSIRO Health and Medical Human Research 
Ethics Committee (2019_024_LR).

The main aim of this study was to predict the opera-
tion duration which is defined as the total minutes from 
patients entering the OR to patients leaving the OR. To 
that end, several steps were taken to prepare the data 
for modelling as follows: (1) operations with multi-
ple records were excluded, (2) surgeries with operation 
duration recorded as 0 or less were removed, (3) opera-
tions with missing values for key variables including spe-
cialty and procedures were trimmed, (4) operations that 
included procedures with less than 10 records within the 
entire dataset were filtered out. In this study, we assumed 
that the data is missing at random (MAR). The ASA 
score (reflecting patient frailty) is one of the candidate 
variables, however, values were missing for almost 40% 
of the records. Since the ASA score is a categorical fea-
ture, we used the mode formula (i.e., selecting the most 
frequent value in the dataset) to fill in the missing values 
[19]. More specifically, for each operation, if it included 
a missing ASA score, the missing value was replaced by 
the most frequent ASA score among the previous opera-
tions to that date with the same set of procedures. With 
this method, we reduced the number of records missing 
the ASA score to only 7.7%. In this study, we conducted 
a sensitivity analysis to explore alternative scenarios for 
missing data. We created multiple datasets after apply-
ing multiple imputation procedures such as mode, 
median, last observation comes forward (LOCF) and 
KNN [23]. In addition, we also created another dataset 
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in which all missing values were filtered out, i.e., only 
keeping the complete records, and it was confirmed that 
the results remained similar under alternative strate-
gies. After cleaning the data, 52,171 elective operation 
records were available for developing predictive mod-
els. Figure 1 shows the process of cleaning data and the 
removed records as a result of each condition.

To evaluate the predictive models we split the data 
into training and testing data based on the year of opera-
tions with the intention of simulating real-world set-
tings where past records are used to predict upcoming 
events in the future [7, 14, 24–27]. The training dataset 

included elective operations from November 2014 to 
June 2019, a total of 41,794 operations, and the test-
ing dataset contained operations from July 2019 to June 
2020, a total of 10,377 operations. Also, because of its 
right skewness, as can be seen in the top plot in Fig. 2, 
and to improve the accuracy of the prediction models, 
we applied a BoxCox transformation of the surgery dura-
tion times to more closely resemble a normal distribu-
tion. As noted in [28], this transformation can be useful 
for many practical problems including clinical data. It is 
also worth mentioning that although using log-normal 
distribution is the most common method to transform 

Fig. 1  The process of data cleaning with defined conditions

Fig. 2  Histogram of operation times for original data (top) and after transformation (bottom)
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operation duration [29, 30], as suggested by [31] we used 
the BoxCox transformation since log-normal distribution 
is actually a special case of the BoxCox transformation. 
Also, the data skewness after log-normal transformation 
is 0.12, however, the skewness after BoxCox is -0.00062 
which means the BoxCox method transforms the opera-
tion duration into a more favourable symmetric distribu-
tion. Note that, after predicting the duration of surgery, 
the predicted values were transformed back for accuracy 
calculations and comparison with the actual values of the 
datasets. The histogram of the operation times using the 
given actual data and the transformed version are shown 
in Fig. 2.

Figure 3 shows the distribution of the operation dura-
tions (i.e., response variable), across different medical 
specialties, with at least 15 records. This figure also cap-
tured the number of data records contained in each spe-
cialty and the average operation time for each specialty, 
shown by the red colour line.

Predictor variables for modelling
The predictor variables, used for model development, 
were selected after an in-depth review of available data 
sources. First, we focused on variables that are available 
preoperatively, several days before the operation. Several 
variables are commonly used in the existing models in the 
literature and also were available in our dataset including 

“Order” (e.g., operation order in session), “Session” (e.g., 
morning or afternoon), “Theatre” (i.e., operating room 
number), and “Cancellation” (i.e., the cancellation status 
of the previous operation). However, they were not part 
of our model development as they would not be relevant 
in a potential implementation, even though they may 
improve the model’s accuracy.

Besides the above-mentioned features, we investigated 
several other common features including “age”, “gender”, 
“patient history” (i.e., the previous number of surger-
ies with the same procedures), and “admission type”. But 
they were also excluded from model development as they 
either did not improve the model or slightly made the 
model worse. These findings are consistent with reports 
from others [14, 32]. It is also worth mentioning that the 
data used in this study was collected from an OR man-
agement database that lacked the information related 
to the surgeon’s estimation of the operation duration as 
well as the surgical team (e.g., the surgeon, number of 
anaesthetists and nurses) was not available. The features 
used for model development in this study are shown in 
Table 1. All five predictors were nominal variables.

The first three features listed in Table 1 (i.e., Specialty, 
Number of procedures, Procedure combination) are 
operation-related factors, while the other two are patient 
characteristics. The CCI is an indicator of the severity 
and complications of a patient’s condition which uses 

Fig. 3  Distribution of the operation times (minutes) for different specialties
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17 different patient diagnoses (e.g., diabetes, cancer, 
liver disease) to calculate the index. Since the calcula-
tion of the CCI score needs a thoroughly accurate review 
of medical records collected over years before hospital 
admission [33], we considered this feature as it reflects 
the patient’s medical history. In this paper, the comorbid-
ity package [34] in R was used for computing CCI using 
the International Classification of Diseases, 10th Revision 
(ICD-10). It is also worth mentioning that the Present On 
Admission (POA) diagnoses were used when calculating 
CCI. The CCI was categorised into three groups: 0, 1–2, 
and 2+ [35]. The ASA score is a six-level scale, from 1 
to 6, that measures the fitness and physical condition of 
the patient before surgery and anaesthesia. The distribu-
tion of the patient characteristics in the given dataset is 
shown in Table 2.

Predictive models
Several machine learning (ML) models have been applied 
to investigate their efficiency and accuracy in predicting 

surgical operation time: Linear Regression (LR), Poly-
nomial Regression (PR), Random Forest (RF), Extreme 
Gradient Boosting (XGBoost), and Nearest Neighbours 
Regression (NNr).

Linear Regression (LR) is a prediction approach that 
tries to find the best relationship between features (i.e., 
independent variables) and the response variable by 
fitting a line to the given data sets [36]. The LR model 
assigns one scale factor to each feature, called a coef-
ficient, and also one extra coefficient, called the inter-
cept, to give the model an additional degree of freedom. 
The number of coefficients determines the complexity 
of the model. Although LR models are easier to imple-
ment and interpret, they fail on complex datasets and 
are quite sensitive to outliers. Polynomial regression 
(PR) [37] is a form of linear regression. The main differ-
ence between PR and LR is that, in PR, the relationship 
between features and response variable is non-linear 
(i.e., curvilinear).

Random Forest (RF) [38] is a machine learning algo-
rithm that can be applied for both classification (i.e., 
the response variable is nominal) and regression (i.e., 
the response variable is continuous) problems. The RF 
approach is constructed from decision trees [39] by 
combining multiple small trees on various subsets of 
the given dataset to create a ‘forest’. Each tree produces 
its outputs, and the RF algorithm calculates the average 
of the outputs of all trees. The main advantage of RF 
algorithms is that they handle large datasets and also 
datasets with a great portion of missing values.

Extreme Gradient Boosting (XGBoost) [40] is 
another ensemble technique based on a decision tree 
algorithm similar to the RF algorithm. However, unlike 
the RF where all trees are built at the same time in par-
allel and each is trained independently, XGBoost builds 
one tree at a time sequentially and uses information 
from previous trees to improve subsequent trees. The 
idea is to correct the previous mistake made by the 
model, learn from it and in the next step, improve the 
performance. Therefore, XGBoost is greedier than the 
RF algorithm.

Nearest Neighbours Regression (NNr) [41] divides 
the data into different ‘K’ neighbourhoods (i.e., classes) 
using feature similarities (i.e., distances). Then, NNr 
assigns the new data points to the neighbourhood 
that is the most similar to the available ones. The NNr 
doesn’t perform any training, calculations, or building 
models until a new prediction is performed. The main 
advantage of NNr is that it is fast and allows users to 
understand and interpret the model. However, NNr 
struggles to adapt to highly complex relationships 
between features and response variables.

Table 1  Features used for model development

a Combination of scheduled procedures

Features Explanation

Specialty The primary surgical specialty 
within the undertaken operation

Number of procedures Total number of procedures involved 
in the operation

Procedure combinationa The procedures involved in the operation.

CCI Charlson Comorbidity Index (CCI) [25]

ASA Score American Society of Anaesthesiologists 
score is used to determine if someone 
is healthy enough to tolerate surgery 
and anaesthesia [26]

Table 2  Distribution of patient characteristics in the dataset

a very close to 0

Features Range Percentage 
of datasets

CCI 0 57

1–2 26

2+ 17

ASA 1 19

2 42

3 33

4 5

5 0a

6 0a
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Hospital based approaches for comparison
As already mentioned in "Introduction" section , the most 
common approach to estimating the duration of surgery 
is simply taking the average of previous records for the 
same procedure type [13]. The hospital studied in this 
paper also uses a similar approach by including surgeon 
information as well as the procedure type. At the study 
site, emergency surgery bookings are taken from the sur-
geon’s estimation of what they have entered on the book-
ing request and estimates of emergency surgery duration 
can change upon findings duration the operation. Elec-
tive surgery relies on the use of a surgical estimator tool 
to prevent overruns and underutilisation, hence its vital 
to have historical information inform procedural sched-
uling in addition to the proceduralists’ estimates.

In this study, we had no access to the estimated pro-
cedure durations based on the above-mentioned 
approaches. In addition, surgeon-related information 
was not also available in our data, which made it almost 
impossible to reproduce surgery duration estimations 
based on the current approach at the study hospital. 
However, we provided two simple estimations using sim-
ilar approaches to those used in the hospital: “Mean5” 
and “MeanAll”. The Mean5 approach takes the average 
of the previous 5 records of operation durations with the 
same procedures involved in that operation. The MeanAll 
approach is similar to Mean5 but takes the average of all 
previous records. One important note here is that, in 
contrast to the hospital’s approach, we used historical 
operations data instead of historical procedures and sur-
geons’ data for these methods.

Experimental setup and evaluation measure
The prediction models were developed and implemented 
in Python [42] software using stat models available in the 
Scikit-learn library [43] and the data manipulation and 
visualisation were implemented in R software [44].

We investigated the models’ performance under dif-
ferent scenarios. First, we compared and analysed the 
results of the prediction models on the test data. Then, 
we explored the performance of the models for the sin-
gle-procedure operations (i.e., operations with only one 
procedure) compared to the multiple-procedure opera-
tions to further examine the models in terms of accu-
racy. Next, the impact of explanatory variables and the 
Box-Cox technique applied to the response variable were 
examined. Finally, the proposed ML models were com-
pared with the current methods used in hospitals.

To examine the performance of the proposed meth-
ods, we used several error statistics including Mean 
Absolute Error (MAE), Median Absolute Error 
(MdAE), Mean Absolute Percentage Error (MAPE), and 
R-squared value (R2).

The MAE calculates the average magnitude of errors 
between the predicted values ( F  ) by a model and the 
actual values ( A ) for n observations.

where 
∑

n

i=1 |Ai − Fi| represents the total absolute error 
over n observations.

The MdAE calculates the median of all absolute differ-
ences between the predicted values by a model (F)  and 
the actual values (A)  for n observations. This metric is 
really useful since it is robust to outliers.

The MAPE is a statistical measure that shows the abso-
lute error between the predicted values (F) and the actual 
values (A) as a percentage.

The R-squared (R2), also known as the coefficient of 
determination, indicates the percentage of variance in the 
response variable that can be explained by the features. 
R-squared calculates how well the given model fits the 
data. In the below formula, 

−

A represents the average of 
all actual values.

Results
In this section, we compare the performance of the pre-
diction models.

Table  3 presents the results of the predictive models 
explained in "Predictive models" section. Among the 5 
models compared, the XGBoost model obtained the best 
results based on all measures, followed by the NNr, RF, 
PR, and LR models. The XGBoost model predicted the 
operation duration with an MAE of 20 min and a MAPE 
of 32%. Also, based on MdAE, XGBoost was able to pre-
dict operation duration with a maximum error of 11 min 
for half of the test cases.

To have a better view of the performance of the models, 
we also present the statistical significance of the results 
in Fig.  4 using a 95% confidence interval plot. Figure  4 
shows that the XGBoost model significantly outper-
formed other models. Also, we present a scatter plot of 
actual operation duration (vertical axis) versus predicted 
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operation duration (horizontal axis) in Fig. 5. The scatter 
plot represents how well the model predicts the opera-
tion times for a different range of values. In this plot, 
for perfect prediction, the points should be close to the 
diagonal line with narrow variation around the line and 
minimal bias on one side of the line (to minimise under 
or overpredictions). As can be seen, the points of the 
XGBoost model predictions lie closer to the line com-
pared to the other models and have fewer points far from 
the line. These findings also can be seen in Fig. 6. which 
shows the distribution of actual operation times and the 
predictions by the XGBoost model. From this figure, we 
can see that the XGBoost model’s predicted values are 
considerably close to the actual operation times in differ-
ent ranges.

The results presented in Figs. 5 and 6 reflect the effec-
tiveness of the XGBoost model, however, further analyses 
are provided to obtain a better understanding of any bias 
in predictions and how it performs on subgroups within 
the data. For example, as shown in Fig.  3, the average 
operation time across different specialties is notably var-
ied, thus it would be interesting to examine the perfor-
mance of the model for various specialties. To that end, 
we present the distribution of the actual error (i.e., not 
absolute error) of the XGBoost predictions in Fig. 7, and 
a box plot of the actual operation times versus the times 
predicted by the XGBoost model, separated by specialty 
in Fig. 8. In Fig. 7, negative and positive values represent 
overestimated and underestimated predictions, respec-
tively. From this figure, we can see that the majority of 
the prediction errors are in the range of 25 min and are 

Table 3  Performance of the proposed models

Algorithms MAE (mins) MdAE (mins) MAPE (%) R2

LR 43 25 0.76 0.06

PR 35 17 0.55 0.25

RF 24 12 0.37 0.65

XGBoost 20 11 0.32 0.82
NNr 22 13 0.39 0.74

Fig. 4  Absolute error comparison for models using a 95% confidence 
interval

Fig. 5  Plots of predicted operation time (horizontal axis) versus actual operation time (vertical axis); units in minutes
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relatively unbiased. From Fig. 8 also we can see that the 
model performed robustly as it has a similar distribution 
shape to the actual values for most specialties.

For a further comparison of the models’ perfor-
mance, we split the test set results for operations with 
a single procedure and multiple procedures. The test 
dataset includes 9147 operations with a single proce-
dure with a mean operation duration of 70  min and a 
median of 48 min. There are 1230 operations with mul-
tiple procedures with a mean operation duration of 
112 min and a median of 77 min. Table 4 shows that the 
XGBoost model provided better R2 and MAPE for mul-
tiple-procedure operations, indicating that the model for 

multiple-procedure operations performed as well, if not 
better than single-procedure operations.

To examine the impact of patient-based features in 
predicting operation duration, we created two new 
sets of models: model_O and model_P. The model_O 
models used only operation-based features (specialty, 
number of procedures, and procedure combination), 
while the model_P models used only patient-based fea-
tures (CCI and ASA). Table  5 shows the performance 
of these models compared to the original models built 
on the combination of both sets of features (designated 
here as model_OP). It is observed that model_O gener-
ally outperforms model_P (a minimum of 40% difference 

Fig. 6  Histogram plot of the actual operation times and the predicted values by the XGBoost model

Fig. 7  Distribution of the error of the predicted values by the XGBoost from the actual values
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in terms of MAPE for three models: RF, XGBoost, and 
NNr). This indicates the importance of operation-based 
features for surgery duration prediction. Also, a statisti-
cal test between model_O and model_OP showed that 
the majority of our predictive models are statistically 
similar, except for LR and PR, which indicates that adding 
patient-based features to model_O just marginally, not 
significantly, impacted the models’ performance.

To further quantify the importance of operation-based 
and patient-based features we conducted the permuta-
tion importance technique using the model_OP. Since 
ML models function as “black boxes” [45] and often lack 
explainability, this technique is important for the devel-
opment of prediction models since it provides insight 
into the data and makes it easier to understand and 
explain the model output [46]. This technique assigns 
a score to features based on how useful they are at pre-
dicting a response variable. From Table 6, the operation-
based features were largely more important than the 
patient-based features.

As already discussed in   "Data sources" section , we 
used the Box-Cox technique on the response variable 
(operation duration) since its distribution is positively 

skewed (i.e., the distribution tail is more pronounced to 
its right). In this section, we compared the results of the 
developed predictive models with the original operation 
durations (Org_OD) and the models developed after 
using Box-Cox methods (Box-Cox_OD). The results are 
presented in Table  7 and show that using the Box-Cox 
method on the response variable improves MAPE by 
6% for the XGBoost and NNr models and by more than 
10% for the other three models. Also, the R2 of all models 
except LR improves by between 1% and 3% which con-
firms that for this dataset, using the Box-Cox method on 
the response variable helps models represent the data 
better.

The results comparing the performance of the devel-
oped prediction model to common hospital approaches 
described in "Hospital based approaches for comparison" 
section (Mean5 and MeanAll) are presented in Table  8. 
It is observed that the XGBoost model outperforms both 
Mean5 and MeanAll, delivering a reduction in MAPE 
of 6%. The standard error (SE) and the 95% confidence 
intervals (95% CIs) of the developed XGBoost and the 
common hospital methods are also presented in Table 8. 
As can be seen, the XGBoost showed better performance 

Fig. 8  Comparison of the XGBoost model predictions versus actual operation times for different specialties

Table 4  Performance of models for single- and multiple-procedure operations

Algorithm Single Procedure Multiple Procedures

MAE (mins) MdAE (mins) MAPE (%) R2 MAE (mins) MdAE (mins) MAPE (%) R2

LR 40 24 0.78 0.06 63 36 0.66 -0.04

PR 32 17 0.55 0.28 55 26 0.51 0.06

RF 22 12 0.38 0.65 35 17 0.31 0.60

XGBoost 19 11 0.33 0.81 27 15 0.27 0.82
NNr 21 13 0.39 0.77 34 16 0.32 0.63
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than both Mean5 and MeanAll, but the difference in per-
formance between XGBoost and MeanAll is not statisti-
cally significant.

Discussion
The models’ performance
 In "Results" section, we evaluated the performance of the 
ML models and showed that the XGBoost model outper-
formed other ML models compared, as shown in Table 3; 
Fig. 4. The performance of the XGBoost model was also 
further analysed to obtain a better understanding of any 
bias and predictions on subgroups within the data. While 
we observed more overestimation than underestimation 
(around 11%, see Fig.  7), the total volume of underesti-
mation is higher, 17% to be exact. This can be attributed 
to the large number of records whose durations are outli-
ers (see Fig. 8) compared to other records for which the 
models normally predict the operation duration to be 
less than the actual cases. Besides, as shown in Fig.  3, 
the average operation times of the specialties are varied 
and the performance of the model for different special-
ties reveals some interesting findings (see Fig.  8). From 
this figure, first, some specialties have a large number of 
outliers (i.e., the dot points outside the whiskers) includ-
ing URO and GES, which are among the most common 
specialties for elective surgeries in the dataset. Second, 
for almost all specialties, the median of prediction values 
is considerably close, if not the same, to the median of 
the actual value*s. Thirdly, the prediction values for sev-
eral specialties such as RAD, GAS, and GES are largely 

similar to the actual ones, not only in terms of median 
values but also first and third quartiles. Given that these 
are the most common specialties (as shown in Fig.  2), 
we can conclude that more records help the model learn 
better and find a better pattern for prediction. Fourthly, 
even for specialties with a wide range of operation dura-
tion (i.e., the boxes are long) such as CAR and GES, the 
box plot of the predicted values has a similar distribution 
shape to the actual values, which indicates the robustness 
of the model. There are considerable deviations between 
the actual and predicted values for a number of special-
ties, including NEP and RAT, which warrants further 
investigation.

Impact and selection of explanatory variables
In this study, we used two categories of features (i.e., 
explanatory variables): operation-based features and 
patient-based features. The effectiveness of operation-
based features for predicting surgery duration is also 
extensively discussed in the literature [30, 32, 44, 45]. 
However, there are inconsistencies about the importance 
of patient-based features. Eijkemans et  al., [30] showed 
that patient-based features significantly influence the 
performance of the models. Similarly, Bartek et  al., [32] 
indicated that patient-based features such as age and 
patient class (e.g., inpatient or outpatient) are among 
the top features for model development. On the other 
hand, Edelman et  al., [14] used age and the ASA score 
as patient-based features in their model and pointed out 
that these two features are not a factor in improving the 
model’s accuracy. Combes et  al., [45] analysed different 
factors affecting operation durations in the endoscopy 
department and showed that they are not dependent on 
patient-based features. Our findings also showed that 
the developed models for surgery duration prediction 
substantially relied on operation-based features rather 
than patient-based ones (as shown in Table  5), and, 
based on the permutation importance technique calcu-
lations, the “specialty” was the most important feature, 
and the patient-based features were comparatively low 
importance.

Table 6  The feature importance score

Features Importance 
score

Specialty 0.58

Procedure combination 0.23

Number of procedures 0.11

ASA score 0.06

CCI 0.02

Table 7  Comparison of predictive performance with and without the Box-Cox method

Algorithm Org_OD Box-Cox_OD

MAE (mins) MdAE (mins) MAPE (%) R2 MAE (mins) MdAE (mins) MAPE (%) R2

LR 48 35 1.17 0.12 43 25 0.76 0.06

PR 45 32 1.05 0.19 37 19 0.58 0.20

RF 27 16 0.50 0.62 24 12 0.37 0.63

XGBoost 21 13 0.38 0.81 20 11 0.32 0.82
NNr 24 14 0.45 0.71 22 13 0.39 0.74
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Single‑ and multiple‑procedure operations
Most existing research studies focus on predicting pro-
cedure-level durations as opposed to the entire operation 
duration (note, an operation may consist of a single or 
multiple procedures). However, operations include some 
extra workflow steps besides the underlying procedure 
times, which make it more challenging to be predicted. 
In our dataset, for operations with a single procedure, on 
average, 64% of the operation duration was attributed to 
the procedure time and the other 36% of the operation 
duration associated to other tasks. This ratio may differ 
for each procedure or specialty. The difficulty of using 
procedure times for estimating the entire operation time 
is significantly greater for operations with multiple pro-
cedures. This is because multiple procedures are not 
necessarily performed sequentially and may happen at 
the same time. The prediction models in this study yield 
lower MAE and MdAE but higher MAPE for single-pro-
cedure operations than multiple-procedure operations. 
This could be interpreted by the fact that the average and 
median of single-procedure operations are noticeably 
less than those of multiple-procedure operations, by 42 
and 29 min, respectively.

Comparison with state‑of‑the‑art methods
As discussed in "Introduction" section, multiple models 
have been developed for predicting either procedure or 
operation durations [47]. Due to the differences in data-
sets, features, and experimental design, it is hard, if not 
impossible, to directly compare the results of the pro-
posed models with those in the literature. However, the 
following presents some methodological comparisons 
that highlight the novelty and the effectiveness of the 
models developed in this study.

ShahabiKargar et  al. [8] developed 3 different ML 
models for predicting procedure duration and found 
that RF obtained the best results with a MAPE of 0.68 
and an R2 of 0.65. Kayış et  al. [16] studied two years 
of elective surgeries in a children’s hospital, compris-
ing 8096 records. They used statistical methods to 
adjust the surgeon’s estimation for predicting the pro-
cedure time which obtained an R2 of 0.69 and a MAE 
of 38  min. Master et  al., [48] provided decision tree 

methods for predicting surgery time (defined as the 
time surgeons enter the OR to leave the OR) which 
yielded an R2 of 0.61. They predicted the duration that 
surgeons rather than patients spend in the OR which 
is not relevant to OR utilisation. The main common 
limitation of these three studies is that they focus on 
predicting procedure times rather than the actual oper-
ation duration.

Devi et al., [19] proposed an Artificial Neural Network 
(ANN)-based approach for predicting operation dura-
tion. The scope of their study was limited to the opera-
tions performed within an ophthalmology department 
and for only three different procedures. In addition, their 
data was limited to only 100 records. Eijkemans et  al., 
[30] proposed linear models for predicting operation 
duration using a wide range of potential features (e.g., 
surgical team, surgeon, and patient) which obtained an 
R2 of 0.79. However, they focused on operations under-
taken only within the general surgery department. 
Bodenstedt et al., [49] proposed ANN models for proce-
dure duration prediction that achieved a MAPE of 0.37 
(cf. MAPE of 0.32 for XGBoost in our study). However, 
their approach was limited to only laparoscopic opera-
tions. Garside et  al., [50] proposed an XGBoost model 
for the prediction of operation duration for colorectal 
and spinal surgeries with an MAE of 37  min (cf. MAE 
of 20 min for XGBoost in our study). Edelman et al. [14] 
developed multiple models for predicting the total sur-
gical procedure time (defined as total surgical time and 
anaesthesia time) and reported that the best predic-
tion model estimated the actual values with an MAE of 
31 min. They used the estimated surgery time as a fea-
ture that was obtained by simply subtracting 20  min 
from the actual total procedure time. Tuwatananu-
rak et  al., [51] developed an ML model for predicting 
operation duration that achieved a MdAE of 20 min (cf. 
MdAE of 11  min for XGBoost in our study). They col-
lected only three months of data for model development 
and also used features that may not be available several 
days before the surgery, i.e., at the time of scheduling 
(e.g., cancellation of prior operations, and the time that 
operations started). Bartek et al., [32] developed an ML 
model for predicting operation duration that achieved 
an R2 of 0.78 and a MAPE of 28%. However, they trained 
the data on only 12 selected specialties. A common 
limitation across the above-mentioned studies was that 
they focused only on a limited number of specialties or 
procedures.

While not directly comparable, our approach for 
operation duration prediction resulted in better perfor-
mance metrics than the ones in the above-mentioned 
related work. In addition, we also addressed some of 

Table 8  Comparison of proposed models with some possible 
current hospital methods

Algorithms MAE 
(mins)

MdAE 
(mins)

MAPE (%) SE 95% CIs

XGBoost 20 11 0.32 0.271 (19.11, 20.18)

Mean5 21 13 0.38 0.282 (20.57, 21.68)

MeanAll 21 12 0.38 0.280 (20.07, 21.17)
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the limitations that exist in the literature; Firstly, we 
predicted the operation duration, not the procedure 
duration or surgery duration (i.e., the time between 
the surgeon entering the room and the surgeon leav-
ing [48]). Secondly, we used a dataset collected over 
four years, including over 50,000 elective operations. 
Having a large dataset allows us to provide a compre-
hensive investigation of potential factors affecting the 
ML models for the operation duration prediction task. 
Thirdly, we did not restrict our models to a single or 
selected subset of specialties, our dataset includes over 
26 specialties and 500 procedure combinations. This 
helps the clinical administrative team, in reality, man-
age ORs with a broader range of specialties. Fourthly, 
we used features that are all available preoperatively, 
i.e., several days before the surgery, which enables our 
approach to be deployed in the scheduling environ-
ment. Finally, our approach was able to consistently 
predict operation duration for both single-procedure 
operations as well as the more challenging multiple-
procedure operations.

Comparison with the current hospital methods
Comparing the XGBoost model and the MeanAll 
approach to actual operation duration indicated that the 
XGBoost model achieved 6854  min less of total abso-
lute error over 1 year. It may be argued that the amounts 
gained in absolute minutes can be considered not sig-
nificant, however, this can be translated to meaningful 
gains for the hospital and OR management in the long-
term horizon. Knowing the fact that the average cost for 
1 min of OR time is estimated to be between 22 and 133 
USD [52], this improvement may translate to a significant 
reduction of costs.

Limitations
The data used in this study was collected from an 
administrative database providing information about 
elective and emergency surgeries. The data used in this 
study did not contain surgeon-related information, 
including surgeon names, surgeon’s estimation of the 
operations and the number of anaesthetists and nurses 
involved in the operations. This missing information 
limited both our model development and our compari-
sons with the current hospital methods. Also, being 
a single-site study, our data was obtained from one 
hospital, and hence, was limited to a particular demo-
graphic area, a distinct pattern of surgical demand, 
and elective case-booking techniques. Considering 
the mentioned limitations, it should be noted that the 
broad generalisation and application of our findings 

should be done with caution to non-elective surgeries 
or other hospitals.

Conclusions
In this study, we developed and validated predictive mod-
els for estimating surgery duration, using data related 
to four years of elective surgeries undertaken in a large 
metropolitan hospital in Australia. To make the model, 
we considered several realistic scenarios, predicting the 
operation duration rather than procedure duration, con-
sidered operations with both single and multiple proce-
dures, considered features known at the time of creating 
OR lists, and considered all common specialties and pro-
cedures. The XGBoost predictive model yielded the best 
results with R2 of 82% and MdAE of 11 min, reducing the 
total absolute error by 6854 min (i.e., about 114 h) over 
1 year compared to current hospital methods. For future 
work, there is still room for model improvement, particu-
larly through incorporating information related to staff 
(surgeons and nurses) and the actual surgeon’s estimation 
of the operations. Also, other studies including different 
types of datasets need to be performed to determine the 
generalisability of these results. The results of the case 
study in this paper show that delivering a significant 
efficiency improvement required further developments, 
e.g., additional efforts are needed towards improving the 
standardisation of the data capture and explainability and 
interoperability of the ML algorithms and generalisability 
across multiple sites.
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