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Abstract
Background The trend of Type 2 diabetes-related costs over 4 years could be classified into different groups. Patient 
demographics, clinical factors (e.g., A1C, short- and long-term complications), and rurality could be associated 
with different trends of cost. Study objectives are to: (1) understand the trajectories of cost in different groups; (2) 
investigate the relationship between cost and key factors in each cost trajectory group; and (3) assess significant 
factors associated with different cost trajectories.

Methods Commercial claims data in Texas from 2016 to 2019 were provided by a large commercial insurer and 
were analyzed using group-based trajectory analysis, longitudinal analysis of cost, and logistic regression analyses of 
different trends of cost.

Results Five groups of distinct trends of Type 2 diabetes-related cost were identified. Close to 20% of patients had 
an increasing cost trend over the 4 years. High A1C values, diabetes complications, and other comorbidities were 
significantly associated with higher Type 2 diabetes costs and higher chances of increasing trend over time. Rurality 
was significantly associated with higher chances of increasing trend over time.

Conclusions Group-based trajectory analysis revealed distinct patient groups with increased cost and stable cost at 
low, medium, and high levels in the 4-year period. The significant associations found between the trend of cost and 
A1C, complications, and rurality have important policy and program implications for potentially improving health 
outcomes and constraining healthcare costs.

Keywords Type 2 Diabetes related cost, Group-based trajectory analysis, Multivariable logistic regression models, 
Diabetes self-management education and support
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Introduction
Over 37  million Americans had diabetes in 2021, with 
90–95% having Type 2 diabetes (T2D) [1]. Additionally, 
T2D diagnoses have been occurring at younger ages and 
higher rates than previous decades [1]. Diabetes’ national 
prevalence has more than doubled in the last 20 years 
due to an increase in obesity and growing aging popula-
tion, although there is some indication that new diabetes 
cases may be plateauing due, in part, to better diabetes 
awareness and prevention [2]. In 2017, a total of $327 bil-
lion was attributed to diabetes-related medical costs and 
lost work in the United States, and the healthcare expen-
ditures of adults living with diabetes ($16,752) are 2.3 
times higher than those without diabetes ($7,151) from 
the same population [3]. Furthermore, diabetes-related 
complications account for 48-64% of medical expenses 
for patients with T2D [4].

In Texas, diabetes prevalence has consistently sur-
passed the national average from 1999 to 2019. In 2019, 
12.9% of Texans (2.7 million people) had diabetes, while 
10.9% of all Americans had diabetes [5]. In 2017, the 
annual cost of diabetes and prediabetes in Texas was 
estimated to be $25.6  billion in diabetes-related costs 
[6]. The growing economic burden of diabetes makes 
it critically important to understand factors related to 
health care utilization and costs and how to best target 
interventions that help individuals effectively prevent and 
manage diabetes.

A variety of risk factors are associated with the pres-
ence of diabetes, including a lack of physical activity, obe-
sity, high blood pressure, family history of diabetes, and 
residing in rural areas [7]. Additional risk factors include 
short- and long-term complications such as hypoglyce-
mia, heart disease, retinopathy, neuropathy, and chronic 
kidney disease [8]. A1C values can provide critical insight 
into the average blood sugar level of patients for the past 
2–3 months, with higher values corresponding to greater 
risk of developing diabetes-related complications [9].

To quantify the magnitude of increased medical costs 
for patients with diabetes, several studies have investi-
gated the relationship between A1C values and diabetes-
related costs. For example, Bansal et al. [10] and Smith 
et al. [11] identified a statistically significant positive rela-
tionship between A1C levels and diabetes-related costs. 
Lage and Boye [12] found that a 1% reduction in A1C was 
on average associated with a 6.9% reduction in diabetes-
related healthcare costs, which is equivalent to $555 in 
annual cost savings. Candrilli and colleagues [13] estab-
lished the relationship between A1C reduction and costs 
of an episode of care for diabetic patients who experience 
certain comorbidities, such as coronary artery disease 
and cerebrovascular disease.

Statistical methods used in the above literature pro-
vided unique insights into the relationship between 

diabetes risk factors and the corresponding medical 
costs, which can facilitate future expenditure estimates 
among key stakeholders and policymakers. These find-
ings also highlighted the importance of controlling A1C 
values to alleviate escalating diabetes-related healthcare 
costs. However, there is a potential flaw in interpreting 
findings from prior studies. Although traditional statisti-
cal models can identify key factors associated with T2D 
related cost with high statistical power given large sample 
sizes, such analyses ignore the fact that patients are likely 
to be highly heterogeneous. A statistical analysis based 
on the entire sample could miss important signals in 
subsets of the T2D population. For example, at any A1C 
level, some patients may have increased cost over time, 
while others may have relatively stable costs at low and 
high levels. The heterogeneity and other features in the 
dataset, including excessive zeros and outliers, can result 
in a high amount of “noise” in the observations, which 
can hinder a statistical model’s ability to identify clini-
cally significant factors associated with different trajecto-
ries of cost.

In the context of these methodological difficulties, this 
article investigates the use of group-based trajectory 
modeling [14, 15] for modeling the relationship between 
T2D-related cost and T2D risk factors using longitudi-
nal data from 2016 to 2019 commercial claims in Texas. 
Jones et al. [14] and Jones and Nagin [15] developed 
the group-based trajectory models, a type of mixture 
models for estimating developmental trajectories, and 
implemented them in a procedure named “Proc Traj” 
in the statistical analysis software (SAS). This analytical 
tool can provide a mechanism to classify different pat-
terns of change over time. As such, the follow-up analy-
sis based on different patterns has the clear advantage of 
reducing majority of the “noise” and outliers in the cost 
observations. We define patients having the same pattern 
of cost changed over time to be in the same cluster. By 
creating and analyzing these clusters, we aim to provide 
novel insights regarding the pattern of changes in cost 
for patients with T2D. It is worthwhile to note the sta-
tistical analysis software “Proc Traj” has been utilized to 
analyze projected costs. For example, Karampampa et 
al. [16] investigated cost trajectories among newly diag-
nosed multiple sclerosis cases. Four trajectories were 
identified to describe clusters of high or low direct and 
indirect costs associated with multiple sclerosis. The tra-
jectories suggested that illness costs may be associated 
with severity of disease and the use of disease-modifying 
therapies. As another example, Lauffenburger et al. [17] 
used “Proc Traj” to classify changes in spending patterns 
by Medicare beneficiaries into five distinct trajectories. 
The ability to accurately group these distinct changes 
into spending patterns helped identify and implement 
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targeted interventions, which could reduce the medical 
spending from Medicare beneficiaries.

However to our knowledge, “Proc Traj” has not been 
used to cluster cost trajectories for patients with diabe-
tes, and has not been used to correlate the clusters (or 
groups) with key factors including A1C, complications, 
and metropolitan residence status of the patients. To fill 
this research gap, this study aims to achieve three objec-
tives: (1) to understand the trajectories of cost in different 
groups; (2) to investigate the relationship between cost 
and key factors in each cost trajectory group; and (3) to 
assess significant factors associated with different cost 
trajectories.

Methods
Study sample
We used 2016–2019 commercial claims data in Texas 
provided by a large commercial insurer. Individuals with 
type 2 diabetes were identified using the International 
Classification of Diseases, Tenth Revision (ICD10), code 
E11 [18], and hemoglobin A1C values between 4 and 14 
were considered valid to account for variability in the 
sensitivity of measurement instruments across clinical 
settings. This analysis targeted individuals who were: (1) 

commercially insured; (2) Texas residents; (3) diagnosed 
with T2D; and (4) ages 18–64 years since total costs 
for older adult enrollees could not be fully determined. 
Finally, participants were excluded if they had three or 
less T2D-related cost records over the four-year study 
period to ensure each participant had sufficient observa-
tions of cost to indicate a trend and to achieve reasonable 
classification of the trends in our analysis. The “cost” in 
this study is referred to as the actual paid amount by the 
patient and/or insurance.

Human subjects research designation
Given the utilization of de-identified secondary admin-
istrative claims records, the Texas A&M Institutional 
Board ( IRB # IRB2020-0204) determined that this 
was not human subjects research, and did not require 
informed consent. Since all data was de-identified, it was 
not possible to get individual informed consent. See our 
declaration of ethics approval and consent to participate 
for further information.

Patient flow
Figure  1 illustrates a total of 309,876 patients were 
included in our analysis of the T2D related cost after the 

Fig. 1 Patient flow diagram
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exclusions of Type 1 diabetes, age greater or equal to 65, 
and those who had less than 4 quarterly health records 
during the four years period. Note that analyses including 
A1C values were reduced to 175,501 patients (Table  1). 
Additionally, this is not a true cohort study with four-
year records on everyone, but rather an analysis of 
patients with the designated number of cost records over 
a four-year study period as the original dataset did not 
include data on the initial cohort for four years. Data was 
obtained on all individuals who had a diabetes diagnosis, 
regardless of when the diagnosis occurred. For instance, 
individuals who were diagnosed in 2016 were included in 
the dataset starting for that year, while individuals diag-
nosed in 2018 were included in the dataset starting in 
that year. To create a simulated cohort, the study focused 
on individuals who had at least four cost records any time 
over a four-year period. These cost records could be from 
the same or different years.

Measurements and variables
Among the variables in the commercial claims data, we 
focused on the following measurements in our analysis.

  • Hemoglobin A1C. The glycated hemoglobin (A1C) 
test measures the average plasma glucose in the 
previous eight to 12 weeks [19]. Assessment was 

limited to those who had A1C values in their claims 
record. A1C was measured in terms of the mean 
and median values at baseline as defined as the first 
measurement in the data set. When observing A1C 
longitudinally, A1C is quarterly measured value.

  • Sociodemographic characteristics. Patients’ baseline 
age (18 to 64) and sex (male/female) were used in 
analyses. Race/ethnicity was not systematically 
recorded in the data and was not included in the 
analyses.

  • Non-metropolitan or metropolitan status. Our 
measure of rurality was based on the patient’s 
county of residence and ZIP code from a database 
maintained by the National Center for Health 
Statistics (NCHS), the NCHS Urban-Rural 
Classification Scheme for Counties [20]. The NCHS 
Urban-Rural Classification Scheme has 6 levels. 
Among the 6 levels, 4 levels are for metropolitan 
areas, including large central metro, large fringe 
metro, medium metro, small metro; two levels are 
for non-metropolitan areas including micropolitan, 
non-core. In our analysis, we used a binary variable 
according to the above 4 and 2 levels to distinguish 
between metropolitan and non-metropolitan 
areas. We employ the term metro status to reflect 

Table 1 Descriptive statistics for all patients and patients in each group. Median, interquartile range [IQR] and sample size are reported 
for each continuous variable; frequency and percentage (%) are reported for each categorical variable
Variable Level All Group 1 Group 2 Group 3 Group 4 Group 5 P-value
A1C baseline 6.9, [6.1, 8.4] 

N = 175,501
6.3, [5.8, 7.7] 
N = 16,064

6.8, [6.1, 8.5] 
N = 10,541

6, [5.5, 6.7] 
N = 28,495

7, [6.3, 8.6] 
N = 58,384

7.4, [6.5, 8.9] 
N = 62,017

< 0.0001

A1C category 1, A1C < 5.7 20,564 (12%) 3064 (19%) 1161 (11%) 9938 (35%) 4147 (7%) 2254 (4%) < 0.0001
2, 
5.7 < = A1C < 6.5

46,487 (26%) 5715 (36%) 3275 (31%) 10,064 (35%) 15,327 (26%) 12,106 (20%)

3, 
6.5 < = A1C < 8

60,309 (34%) 4083 (25%) 3607 (34%) 4564 (16%) 21,409 (37%) 26,646 (43%)

4, 8 < = A1C 48,141 (27%) 3202 (20%) 2498 (24%) 3929 (14%) 17,501 (30%) 21,011 (34%)
Each patient 
median A1C

6.9, [6.1, 8.2] 
N = 175,501

6.4, [5.8, 7.4] 
N = 16,064

6.7, [6.1, 7.9] 
N = 10,541

5.9, [5.5, 6.7] 
N = 28,495

7, [6.2, 8.4] 
N = 58,384

7.3, [6.5, 8.5] 
N = 62,017

< 0.0001

Age 53, [45, 58] 
N = 175,501

49, [41, 56] 
N = 16,064

51, [43, 57] 
N = 10,541

50, [41, 57] 
N = 28,495

53, [46, 58] 
N = 58,384

55, [48, 59] 
N = 62,017

< 0.0001

Sex Male 94,113 (54%) 8621 (54%) 5749 (55%) 14,313 (50%) 32,901 (56%) 32,529 (52%) < 0.0001
Female 81,376 (46%) 7442 (46%) 4791 (45%) 14,181 (50%) 25,479 (44%) 29,483 (48%)
Other 12 (0%) 1 (0%) 1 (0%) 1 (0%) 4 (0%) 5 (0%)

Complication 1, No 74,589 (43%) 9344 (58%) 4751 (45%) 19,733 (69%) 25,862 (44%) 14,899 (24%) < 0.0001
2, Short only 49,489 (28%) 4141 (26%) 3105 (29%) 5516 (19%) 17,712 (30%) 19,015 (31%)
3, Long only 25,811 (15%) 1918 (12%) 1495 (14%) 2764 (10%) 8495 (15%) 11,139 (18%)
4, Both 25,608 (15%) 661 (4%) 1188 (11%) 481 (2%) 6314 (11%) 16,964 (27%)

Metro Status 1, metro 155,721 (89%) 14,325 (89%) 9169 (87%) 25,427 (89%) 51,648 (88%) 55,152 (89%) < 0.0001
2, non-metro 19,780 (11%) 1739 (11%) 1372 (13%) 3068 (11%) 6736 (12%) 6865 (11%)

Continuous 
CCI*

1, [1, 2] N = 175,078 1, [1, 2] N = 15,877 1, [1, 2] 
N = 10,450

1, [1, 1] 
N = 28,403

1, [1, 2] 
N = 58,336

2, [1, 3] 
N = 62,012

< 0.0001

Categorical CCI 1,<=2 134,937 (77%) 14,346 (89%) 8577 (81%) 26,423 (93%) 48,775 (84%) 36,816 (59%) < 0.0001
2, >2 40,564 (23%) 1718 (11%) 1964 (19%) 2072 (7%) 9609 (16%) 25,201 (41%)

CCI: Charlson Comorbidity Index
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associations with metro and non-metro geographic 
residence.

  • Diabetes-Related Complications. Indications of 
short- and long-term diabetes-related complications 
were included in analyses. Short-term diabetes-
related complications included hyperglycemia, 
hypoglycemia with coma, hyperosmolarity with 
coma, and hyperosmolarity without nonketotic 
hyperglycemic-hyperosmolar coma. Long-
term diabetes-related complications included 
nephropathy, chronic kidney disease, retinopathy, 
neuropathy, foot ulcers, and skin ulcers. The presence 
of any short- and/or long-term complications 
over the four-year period were scored as two 
binary variables and combined to create a single 
4-category variable scored 0 (no complications), 1 
(only short-term complications), 2 (only long-term 
compilations), and 3 (both short- and long-term 
complications).

  • Charlson Comorbidity Index (CCI). The CCI values 
were available for patients based on the ICD10 
diagnosis codes [18]. In each quarter the CCI scores 
are continuous ranging from 0 (no comorbidities) 
to 17 with a higher CCI value corresponding to a 
more severe comorbidity. In our analyses we will be 
treating CCI as a continuous variable, and based on 
highest CCI value over the four years.

Study outcome
The study outcome is the T2D-related cost for paid 
claims. Annual and quarterly costs were computed by 
adjusting the total annual days available in the data to cal-
culate costs per patient, which was used in group-based 
trajectory analysis. The costs refer to the total amount 
paid by the insurer and the patient to the provider. These 
are not charges but actual claims paid. This is the total 
money the provider receives for services rendered.

Statistical analysis
Setting groups using trajectory of cost
To discover different trends of T2D-related cost over 
4 years, group-based trajectory analyses [14, 15] were 
performed after logarithmic transformations of the cost 
(natural log of “cost + 1” so that 0 cost remains 0 in the 
log scale) to normalize the right-skewed distributions. 
The group-based method used only the cost to set groups 
without involving other measurements. The goal of fit-
ting a group-based trajectory model was to identify for 
different cost trajectories, where each trajectory was for 
individuals following similar progressions of cost.

In this article we use the term “groups” to represent 
distinct trajectories of cost over time. The group-based 
trajectory analysis assumed each group has its own tra-
jectory of cost measured over time, and treated the 

observed cost as a function of time. Each group poten-
tially had its own patient characteristics and conditions 
for A1C and other complications, which may not be iden-
tified in an analysis of all patients. The group-based tra-
jectory analysis identified discrete groups by maximizing 
the observed data likelihood of Type 2 diabetes-related 
cost, where the likelihood is the probability or chance of 
observing the data under the assumed model structure 
and parameter values.

The assumed model in our analysis of log cost is cen-
sored normal (model CNORM in SAS procedure “Traj”) 
left censored at 0. The time in quarter was treated as a 
polynomial covariate with linear, quadratic, and cubic 
terms. As proposed in Jones et al. [14], Bayesian informa-
tion criteria (BIC) was used to decide the optimal number 
of groups with the smallest BIC value. In this example, 
we chose the total number of groups to be 2, 3, 4, 5, or 
6 to start running the program. The fitted model with 5 
groups had the smallest BIC value. In the classification 
program (SAS procedure “Traj”), each patient was clas-
sified into a group based on the highest posterior density. 
Specifically, suppose there are G groups (labelled as 1 to 
G). For patient “i” the observed cost values are data Yi at 
times Ti. The posterior density of patient “i” in group “g” 
is proportional to the product of (1) likelihood of data (Yi, 
Ti) in group “g” and (2) prior density of group “g”. This 
classification procedure can be conducted in SAS soft-
ware, procedure “Traj”. Classifying patients into differ-
ent clusters and analyzing data from clusters can reveal 
additional insights into the change of cost and associated 
factors [15]. By separating cost trajectories into different 
groups, we can better capture the trend of cost by regu-
lating “noise” in the data from excessive zeros, outliers, 
and random variations.

Descriptive statistics based on the groups
The aforementioned measurements and outcome were 
summarized numerically. Descriptive statistics, includ-
ing median and interquartile range (IQR) for continu-
ous variables as well as frequency and percentage for 
categorical variables were provided for all patients and 
patients in each of the 5 groups set by the group-based 
trajectory analysis. Continuous variables were compared 
using Kruskal–Wallis one-way analysis of variance, and 
discrete variables were compared using Pearson’s Chi-
square test.

Within and between group modeling
The estimated trajectories of cost in the 5 groups (Fig. 1) 
indicated that groups 1 and 2 had low cost initially and 
increased later, group 3 had stable low cost, group 4 had 
stable medium cost, and group 5 had stable high cost. It 
is worthwhile to note groups 1 and 2 both had an increas-
ing trend. The difference in the trajectories from groups 
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1 and 2 was mainly due to different enrollment times of 
participants in the commercial insurance. Despite dif-
ferent trajectories, groups 1 and 2 had essentially the 
same trend. Therefore, we reserved the term “clusters” to 
denote distinct patterns or trends of the cost over time. 
The 5 groups (trajectories) in Fig.  1 indicated 4 distinct 
clusters (trends of cost), which are increasing (groups 1 
and 2), stable low (group 3), stable medium (group 4), 
and stable high (group 5).

We investigated the effect of the aforementioned 4 
clusters in two ways. The first way (within group analy-
sis) was to model the relationship between cost and mea-
surements in each group. Generalized linear longitudinal 
regression was implemented to model the log of quarterly 
cost and longitudinal measures of A1C, adjusting the 
observation time in quarter, age, sex, rurality, short- and 
long-term complications, and CCI. Observations from 
the same individual was adjusted as cluster effects in 
SAS software procedure GENMOD. Polynomial regres-
sion terms of A1C, including the linear, quadratic terms, 
and the interaction between A1C and time were tested in 
the model to account for possible non-linear relationship 
between A1C and cost.

The second way (between group analysis) was to 
model whether and how some of the cluster levels were 
associated with the measurements, where two or more 
cluster levels were a categorical response variable, and 
other measurements (age, sex, complications, and CCI) 
were independent variables. Specifically, if the response 
included the two clusters of “increasing trend” and “sta-
ble low trend,” we can select significant variables associ-
ated with a higher possibility of increased cost over time. 

By modeling three clusters “stable low trend,” “stable 
medium trend,” and “stable high trend,” we can identify 
significant variables associated with the relatively stable 
cost. Logistic regression and ordinal logistic regression, 
with the reference level in the outcome variable being 
“stable low trend,” were employed to assess the predictors 
of trends of cost. Significant predictors were identified 
using univariable and multivariable logistic regression 
models with backward variable selection, and odds ratio 
(OR) estimates, 95% confidence intervals (CI), and p-val-
ues were reported.

In all the analyses, p-values less than or equal to 0.05 
were considered statistically significant. All analyses were 
conducted using SAS software version 9.4 (SAS, NC, 
USA).

Results
Group-based trajectory analysis of type 2 Diabetes related 
cost over 4 years
The group-based trajectory analysis results are shown in 
Fig. 2. Groups 1 and 2, with 10.1% and 8.6% patients had 
increasing cost trends, respectively. The cost in Group 
1 increased at 10–15 quarters, and the cost in Group 2 
increased at 5–10 quarters. Groups 3, 4, and 5 had rela-
tively low, medium, and high stable cost, with 17.1%, 
31.5%, and 32.7% of patients, respectively.

Descriptive statistics
Table  1 shows descriptive statistics for all patients and 
patients within each of the 5 groups. The median age 
was around 50 years each for Groups 1–3, but was 53 
in Group 4, and 55 in Group 5. Around 55% of patients 

Fig. 2 Group-based trajectory analysis fitting 5 group of log cost with different trends
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were female and 45% were male. The baseline, median 
A1C (over 16 quarters) was the lowest for the low stable 
cost group (i.e., A1C = 6), was higher for patients having 
increased cost (i.e., A1C ranging from 6.3 to 6.8), and 
was even higher for the medium and high cost groups 
(i.e., A1C ranging from 7.0 to 7.4). The proportions 
of A1C > = 8% was 30% in group 4, and 34% in group 5, 
which were higher than those in Groups 1–3. Compared 
with the stable low cost group (group 3), a significantly 
higher proportion of short- and long-term complications 
were observed in the medium and high cost groups, as 
well as the increasing cost group. For example, only 2% 
patients had both short- and long-term complications 
in the stable low cost group, but 4-10%, 10%, and 25% 
patients had short- and long-term complications with 
increasing cost trend, stable medium cost, and stable 
high cost, respectively. In all 5 groups, about 13–16% of 
patients were in non-metro areas. The stable low cost 
group had lowest CCI (7% observations with CCI > 2), 
and the stable high cost group had highest CCI (40% 
observations with CCI > 2). Based on the statistics in 
Table  1, higher T2D-related cost was correlated with 
older age, higher A1C, more complications, and higher 
CCI. Compared with stable low cost, increasing cost 
trend was correlated with more complications and higher 
CCI.

Within group modeling
As illustrated in Table 2, we estimated and tested the key 
factors in a linear longitudinal regression model for cost 
(log scale) in the 4-year time period, where time was in 
terms of quarters and ranged from 1 to 16. We fit the 
model for all patients, patients having increasing cost 
trend (groups 1 and 2 combined), patients having stable 
low cost (group 3), medium cost (group 4), and high cost 
(group 5). Although statistically significant (primarily due 
to the large sample size), the effect of age was small or 
nearly negligible in all subgroups. For the low-cost group, 
male sex was associated with the high cost. While in the 
high cost group, female sex was associated with high 
cost. In all subgroups, A1C was positively correlated with 
cost, but the association was higher in the stable low cost 
group (estimate 0.164, 95% CI: 0.155–0.173) and increas-
ing cost group (estimate 0.133, 95% CI: 0.126–0.141) than 
the medium and high cost groups (estimates 0.067 and 
0.043, respectively). As an interpretation of these esti-
mates, one unit of increase of A1C was, on average, cor-
responded to 17.8% increase of cost in the stable low cost 
group, and 14.2% increase in the increasing cost group, 
but only 7% and 4% increase in the medium and high cost 
groups, respectively. In all subgroups, short- and long-
term complications were significantly associated with 
higher cost.

Comparing the significant associations across the dif-
ferent groups, the association between geographic resi-
dence (i.e., metro vs. non-metro) and cost varied between 
groups. With increasing cost trend, metro status was not 
significantly associated with cost (p = 0.266). For stable 
low-cost group, patients with non-metro status had 
higher cost than those with metro status (estimate 0.060, 
95% CI 0.009–0.111). For medium and high cost groups, 
patients with non-metro status had lower cost than those 
with metro status, respectively.

Higher CCI was significantly positively correlated 
with cost in the high cost group (estimate 0.265, 95% CI 
0.256–0.275). On average, one unit increase of CCI cor-
responded to 30% increase in the T2D-related cost in the 
high cost group.

Between group modeling
The between group analysis had two parts. Part 1 identi-
fied factors associated with increasing cost trend versus 
stable low cost, and Part 2 identified factors associated 
with the magnitude of cost. For Part 1, we fit univariable 
and multivariable logistic regression models to test the 
effects of age, sex, baseline A1C, complication, metro sta-
tus, and CCI. The outcome was binary with 2 levels of low 
stable cost (Group 3 in Fig. 2) and increased cost (Groups 
1 and 2 in Fig.  2) over the 4 years. Results are summa-
rized in Table  3. Older age was significantly associated 
with the increased cost over time. Sex was not signifi-
cantly associated with the increasing trend after adjusting 
other variables. Baseline A1C was significantly associated 
with the increasing trend in both univariable and multi-
variable analysis with ORs 1.237 and 1.188, respectively. 
Both short- and long-term complications were associated 
with the increasing trend. The level of having both short- 
and long-term complications had the highest likelihood 
of increasing cost trend, with ORs 4.608 and 3.545 in 
the univariable and multivariable analyses, respectively. 
Patients in non-metro areas had significantly higher like-
lihood of increasing cost trend compared with those in 
metro areas, where the ORs were 1.110, 95% CI (1.072, 
1.151) in the univariable and 1.105, 95% CI (1.046, 1.167) 
in the multivariable analysis. CCI was positively associ-
ated with cost over time, where the ORs were 1.953, 95% 
CI (1.872, 2.038) in the univariable and 1.133, 95% CI 
(1.113, 1.154) in the multivariable analysis for continuous 
CCI.

In the analysis of Part 2, identification of factors asso-
ciated with the magnitude of cost, we fit univariable and 
multivariable cumulative logistic regression models to 
compare stable high cost, stable medium cost, and stable 
low cost subgroups, treating low cost as reference. The 
outcome had 3 ordinal levels of low stable cost (Group 3 
in Fig. 2), medium stable cost (Group 4 in Fig. 2), and high 
stable cost (Group 5 in Fig.  2) over the 4 years. Results 



Page 8 of 12Han et al. BMC Health Services Research         (2023) 23:1116 

are shown in Table 4 where age, baseline A1C, short- and 
long-term complications, and CCI are associated with 
higher amount of cost. Although not associated with 
increasing trend (p = 0.172, Table  3, multivariable analy-
sis), female sex was significantly associated with higher 
cost in Table 4, with OR 1.049, 95% CI (1.034, 1.064) in 

univariable analysis, and OR 1.103, 95% CI (1.081, 1.126) 
in multivariable analysis. While non-metro area had sig-
nificantly higher likelihood of the increasing trend than 
metro area (p = 0.0004 in Table  3, multivariable analy-
sis), metro status was not significant in the multivariable 

Table 2 Multivariable longitudinal analysis of quarterly reported T2D-related cost over 4 years
Variable Parameter

estimate
95% Confidence
Interval

P-value

All patients
Age (continuous) -0.001 -0.002– -0.000 0.0004
Sex (female vs. male) 0.018 0.009–0.027 < 0.0001
A1C (continuous) 0.093 0.090–0.095 < 0.0001
Complication (short vs. none) 0.325 0.315–0.334 < 0.0001
Complication (long vs. none) 0.292 0.276–0.307 < 0.0001
Complication (Both short and long vs. none) 0.852 0.823–0.881 < 0.0001
Metro status (non-metro vs. metro) -0.053 -0.067– -0.039 < 0.0001
Charlson Comorbidity Index (Continuous) 0.209 0.201–0.218 < 0.0001
Patients with increasing cost trend
Age (continuous) -0.004 -0.006– -0.003 < 0.0001
Sex (female vs. male) -0.019 -0.050–0.011 0.2111
A1C (continuous) 0.133 0.126–0.141 < 0.0001
Complication (short vs. none) 0.502 0.473–0.531 < 0.0001
Complication (long vs. none) 0.461 0.412–0.510 < 0.0001
Complication (Both short and long vs. none) 1.254 1.1422–1.366 < 0.0001
Metro status (non-metro vs. metro) -0.025 -0.069–0.019 0.2666
Charlson Comorbidity Index (Continuous) 0.082 0.054–0.110 < 0.0001
Patients with low stable cost trend
Age (continuous) -0.011 -0.012– -0.009 < 0.0001
Sex (female vs. male) -0.093 -0.128– -0.058 < 0.0001
A1C (continuous) 0.164 0.155–0.173 < 0.0001
Complication (short vs. none) 0.519 0.485–0.554 < 0.0001
Complication (long vs. none) 0.543 0.482–0.605 < 0.0001
Complication (Both short and long vs. none) 1.442 1.252–1.632 < 0.0001
Metro status (non-metro vs. metro) 0.060 0.009–0.111 0.0216
Charlson Comorbidity Index (Continuous) -0.109 -0.136– -0.081 < 0.0001
Patients with medium stable cost trend
Age (continuous) -0.005 -0.005– -0.004 < 0.0001
Sex (female vs. male) 0.000 -0.013–0.014 0.9602
A1C (continuous) 0.067 0.0633–0.070 < 0.0001
Complication (short vs. none) 0.220 0.206–0.234 < 0.0001
Complication (long vs. none) 0.169 0.145–0.193 < 0.0001
Complication (Both short and long vs. none) 0.734 0.683–0.786 < 0.0001
Metro status (non-metro vs. metro) -0.081 -0.101– -0.061 < 0.0001
Charlson Comorbidity Index (Continuous) 0.112 0.098–0.127 < 0.0001
Patients with high stable cost trend
Age (continuous) -0.006 -0.006– -0.005 < 0.0001
Sex (female vs. male) 0.038 0.026–0.050 < 0.0001
A1C (continuous) 0.043 0.040–0.047 < 0.0001
Complication (short vs. none) 0.189 0.177–0.201 < 0.0001
Complication (long vs. none) 0.129 0.109–0.149 < 0.0001
Complication (Both short and long vs. none) 0.594 0.559–0.628 < 0.0001
Metro status (non-metro vs. metro) -0.056 -0.076– -0.036 < 0.0001
Charlson Comorbidity Index (Continuous) 0.265 0.256–0.275 < 0.0001



Page 9 of 12Han et al. BMC Health Services Research         (2023) 23:1116 

analysis for stable costs after adjusting other factors 
(p = 0.198 in Table 4).

Discussion
To better understand the trend of Type 2 diabetes-related 
cost paid by commercial insurance, we implemented 
the group-based trajectory analysis [14, 15] and identi-
fied significant factors associated with different trend 
patterns. The group-based trajectory analysis showed 
in Fig.  2 revealed distinct patterns in the trajectories of 
the T2D-related cost over the 4-year study period. The 
group-based trajectory methods are flexible to capture 
different trends and not restricted to monotone changes 
[14, 15]. We identified groups of patients having either 
stable cost or the increasing trend in relation to diabetes 
and its complications. The identification and control-
ling of the significant factors could provide insights into 
healthcare utilization, healthcare resources planning, and 
future policy recommendations.

With the clusters from the group-based trajectory anal-
ysis (Fig.  1), we provided descriptive statistics (Table  1) 
and within group (Table 2) and between group (Tables 3 
and 4) analyses to test the effects of multiple measure-
ments. Compared with the analysis for the entire sample 
(Table  2, all patients), our analysis revealed additional 
insights. Of note, Table  3 examines factors associated 

with higher possibilities of having increasing cost in the 
future 1–4 years given that the current Type 2 diabetes-
related cost is relatively low. The group-based trajectory 
analysis ensures the objectivity and not-by-chance when 
classifying participants with increasing cost.

Our study expands upon existing studies that examine 
rising costs of diabetes care over time [3] or identify key 
clinical, sociodemographic and economic factors associ-
ated with poorer diabetes management and higher costs 
[21]. Interestingly, having employer-based insurance does 
not negate the costs of care for persons with diabetes 
with out-of-pocket costs still being a major patient con-
cern [22–24]. Consistent with prior reviews revealing an 
association between diabetes and accelerated aging pro-
cesses [25], older age was associated with the increasing 
trend over time and higher stable cost over time. Expli-
cating prior research on sex differences associated with 
health care expenditures [26], male sex was associated 
with higher possibility of having increasing cost, while 
female sex was associated with higher cost if the cost 
remained stable. Consistent with other studies show-
ing a relationship between A1C and costs [11], for the 

Table 3 Univariable and multivariable logistic regression 
analyses of low stable cost vs. increasing cost over 4 years. 
(N = 98,973)
Variable Odds 

Ratio
95% 
Confidence 
Interval

P-value

Univariable analysis
Age (continuous) 1.006 1.005–1.008 < 0.0001
Sex (female vs. male) 0.886 0.864–0.908 < 0.0001
Baseline A1C (continuous) 1.237 1.225–1.249 < 0.0001
Complication (short vs. none) 1.691 1.640–1.744 < 0.0001
Complication (long vs. none) 1.565 1.504–1.629 < 0.0001
Complication (Both short and long 
vs. none)

4.608 4.267–4.976 < 0.0001

Metro status (non-metro vs. metro) 1.110 1.072–1.151 < 0.0001
Charlson Comorbidity Index 
(continuous)

1.203 1.187–1.218 < 0.0001

Multivariable analysis
Age (continuous) 1.002 1.000–1.003 0.0397
Sex (female vs. male) 0.976 0.942–1.011 0.1717
Baseline A1C (continuous) 1.188 1.176–1.200 < 0.0001
Complication (short vs. none) 1.562 1.496–1.631 < 0.0001
Complication (long vs. none) 1.497 1.414–1.584 < 0.0001
Complication (Both short and long 
vs. none)

3.545 3.185–3.944 < 0.0001

Metro status (non-metro vs. metro) 1.105 1.046–1.167 0.0004
Charlson Comorbidity Index 
(continuous)

1.133 1.113–1.154 < 0.0001

Low stable cost is the reference level

Table 4 Univariable and multivariable cumulative logistic 
regression analyses of low stable vs. medium stable vs. high 
stable cost over 4 years. Low stable cost is the reference level. 
(N = 260,984)
Variable Odds 

Ratio
95% Confi-
dence Interval

P-value

Univariable analysis
Age (continuous) 1.040 1.039–1.041 < 0.0001
Sex (female vs. male) 1.049 1.034–1.064 < 0.0001
Baseline A1C (continuous) 1.260 1.253–1.267 < 0.0001
Complication (short vs. none) 2.502 2.457–2.547 < 0.0001
Complication (long vs. none) 3.018 2.953–3.085 < 0.0001
Complication (Both short and 
long vs. none)

8.021 7.821–8.227 < 0.0001

Metro status (non-metro vs. 
metro)

0.978 0.958–0.999 0.036

Charlson Comorbidity Index 
(Continuous)

1.668 1.656–1.680 < 0.0001

Charlson Comorbidity Index 
(> 2 vs. < = 2)

4.441 4.358–4.525 < 0.0001

Multivariable analysis
Age (continuous) 1.040 1.039–1.041 < 0.0001
Sex (female vs. male) 1.103 1.081–1.126 < 0.0001
Baseline A1C (continuous) 1.178 1.171–1.185 < 0.0001
Complication (short vs. none) 2.461 2.401–2.524 < 0.0001
Complication (long vs. none) 2.084 2.953–3.085 < 0.0001
Complication (Both short and 
long vs. none)

4.646 4.479–4.819 < 0.0001

Metro status (non-metro vs. 
metro)

1.021 0.989–1.054 0.198

Charlson Comorbidity Index 
(Continuous)

1.372 1.358–1.385 < 0.0001

Low stable cost is the reference level
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entire patient sample and all subgroups, higher A1C was 
associated with higher cost and higher possibility of the 
increasing trend over the 4 years. Similarly, confirming 
other studies [4] complications and CCI were generally 
associated with higher cost and higher possibility of the 
increasing trend.

Adding nuances to previous studies demonstrating 
high prevalence of diabetes and related mortality in rural 
areas [27–30], patients in non-metro areas had slightly 
higher cost in some of the groups (i.e., patients with 
stable and relatively low cost), but they had lower cost 
for the entire patient group relative to patients in metro 
areas. In our analysis, we discovered the non-metro sta-
tus is associated with higher possibility of the increasing 
trend, but had little or non-significant association with 
higher cost given that the cost was stable over the 4 years.

We were especially interested in examining rural-urban 
differentials given the plethora of data indicating a dispro-
portionate burden of T2D [31], poor access to preventive 
health services [32], higher diabetes mortality rates in rural 
areas [33]. There have been suggestions that lower costs 
in rural areas might reflect a health disparity difference in 
access to care [34] with slightly lower diabetes screening 
rates for those living in rural areas [30]. Such health dispari-
ties in diabetes self-management can result in significant 
downstream health care burdens and costs [35, 36].

The group-based trajectory analysis had methodologi-
cal advantages over other approaches such as classification 
and regression trees and distance-based methods (such as 
k-means clustering and nearest neighbor methods). First, 
the group-based trajectory analysis builds clusters based 
on trends of cost over time, and covariates are not involved 
in the process of clustering [15]. Second, this approach 
can identify significant factors associated with, not only 
the magnitude of cost, but also the trend of cost over time, 
which is valuable for understanding the change of cost and 
factors associated with the change. Specifically, as shown 
in Tables 3 and 4, this approach enabled us to differentiate 
between: (a) factors associated with a higher likelihood of 
increasing cost trend over time; and (b) factors associated 
with higher cost amount if cost was relatively stable over 
time. Third, this method can accommodate missing values 
in the longitudinal outcome measurements given that some 
patients had missing cost values up to 12 out of 16 quar-
ters over the 4 years in this commercial claims data. Fourth, 
although the censored normal distribution was used on the 
log scale, this method is able to assume other distributions 
for different data types, for example, binary, ordinal, and 
count variables [15].

Despite its promising results, this study has some impor-
tant limitations that should be acknowledged. A noted limi-
tation relates to the group-trajectory analysis is that a group 
with a low sample size may be selected only by chance, 
which can limit the generalizability for groups representing 

small proportions (for example, 1–3%) of the overall sample 
size. Given our total sample size was large (close to 200,000 
patients with A1C values), and the proportion of each of the 
5 groups are relatively high in Fig. 1 (at least 8.6%), the five 
groups were likely representative of different cost trajecto-
ries. Another possible shortcoming of this study lies in the 
patient inclusion of commercially insured Texas residents. 
These findings could apply to other Texas residents with 
commercial insurance, but may not apply to residents out-
side of Texas, patients with non-commercial insurance (e.g., 
Medicare and Medicaid), or patients without any medical 
insurance.

Other limitations can be noted that are typical of second-
ary data of existing large administrative insurance claims 
data bases. While we were able to include A1C in our analy-
ses as a major clinical factor, we acknowledge that lab val-
ues such as A1C are not routinely included in claims data 
[37] and appears to be a reporting issue. In fact, A1Cs were 
only reported for slightly more than half of the claims data 
records. While we can document rural-urban cost differen-
tials, we are unable to provide definitive explanatory factors 
for the rural-urban differences that emerged in our analy-
ses. The existing dataset did not contain information about 
“major procedures” related to diabetes critical illness. Fur-
ther, the dataset only contains to total costs per quarter, not 
the number of the number of claims per year. Additionally, 
since working rural residents are less likely to be covered by 
private insurance given employment in jobs that do not pro-
vide employer insurance coverage, there may be a selection 
bias in our sample. We do note, though, that the data base 
includes individuals getting their insurance through health 
exchanges set up by the affordable care act [38].

Given these limitations within the data, we are unable to 
speculate, for example, about the nature of the stable high 
cost groups among rural-dwellers or other rural-urban dif-
ferences. Finally, it is worthwhile to note the data set for this 
work does not have information regarding insulin usage, 
metformin, glucose monitoring, and certain complications 
such as end stage kidney diseases. This is because less than 
half of commercial members in our sample had pharmacy 
coverage with the same insurer as their medical coverage. 
The rest were covered by other pharmacy benefit manag-
ers so that their pharmacy claims were carved out from the 
claims. Future work should focus on the role and impact of 
different therapeutic regimens on the patients’ diabetes con-
trol and management as well as types of diabetes-related 
costs (e.g., outpatient visits, inpatient care, regular clinical 
visits) and associated trends. Investigation of cost type could 
be informative, for example, hospitalization costs may be 
more expensive than outpatient visits due to medications, 
lab tests, consultation and patient education programs. 
Linking survival information with cost would be insightful. 
Clinic visits and length of stay information can be useful to 
explain the rural/urban disparity.
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The findings of our analysis have important policy 
and program implications. Regular A1C monitoring is 
still important for managing diabetes and preventing its 
complications (e.g., heart disease, chronic kidney disease, 
nerve damage) [39]. As such, implementing Diabetes 
Self-management Education and Support (DSMES) in 
communities can improve patient’s diabetes self-man-
agement, their glucose control, and their satisfaction with 
treatment and care received [40]. The Diabetes Educa-
tion Program, a form of DSMES, observed a significant 
reduction of A1C among study participants in the South 
Texas region and estimated healthcare cost savings up to 
$5.6 million over a two-to-three-year period [11, 41]. Our 
current study suggests significant associations of A1C 
and complications with the T2D-related cost (Tables  2 
and 4) and the change of cost over time (Table 3). With 
a higher A1C and more complications at baseline, the 
low cost at baseline is more likely to increase over time. 
As a result, managing diabetes complications via diabe-
tes self-management programs should be the first-line 
therapeutic behavioral choice among patients with diabe-
tes. Enhancing the enrollment of patients with high A1C, 
complications, but relatively low T2D related cost in self-
management programs could be helpful to improve their 
health outcomes and reduce the potential healthcare 
costs.

Conclusion
Group-based trajectory analysis revealed distinct patient 
groups with increasing cost trend and stable cost at low, 
medium, and high levels in the 4-year study period. Key 
factors of age, sex, A1C, short- and long-term complica-
tions, CCI, and metro status were included in the models 
for cost in each group, for the two groups of increasing 
versus stable low cost, and for the three groups of low, 
medium, and high stable cost. A1C and complications 
were significantly associated with T2D-related cost and 
the increasing trend of cost over the 4-year period. Liv-
ing in rural areas was significantly associated with the 
increasing trend. These findings have important policy 
and program implications on healthcare costs and health 
outcomes in terms of targeting those at high risk for dia-
betes prevention programming and ensuring equitable 
access to care.
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