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Abstract
Background Continuous electroencephalography (cEEG) is increasingly utilized in hospitalized patients to detect 
and treat seizures. Epidemiologic and observational studies using administrative datasets can provide insights into 
the comparative and cost effectiveness of cEEG utilization. Defining patient cohorts that underwent acute inpatient 
cEEG from administrative datasets is limited by the lack of validated codes differentiating elective epilepsy monitoring 
unit (EMU) admissions from acute inpatient hospitalization with cEEG utilization. Our aim was to develop hospital 
administrative data-based models to identify acute inpatient admissions with cEEG monitoring and distinguish them 
from EMU admissions.

Methods This was a single center retrospective cohort study of adult (≥ 18 years old) inpatient admissions with a 
cEEG procedure (EMU or acute inpatient) between January 2016-April 2022. The gold standard for acute inpatient 
cEEG vs. EMU was obtained from the local EEG recording platform. An extreme gradient boosting model was trained 
to classify admissions as acute inpatient cEEG vs. EMU using administrative data including demographics, diagnostic 
and procedure codes, and medications.

Results There were 9,523 patients in our cohort with 10,783 hospital admissions (8.5% EMU, 91.5% acute inpatient 
cEEG); with average age of 59 (SD 18.2) years; 46.2% were female. The model achieved an area under the receiver 
operating curve of 0.92 (95% CI [0.91–0.94]) and area under the precision-recall curve of 0.99 [0.98–0.99] for 
classification of acute inpatient cEEG.

Conclusions Our model has the potential to identify cEEG monitoring admissions in larger cohorts and can serve as 
a tool to enable large-scale, administrative data-based studies of EEG utilization.
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Background
Continuous electroencephalography (cEEG) is increas-
ingly utilized in hospitalized patients with acute brain 
injury or altered mental status to detect seizures and 
other seizure-like patterns that can worsen outcomes [1]. 
In the United States, there has been a 10-fold increase in 
the use of cEEG in acute inpatient setting, particularly 
in critical care [2, 3]. Detection of seizures and other 
seizure-like patterns on cEEG frequently results in anti-
seizure medication (ASM) treatment escalation [4–8]. 
However, there is limited data on whether cEEG-guided 
ASM escalation improves outcomes [9]. At the same 
time, cEEG is resource intensive with limited availabil-
ity in smaller health care facilities, being utilized more 
frequently in larger, urban and academic centers [2, 3]. 
Epidemiologic studies and observational studies using 
large administrative datasets can provide insights into 
the comparative effectiveness and cost effectiveness of 
cEEG utilization in acutely ill patients, and guide poli-
cies and protocols that can improve access to cEEG for 
patients where indicated (e.g., identifying patients that 
may benefit most from transfer to centers performing 
cEEG), develop cEEG utilization quality measures, gen-
erate evidence for rigorous randomized trials on cEEG 
guided anti-seizure treatment, and ultimately improve 
outcomes.

Prior work examining administrative datasets has 
shown that cEEG monitoring in hospitalized critically ill 
patients is associated with lower in-hospital mortality [2, 
3]. However, a limitation of prior studies that have used 
administrative datasets is the lack of validated codes dif-
ferentiating elective epilepsy monitoring unit (EMU) 
admissions from acute inpatient hospitalization with 
cEEG utilization. Acute inpatient cEEG and EMU EEG 
have the same International Classification of Diseases 
(ICD) and Current Procedural Terminology (CPT) codes. 
As a result, prior work has excluded all patients that were 
elective admissions or were not mechanically ventilated 
to define patient cohorts that underwent acute inpatient 
continuous EEG monitoring, resulting in potential selec-
tion bias. The aim of this study is to develop hospital 
administrative data-based models to identify acute inpa-
tient admissions with cEEG monitoring.

Methods
Study cohort
In this study, we conducted a retrospective analysis of 
adult patients (≥ 18 years old) admitted to a single cen-
ter between January 1st 2016 and April 30th 2022. The 
research protocol was approved by the Mass General 
Brigham (MGB) Institutional Review Board and a waiver 
of informed consent was obtained. The selection of 
patients for our cohort was performed considering the 
aim of the study in identifying acute inpatient admissions 

with cEEG monitoring. Figure 1 shows the patient selec-
tion flow chart. Patients were included if they underwent 
cEEG monitoring (either in the EMU or as part of an 
acute inpatient hospitalization). Our institution is a Level 
4 Epilepsy Center approved by the National Association 
of Epilepsy Centers. Our EMU is also accredited by the 
American Board of Registration of Electroencephalo-
graphic and Evoked Potential Technologists. The EMU 
has 11 acquisition units (5 adult beds, 4 pediatric and 
2 portable units). The average EMU volume is 174/year 
with approximately 16% diagnostic, 68% Phase 1 and 14% 
Phase 2. The average volume of acute inpatient cEEG at 
our center is approximately 1600/year.

Study outcome variables
Our study outcome consisted of a binary variable indi-
cating whether an inpatient admission with a cEEG pro-
cedure was performed in the acute inpatient hospital 
setting (cEEG) or in the EMU setting (EMU). From here 
on “cEEG” will refer to acute inpatient admissions with 
continuous EEG monitoring, and “EMU” will refer to epi-
lepsy monitoring unit admissions. Reference standard for 
cEEG vs. EMU was determined using the local hospital 
Natus EEG database that contains all the hospital EEG 
data.

Study covariates
The study covariates for the hospital admissions in our 
study cohort are presented in Table A2 from the Addi-
tional File. Diagnoses and procedures were defined using 
ICD and CPT codes and are presented in Table A1 from 
the Additional File. The binary covariates considered 
were indication (‘1’ for presence and ‘0’ for absence) of 
daily laboratory values acquired, inpatient medications 
ordered, procedures performed, type of admission – elec-
tive, emergency and urgent, primary and secondary diag-
noses of traumatic brain injury (TBI), stroke and epilepsy, 
seizures or convulsions, death at discharge, discharged to 
home or self-care and female sex. The numerical covari-
ates consisted of the number of distinct procedures, 
number of distinct medications, days of hospital length 
of stay (LOS) and age at admission. For modeling covari-
ates, we used procedures and medications that are more 
likely to be used in inpatient and high illness acuity set-
tings to distinguish from the epilepsy monitoring unit 
setting [10–14]. Numerical covariates were normalized 
using the min-max normalization [15] where the mini-
mum and maximum reference values for each covariate 
were calculated from a training set. The data splitting 
into training and testing sets is detailed in the following 
section. Regarding outliers preprocessing, we identified 
one outlier for hospital LOS, which we imputed with the 
median LOS.
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The procedures (Table A1 from the Additional File) 
considered were the following: abdomen/pelvis comput-
erized tomography (CT) scan, arterial line, chest X-ray, 
head CT scan, lumbar puncture, magnetic resonance 
imaging (MRI), mechanical ventilation, transthoracic 
echocardiogram, and tube feed orders. The number of 
procedures consisted of the sum of the distinct proce-
dures performed during the hospital stay, varying in the 
range between zero and nine.

The set of inpatient medications considered were the 
following: cefepime, ceftriaxone, dexmedetomidine, 
dobutamine, dopamine, enoxaparin, epinephrine, hepa-
rin, midazolam, nicardipine, norepinephrine, phenyl-
ephrine, piperacillin, piperacillin/tazobactam, propofol, 
vancomycin and vasopressin. The number of medications 
consisted of the sum of the distinct inpatient medications 
ordered during the hospital stay, varying in the range 
between zero and seventeen.

Modeling design and evaluation
We performed a random sampling of hospital admissions 
in our cohort to create training (70%) and hold-out test-
ing (30%) sets with distinct patients. With the training 
set we developed an extreme gradient boosting model 
(XGBoost) [16] and performed hyperparameter tuning 
in 100 iterations of 10-fold cross validation. The hyperpa-
rameter tunning methodology is described in Additional 
File section A.2. We selected a threshold for binary clas-
sification on the training data that achieved a positive 
predictive value (PPV) yielding a balance between false 
positives and false negative predictions. We assessed 
both the positive and negative predictive values (PPV and 
NPV, respectively). We evaluated model performance 
using the area under the precision recall-curve (AUPRC) 
[17], showing the trade-off between PPV and sensitiv-
ity, also called true positive rate or recall, for different 
thresholds. We also evaluated the area under the receiver 
operating characteristic (AUROC), which quantifies the 
tradeoff between sensitivity and false positive rate (also 
known as 1- specificity), across different decision thresh-
olds [18]. Given the imbalance in our dataset, we present 
the macro average [19] performance for the classification, 
and the performance for each class (EMU vs. cEEG). A 
macro-average calculates performance metrics indepen-
dently for both classes and then takes the average, giving 
both classes equal weight [19]. We performed 1000 boot-
strapping iterations to calculate 95% confidence intervals 
(CI) in the hold-out test set, an external and independent 
test set not used for model training or validation. We 
assessed covariate importance using SHapley Additive 
exPlanations (SHAP) [20], which estimates the contribu-
tion of each feature to the model’s predictions.

Results
Cohort characteristics
Our cohort comprised 9,523 patients and a total of 
10,783 hospital admissions, after applying inclusion and 
exclusion criteria (Fig. 1). The average age of the cohort 
was 59 years (standard deviation (SD) 18.2), with the 
majority being males (53.8%), White (75.5%) and non-
Hispanic (82.7%) (Table  1). The majority of admissions 
(91.5%) were acute inpatient hospitalizations (i.e., cEEG 
rather than EMU). Demographic characteristics were 
approximately the same at the hospital admission level 
(Table A2 from the Additional File; counting all admis-
sions separately) as those at the patient level (Table  1; 
counting each patient only once).

Modeling results
The XGboost model was trained with all study covari-
ates described in the Methods section (Table A2 from 
the Additional File). Model performance evaluated on 
the testing set is presented in Table 2. The hyperparam-
eters selected during training in 10-fold cross validation 
are presented in Table A3 from the Additional File. We 
experimented different thresholds for fixed values of PPV 
between 95% and 98% (Table A4 from the Additional 
File). When setting PPV to 98%, the binary threshold 
was 0.80 and yielded a balanced sensitivity and specific-
ity. The model achieved a macro AUROC of 0.92 (95% 
CI [0.91–0.94]) and AUPRC of 0.99 [0.98–0.99]. The 
AUROC and AUPRC curves are presented in Figure A1 
from the Additional File. There were 130 (4%) misclas-
sifications of acute inpatient cEEG incorrectly classified 
as EMU admissions, and 73 (26.6%) misclassifications of 
EMU admissions incorrectly classified as acute inpatient 
cEEG, as presented in Fig.  2. When analyzing misclas-
sifications, 130 cEEG admissions incorrectly classified 
as EMU, we observed that 79% (N = 102) of admissions 
were elective and 90% (N = 117) discharged to home or 
self-care. For the EMU admissions incorrectly classified 
as acute inpatient cEEG we observed that 71% (N = 52) 
were emergency and 93% of the admissions (N = 68) had 
daily laboratory values acquired, a higher proportion 
when compared with that of the EMU class (59%, Table 
A2 from the Additional File).

Since most EMU admissions in our cohort are elec-
tive (72.4%) and discharged to home or self-care (82.7%), 
(Table A2 from the Additional File), we trained a model 
excluding both the admission type covariates (emer-
gency, urgent and elective) and discharge disposition to 
home or self-care and evaluated the performance in test 
(AUROC and AUPRC presented in Figure A2 from the 
Additional File). The overall macro average model perfor-
mance (Table A5 from the Additional File) was similar to 
that of the model using all covariates (Table  2) with an 
AUROC of 0.90 (95% CI [0.88–0.92]) and AUPRC of 0.99 
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[0.98–0.99]. However, this model showed a higher num-
ber of misclassifications, especially false positives, mainly 
due to errors in classifying the EMU class.

Covariates importance
We analyzed the importance of the covariates in the 
design of the XGBoost model. The average magnitude of 
the SHAP values for the 20 top features is presented in 
Fig. 3, and the SHAP raw values are presented in Figure 
A3 from the Additional File.

Elective admission was the most important covari-
ate for the model to classify an admission as EMU (left 
side in Figure A3 from the Additional File). We sought 
to understand the type of admissions distribution for 
each class, since EMU admissions are frequently elec-
tive. For both train and test sets, 72% of EMU and 11% 
of acute inpatients (cEEG class) admissions were elective, 
respectively. Furthermore, we assessed if the EMU non-
elective admissions were correlated with the COVID-19 
pandemic. According to a study [21], in the setting of the 

COVID-19 pandemic, urgent and emergent EMU admis-
sions were required due to increased seizure or event 
frequency. We confirmed that the non-elective EMU 
admissions spanned all years of our study period with the 
following number of admissions per year: 39, 46, 48, 41, 
31, 38, 9, from 2016 to 2022, respectively. Since not all 
EMU admissions were elective, it was important to com-
bine this covariate with others to develop the classifica-
tion model.

Emergency admissions, orders of medications such 
as heparin, vasopressin, cefepime or epinephrine, daily 
laboratory values acquired, mechanical ventilation, 
transthoracic echocardiogram and chest X-ray and also 
diagnosis of stroke were important predictors of acute 
inpatients hospitalizations (cEEG).

The EMU class was associated with younger age at 
admission (blue color in Figure A3 from the Additional 
File) when compared to the cEEG class (mostly pink in 
Figure A3 from the Additional File). The average age 
(SD) for EMU admissions was 42 (18) while for the 

Fig. 1 Study cohort inclusion and exclusion criteria. Legend: N – number of visits; n – number of patients; cEEG – acute inpatient hospitalizations admis-
sions class; EMU – epilepsy monitoring unit admissions class
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cEEG class it was 60 (18), a difference of approximately 
20 years (Table A2 from the Additional File). The EMU 
admissions class was also associated with lower number 
of procedures and medications, when compared to the 
cEEG class. EMU admissions were also associated with 
being discharged home, having a diagnosis of epilepsy or 

seizures, orders of enoxaparin and ceftriaxone. Patients 
receiving ceftriaxone alone were likely intracranial moni-
toring admissions.

Discussion
Our model using hospital administrative and billing data 
distinguishes continuous EEG performed in acute inpa-
tient setting from the EMU setting. The model can enable 
identification of acute inpatient cEEG from administra-
tive datasets with higher accuracy, and therefore be used 
for comprehensive comparative effectiveness and cost 
effectiveness analysis. Such large epidemiologic studies 
can then provide further guidance for randomized trials 
of continuous EEG guided anti-seizure treatment in the 
acute setting, and refinement of continuous EEG guide-
lines and protocols, particularly for resource limited 
settings.

There has been limited prior work in the develop-
ment and validation of administrative models for accu-
rate identification of continuous EEG in the hospital 
setting from administrative datasets. One prior study 
evaluated ICD based models for accurate identification 
of EMU admissions from administrative datasets [22]. 
The authors examined three queries, with varying use 
of admission and primary diagnosis ICD codes in 351 
admissions. They found that queries combining ICD and 
CPT codes for continuous EEG, with ICD codes for epi-
lepsy, seizure, or seizure mimic codes as the admitting 
diagnosis had a sensitivity of 96.3%, specificity of 100.0%, 
positive predictive value of 98.3%, and negative predictive 
value of 100.0%. Models combining ICD/CPT codes for 
continuous EEG and ICD codes for epilepsy and seizures 
as principal diagnosis had sensitivity of 94.9%, specific-
ity of 100.0%, and positive and negative predictive values 
of 98.8%, and 100.0% respectively. However, these que-
ries only included elective admissions, with focus only 
on EMU admissions and therefore cannot be applied for 
identification of acute inpatient continuous EEG utiliza-
tion. Additionally, our work demonstrates that a subset 
of EMU admissions are emergent or urgent (up to 28% 
in our cohort), and a subset of acute inpatient cEEG 
admissions are elective (up to 11% in our cohort). Urgent 
admissions to EMU are indicated when there are signifi-
cant clinical risks for patients. These include rapid medi-
cation switches in patients experiencing adverse effects 
or high seizure frequency and cannot be safely titrated 
outpatient, seizure frequency exacerbation with unsuc-
cessful outpatient efforts at controlling seizures, concern 
for non-epileptic spells occurring at a high frequency, 
and differentiating between new acute symptoms ver-
sus medication side effects [23]. While there is no robust 
data on frequency of urgent admissions to EMUs, cohort 
studies have shown medication adjustments account for 
approximately 20–30% of EMU admissions and referrals 

Table 1 Main characteristics of the study cohort
Characteristic Study 

cohort
(n = 9523, 
N = 10,783)

Age(a), (years, mean (SD)) 59 (18.2)

Female sex, n (%) 4402 (46.2)

Race, n (%)
White 7182 (75.5)

Black or African American 818 (8.6)

Asian 329 (3.6)

Other (b) 1173 (12.3)

Ethnicity, n (%)
Non-Hispanic 7879 (82.7)

Hispanic 701 (7.4)

Unknown 943 (9.9)

Hospital admissions, N (%)
EMU 912 (8.5)

cEEG 9871 (91.5)

Type of admission, N (%)
Emergency 6902 (64.0)

Urgent 2146 (20.0)

Elective 1729 (16.0)

Discharge disposition, N (%)
Deceased 1897 (17.6)

Home or Self Care 2812 (26.1)

Diagnosis, N (%)
TBI 698 (6.5)

Stroke 1507 (14.0)

Epilepsy, seizures or convulsions 6876 (63.8)

Daily laboratory values acquired, N (%) 10,127 
(93.9)

Top procedures, N (%)
Chest X-ray 7052 (65.4)

Head CT scan 6546 (60.7)

MRI 5869 (54.4)

Top medications, N (%)
Enoxaparin 7137 (66.2)

Propofol 6067 (56.3)

Vancomycin 5777 (53.6)

Medications(b), (number, median [IQR]) 5 [1, 8]

Procedures(b), (number, median [IQR]) 3 [1, 5]

LOS (days, median [IQR]) 9 [5, 19]
Legend: cEEG – acute inpatient hospitalizations admissions class; EMU – 
epilepsy monitoring unit admissions class; IQR – interquartile range; LOS 
– hospital length of stay; N – number of hospital admissions; n – number of 
patients; SD – standard deviation
(a) Age at baseline for the first hospital admission in the study period. (b) ‘Other’ 
includes ‘unknown’, ‘declined’, ‘American Indian or Alaska Native’ and ‘Native 
Hawaiian or other Pacific Islander’
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[24, 25]. Our model reduces the misclassification rate 
based on admission status (4% cEEGs misclassified as 
EMU vs. 11% using a priori stratification on the elective 
vs. non elective admission status). We did not see a sig-
nificant change in the misclassification of EMU (27% of 
EMU admissions misclassified as acute inpatient cEEG 
vs. 28% using a priori stratification on the elective vs. non 
elective admission status). While elective vs. emergent 
and urgent admissions, continues to be the most impor-
tant predictors in our model, combining them with addi-
tional ICD diagnosis, procedure and medication codes 
can enable identification of acute inpatient cEEGs with-
out a priori exclusion of patients.

Two prior epidemiologic studies have examined the 
impact of cEEG utilization in critically ill patients using 
the Nationwide Inpatient Sample [2, 3]. Both studies 
found that cEEG utilization is associated with lower in-
hospital mortality, and is not associated with increased 
costs when compared with routine (brief ) EEG [2, 3]. 
However, to ensure exclusion of EMU admission, the 
studies excluded all elective admissions. Additionally, to 
define a cohort of critically ill patients they only included 
patients that received mechanical ventilation. However, 
epidemiologic studies have shown that more than half of 
patients admitted to intensive care units do not receive 
mechanical ventilation [26, 27]. Moreover, our data dem-
onstrates that approximately 60% of patients undergoing 

Table 2 Modeling performance [95% confidence intervals] of the extreme gradient boosting model evaluated in test
Classes AUROC AUPRC Sensitivity PPV NPV Specificity
Macro average 0.92

[0.91–0.94]
0.98
[0.98–0.99]

0.78
[0.75–0.81]

0.83
[0.79–0.85]

0.78
[0.79–0.85]

0.78
[0.75–0.81]

EMU 0.92
[0.91–0.94]

0.66
[0.60–0.72]

0.73
[0.68–0.79]

0.61
[0.55–0.65]

0.97
[0.97–0.98]

0.96
[0.95–0.96]

cEEG 0.92
[0.91–0.94]

0.99
[0.98–0.99]

0.96
[0.95–0.96]

0.97
[0.97–0.98]

0.61
[0.55–0.65]

0.73
[0.68–0.79]

Legend: AUROC – area under the receiver operating characteristic curve; AUPRC – area under the precision-recall curve; cEEG – acute inpatient hospitalizations 
admissions class; EMU – epilepsy monitoring unit admissions class; PPV – positive predictive value; NPV – negative predictive value

Fig. 2 Confusion matrices normalized by (a) sensitivity, (b) positive predictive value, (c) without normalization. Legend: cEEG – acute inpatient hospital-
izations admissions class; EMU – epilepsy monitoring unit admissions class
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cEEG were not on mechanical ventilation. Therefore, a 
priori exclusion of patients not on mechanical ventilation 
potentially results in an exclusion of a large proportion of 
patients that are critically ill and could have undergone 
cEEG, resulting in potential sampling bias in the prior 
studies. Our model can eliminate the need for upfront 
inclusion and exclusion or filtering criteria based on 
admission status, and use of specific medical procedures 
such as mechanical ventilation, enabling identification 
of a broader more complete cohort of admissions with 
inpatient continuous EEG utilization from administrative 
datasets.

The main limitation of the study is that it is a single 
center study, therefore may not be generalizable. While 
the billing and procedure codes, medications and admis-
sion data we used in our models may not overlap with all 
claims datasets, the variables used are routinely available 
in institutional electronic health and administrative/bill-
ing data, as well as in several critical care and population 
based datasets (e.g. MIMIC, Premier, Nationwide inpa-
tient sample) [28–31]. Other covariates could have been 
included in the model, such as free text clinical notes, 
including EEG reports, and discharging providers taxon-
omy codes, which we propose as future work, along with 
validation in other administrative datasets.

Conclusions
The model developed in this study can identify continu-
ous EEG performed in the acute inpatient setting from 
continuous EEG performed in the EMU setting and 
reduces the number of misclassifications. This model will 
allow the identification of continuous EEG monitoring 
admission in larger cohorts, thereby contributing to the 
scale of research of EEG utilization.

Abbreviations
ASM  Anti-seizure medication
AUPRC  Area under the precision recall-curve
AUROC  Area under the receiver operating characteristic
cEEG  Continuous electroencephalography
CI  Confidence interval
CPT  Current procedural terminology
CT  Computerized tomography
EMU  Epilepsy monitoring unit
ICD  International Classification of Diseases
IQR  Interquartile range
LOS  Hospital length of stay
MGB  Mass General Brigham
MRI  Magnetic resonance imaging
NPV  Negative predictive value
PPV  Positive predictive value
SD  Standard deviation
SHAP  SHapley Additive exPlanations
TBI  Traumatic brain injury
XGBoost  Extreme gradient boosting model

Fig. 3 Average magnitude of the Shapley Additive exPlanations (SHAP) values for the model top 20 features. Legend: Positive SHAP values further from 
zero represent higher impact for the acute inpatient admissions class (cEEG) while negative SHAP represent higher impact for the epilepsy monitoring 
unit admissions (EMU) class

 



Page 8 of 9Fernandes et al. BMC Health Services Research         (2023) 23:1234 

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12913-023-10262-8.

Supplementary Material 1

Acknowledgements
During this research, Dr. Westover was supported by the American Academy 
of Sleep Medicine through an AASM Foundation Strategic Research Award; 
and grants from the National Institutes of Health (NIH) (R01NS102190, 
R01NS102574, R01NS107291, RF1AG064312, RF1NS120947, R01AG073410, 
R01HL161253), and National Science Foundation (2014431). Dr. Sahar F. Zafar 
is a clinical neurophysiologist for Corticare, unrelated to this work and was 
supported by the NIH (K23NS114201). There are no conflicts of interest.

Authors’ contributions
M.F. extracted the data from the hospital database, created the code for data 
analysis and modeling and prepared the figures for the manuscript. S.F.Z. 
defined the research aims and study design. Both M.F. and S.F.Z. wrote the 
manuscript. All authors reviewed the manuscript.

Funding
National Institutes of Health (NIH) and National Science Foundation (NSF).

Data Availability
The datasets used during the current study are available from the 
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
We confirm that all methods were carried out in accordance with relevant 
guidelines and regulation. The need for informed consent was waived by 
the ethics committee/Institutional Review Board of Massachusetts General 
Brigham, because of the retrospective nature of the study. The research 
protocol was approved by the Mass General Brigham (MGB) Institutional 
Review Board.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 1 May 2023 / Accepted: 31 October 2023

References
1. Herman ST, Abend NS, Bleck TP, Chapman KE, Drislane FW, Emerson RG, et al. 

Consensus statement on continuous EEG in critically ill adults and children, 
part I: indications. J Clin Neurophysiol off Publ Am Electroencephalogr Soc. 
2015;32(2):87–95.

2. Ney JP, van der Goes DN, Nuwer MR, Nelson L, Eccher MA. Continuous 
and routine EEG in intensive care: utilization and outcomes, United States 
2005–2009. Neurology. 2013;81(23):2002–8.

3. Hill CE, Blank LJ, Thibault D, Davis KA, Dahodwala N, Litt B, et al. Continuous 
EEG is associated with favorable hospitalization outcomes for critically ill 
patients. Neurology. 2019;92(1):e9–18.

4. Zafar SF, Postma EN, Biswal S, Boyle EJ, Bechek S, O’Connor K, et al. Effect of 
epileptiform abnormality burden on neurologic outcome and antiepileptic 
drug management after subarachnoid Hemorrhage. Clin Neurophysiol off J 
Int Fed Clin Neurophysiol. 2018;129(11):2219–27.

5. Dhakar MB, Sheikh Z, Kumari P, Lawson EC, Jeanneret V, Desai D, et al. Epilep-
tiform Abnormalities in Acute ischemic Stroke: impact on Clinical Manage-
ment and outcomes. J Clin Neurophysiol off Publ Am Electroencephalogr 
Soc. 2022;39(6):446–52.

6. Tabaeizadeh M, Aboul Nour H, Shoukat M, Sun H, Jin J, Javed F, et al. Burden 
of Epileptiform Activity predicts Discharge neurologic outcomes in severe 
Acute Ischemic Stroke. Neurocrit Care. 2020;32(3):697–706.

7. Kilbride RD, Costello DJ, Chiappa KH. How seizure detection by continuous 
electroencephalographic monitoring affects the prescribing of antiepileptic 
medications. Arch Neurol. 2009;66(6):723–8.

8. Rossetti AO, Schindler K, Sutter R, Rüegg S, Zubler F, Novy J, et al. Continuous 
vs routine Electroencephalogram in critically Ill adults with altered conscious-
ness and no recent seizure: a Multicenter Randomized Clinical Trial. JAMA 
Neurol. 2020;77(10):1225–32.

9. Sivaraju A, Gilmore EJ. Understanding and managing the Ictal-Interictal 
Continuum in Neurocritical Care. Curr Treat Options Neurol. 2016;18(2):8.

10. Scales DC, Guan J, Martin CM, Redelmeier DA. Administrative data accurately 
identified intensive care unit admissions in Ontario. J Clin Epidemiol. 
2006;59(8):802–7.

11. Yamana H, Matsui H, Fushimi K, Yasunaga H. Procedure-based severity index 
for inpatients: development and validation using administrative database. 
BMC Health Serv Res. 2015;15(1):261.

12. Baggs J, Fridkin SK, Pollack LA, Srinivasan A, Jernigan JA. Estimating National 
trends in Inpatient Antibiotic Use among US hospitals from 2006 to 2012. 
JAMA Intern Med. 2016;176(11):1639–48.

13. Amerineni R, Sun H, Lee H, Hsu J, Patorno E, Westover MB, et al. Using 
electronic health data to explore effectiveness of ICU EEG and anti-seizure 
treatment. Ann Clin Transl Neurol. 2021;8(12):2270–9.

14. Thongprayoon C, Cheungpasitporn W, Harrison AM, Carrera P, Srivali N, 
Kittamongkolchai W, et al. Temporal trends in the utilization of vasopres-
sors in intensive care units: an epidemiologic study. BMC Pharmacol Toxicol. 
2016;17(1):19.

15. Han J, Pei J, Kamber M. Data Mining: concepts and techniques. Elsevier; 2011. 
p. 740.

16. Chen T, Guestrin C, XGBoost:. A Scalable Tree Boosting System. In: Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining [Internet]. New York, NY, USA: Association for 
Computing Machinery; 2016 [cited 2022 Sep 21]. p. 785–94. (KDD ’16). 
https://doi.org/10.1145/2939672.2939785.

17. Saito T, Rehmsmeier M. The Precision-Recall plot is more informative than the 
ROC plot when evaluating Binary classifiers on Imbalanced datasets. PLoS 
ONE. 2015;10(3):e0118432.

18. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. 
Assessing the performance of Prediction models: a Framework for Traditional 
and Novel measures. Epidemiology. 2010;21(1):128–38.

19. Sokolova M, Lapalme G. A systematic analysis of performance measures for 
classification tasks. Inf Process Manag. 2009;45(4):427–37.

20. Lundberg S, Lee SI. A Unified Approach to Interpreting Model Predictions 
[Internet]. arXiv; 2017 [cited 2022 Sep 14]. Available from: http://arxiv.org/
abs/1705.07874.

21. Zepeda R, Lee Y, Agostini M, Alick Lindstrom S, Dave H, Dieppa M, et al. Emer-
gent admissions to the Epilepsy Monitoring Unit in the setting of COVID-19 
Pandemic-related, state-mandated restrictions: clinical decision making and 
outcomes. Neurodiagnostic J. 2021;61(2):95–103.

22. Kamitaki BK, Rishty S, Mani R, Wong S, Bateman LM, Thomas-Hawkins C, et al. 
Using ICD-10 codes to identify elective Epilepsy monitoring unit admis-
sions from administrative billing data: a validation study. Epilepsy Behav EB. 
2020;111:107194.

23. Shih JJ, Fountain NB, Herman ST, Bagic A, Lado F, Arnold S, et al. Indications 
and methodology for video-electroencephalographic studies in the Epilepsy 
monitoring unit. Epilepsia. 2018;59(1):27–36.

24. Gazzola DM, Thawani S, Agbe-Davies O, Carlson C. Epilepsy monitoring unit 
length of stay. Epilepsy Behav EB. 2016;58:102–5.

25. Izadyar S, Ewida A, Kleinhenz EM, Titoff V. Utilization of Epilepsy Monitoring 
Unit by General neurologists. Cureus. 2022;14(7):e27144.

26. Wunsch H, Wagner J, Herlim M, Chong DH, Kramer AA, Halpern SD. ICU 
occupancy and mechanical ventilator use in the United States. Crit Care Med. 
2013;41(12):2712–9.

27. Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Peñuelas O, Abraira V, et al. 
Evolution of mortality over time in patients receiving mechanical ventilation. 
Am J Respir Crit Care Med. 2013;188(2):220–30.

28. Casey JA, Schwartz BS, Stewart WF, Adler NE. Using Electronic Health Records 
for Population Health Research: a review of methods and applications. Annu 
Rev Public Health. 2016;37:61–81.

29. DeCuir J, Baggs J, Melgar M, Patel P, Wong KK, Schwartz NG, et al. Identifica-
tion and description of patients with multisystem inflammatory syndrome 

https://doi.org/10.1186/s12913-023-10262-8
https://doi.org/10.1186/s12913-023-10262-8
https://doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1705.07874


Page 9 of 9Fernandes et al. BMC Health Services Research         (2023) 23:1234 

in adults associated with SARS-CoV-2 Infection using the Premier Healthcare 
Database. Epidemiol Infect. 2022;150:e26.

30. Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, et al. 
MIMIC-IV, a freely accessible electronic health record dataset. Sci Data. 
2023;10(1):1.

31. Tang OY, Pugacheva A, Bajaj AI, Rivera Perla KM, Weil RJ, Toms SA. The 
National Inpatient Sample: a primer for Neurosurgical Big Data Research and 
systematic review. World Neurosurg. 2022;162:e198–217.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	Identifying inpatient hospitalizations with continuous electroencephalogram monitoring from administrative data
	Abstract
	Background
	Methods
	Study cohort
	Study outcome variables
	Study covariates
	Modeling design and evaluation

	Results
	Cohort characteristics
	Modeling results
	Covariates importance

	Discussion
	Conclusions
	References


