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Abstract
Background  Frequent emergency department (FED) visits by cancer patients represent a significant burden to the 
health system. This study identified determinants of FED in recently hospitalized cancer patients, with a particular 
focus on opioid use.

Methods  A prospective cohort discharged from surgical/medical units of the McGill University Health Centre was 
assembled. The outcome was FED use (≥ 4 ED visits) within one year of discharge. Data retrieved from the universal 
health insurance system was analyzed using Cox Proportional Hazards (PH) model, adopting the Lunn-McNeil 
approach for competing risk of death.

Results  Of 1253 patients, 14.5% became FED users. FED use was associated with chemotherapy one-year pre-
admission (adjusted hazard ratio (aHR) 2.60, 95% CI: 1.80–3.70), ≥1 ED visit in the previous year (aHR: 1.80, 95% CI 
1.20–2.80), ≥15 pre-admission ambulatory visits (aHR 1.54, 95% CI 1.06–2.34), previous opioid and benzodiazepine 
use (aHR: 1.40, 95% CI: 1.10–1.90 and aHR: 1.70, 95% CI: 1.10–2.40), Charlson Comorbidity Index ≥ 3 (aHR: 2.0, 95% CI: 
1.2–3.4), diabetes (aHR: 1.60, 95% CI: 1.10–2.20), heart disease (aHR: 1.50, 95% CI: 1.10–2.20) and lung cancer (aHR: 1.70, 
95% CI: 1.10–2.40). Surgery (cardiac (aHR: 0.33, 95% CI: 0.16–0.66), gastrointestinal (aHR: 0.34, 95% CI: 0.14–0.82) and 
thoracic (aHR: 0.45, 95% CI: 0.30–0.67) led to a decreased risk of FED use.

Conclusions  Cancer patients with higher co-morbidity, frequent use of the healthcare system, and opioid use were 
at increased risk of FED use. High-risk patients should be flagged for preventive intervention.
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Introduction
Unplanned acute healthcare use after hospitalization 
remains an important health system challenge. Emer-
gency department (ED) care account for a large propor-
tion of healthcare system spending [1, 2]. While some 
ED visits may represent the only option for patients 
when they experience acute symptoms, the occurrence 
of a significant number of ED visits, which may lead 
to negative patient experiences, is medication-related 
and preventable [3–8]. The impact of ED visits is even 
more pronounced in cancer patients, as emergency use 
is associated with treatment errors, delays and adverse 
outcomes [9–11]. To enhance system performance and 
design interventions that could accurately identify poten-
tial high-risk profiles of vulnerable patients with cancer, 
modifiable factors that increase the risk of preventable 
ED visits need to be identified to potentially mini-
mize avoidable morbidity in this vulnerable population 
[12–14].

Prescription opioid use, an important contributor to 
adverse outcomes, has increased significantly over the 
past decade, resulting in a spike in acute healthcare use 
[15–17]. Pain control is an important cancer care com-
ponent; cancer patients are at increased risk of opioid-
related adverse outcomes, which, in turn, are associated 
with increased healthcare burden, as up to 40% of them 
suffer from chronic pain, and may necessiate long-term 
opioid use [18]. Several studies have estimated the risk of 
frequent emergency department (FED) use in relation-
ship to patient- and heathcare-related characteristics, 
and found that young adults, females, having multiple 
healthcare providers, and chronic conditions were asso-
ciated with increased risk of FED use [19–22]. How-
ever, most of the focus of previous research has been on 
patient-related factors, and the current evidence is lim-
ited to health measures captured in administrative data, 
which offer incomplete documentation of patients’ health 
and treatment trajectory. These databases do not have 
data on hospital-level characteristics or in-hospital medi-
cation use. As a result, the potential impact of opioid 
use, administered in hospital, given as part of a discharge 
treatment regimen or post-discharge dispensations have 
received little attention, despite important variations in 
the risk of acute healthcare services use associated with 
different patterns and durations of opioid use [22, 23]. 
Moreover, no study to date has accounted for the risk 
of competing events such as death [24, 25]. FED use, 
especially in clinical oncology, represent a complex phe-
nomenon, where patient overall health status and frailty 
may preclude the occurrence of a subsequent healtchare 
encounter [26].

The purpose of this study was to identify patents at 
high risk of FED use post discharge using comprehensive 
inpatient, outpatient and community-based clinical and 

population-based administrative databases. A particu-
lar focus was placed on the unexplored role of hospital-
related determinants and opioid use characteristics.

Methods
Study design & setting
The study was performed using the cohort of cancer 
patients enrolled in a cluster-randomized trial of medi-
cation reconciliation conducted at the McGill University 
Health Centre (MUHC), [27] a > 1000-bed quaternary 
care teaching hospital in Montreal (Canada) that oper-
ates within the universal healthcare plan of the province 
of Quebec (RAMQ). This RAMQ covers all necessary 
medical care and includes drug insurance for registrants 
65 years of age and older, income security recipients, 
and those not insured through their employer (approxi-
mately 50% of the 8.5 million Quebec population). Ethics 
approval was provided by the MUHC Ethics Commit-
tee Board. Quebec privacy commissioner approval was 
obtained to link clinical and administrative data from the 
Quebec Privacy Commissioner. Signed informed consent 
was provided by all participants. This study adheres to 
the Strengthening the Reporting of Observational Stud-
ies in Epidemiology (STROBE) reporting guideline for 
observational studies [28].

Participants
A prospective cohort of cancer patients with non-met-
astatic disease (stage I-III) admitted to medical and sur-
gical units between October 2014 and November 2016 
was followed one-year post-discharge. Patients had to 
be 18 years of age or older at admission, admitted from 
the community or transferred from another hospital or 
ER, with at least one-year continuous provincial health-
care coverage prior to admission. Furthermore, patients 
had to be discharged alive and have an active confirmed 
diagnosis of cancer (ICD9:1400–1999; ICD10: C77-C80, 
C18-20, C33, C45, C61), in the 12 months prior to or at 
admission. To assess the associations between initial 
opioid prescription characteristics, patients had to fill at 
least one opioid prescription post-discharge before their 
first occurrence of a post-discharge ED encounter.

Data sources
Multiple data sources were assembled and linked to 
address the study objectives. For each patient, admission 
and discharge dates, discharge unit, patient demograph-
ics, active co-morbidities, and interventions received 
during hospitalization were retrieved from the hospital 
discharge abstract database. Community-based, ER and 
hospital-based medical services, and medication use 
in the year prior to and after the hospitalization were 
retrieved from RAMQ’s medical and pharmacy admin-
istrative claims data. In-hospital medications as well as 
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those prescribed at discharge were retrieved from the 
MUHC drug information system. Combining these data 
sources provided a complete record of both community-
based and in-hospital medication use. Additional infor-
mation pertaining to the hospital stay was abstracted 
from the medical chart. Medical conditions and comor-
bidities were coded from administrative claims using the 
International Classification of Disease 9th revision (ICD9 
codes) and medications were classified according to the 
Anatomical Therapeutic Chemical Classification System 
code (ATC). Types of surgery were coded and classified 
using the Canadian Classification of Health Interventions 
(CCI).

FED use and predictors
Emergency department use  The main outcome was FED 
use (≥ 4 ED visits) in the year following hospital discharge 
and it was ascertained using the provincial RAMQ medi-
cal services claims databases. This definition for FED use 
was based on the most widely used definition found in the 
available literature and was deemed to represent a valid 
threshold [29–32].

Patient-related characteristics  For patient-related factors, 
RAMQ drug programs and hospital charts were used to 
collect information on age at admission and sex, as these 
characteristics were shown to be associated with FED vis-
its in previous studies [22, 25, 33, 34]. Patients’ income-
indexed copayment plan for medications was used as a 
proxy for socioeconomic status since employment sta-
tus, and higher income have been associated with lower 
rates of FED use in previous studies [19, 34, 35]. Under 
Quebec’s public drug insurance plan, patients could fall 
into one of three income-based copayment plans: 1) no 
copayment (free medications), 2) partial copayment (25% 
per prescription up to a maximum of $600 annually), or 3) 
maximum copayment (25% per prescription up to a maxi-
mum of $1,000 annually). Baseline comorbidities were 
measured using the Charlson Comorbidity Index (CCI). 
Specific comorbidities, with known associations were also 
investigated. These included targeted psycho-social (his-
tory of mental health diagnoses, substance and/or alcohol 
abuse/dependence), and physical comorbidities (cardio-
vascular disease, renal disease, respiratory diseases, pneu-
monia, chronic obstructive pulmonary disease, chronic 
pain). Type of cancer diagnosis (tumor site) in the year 
prior to admission and updated during the hospital stay 
(see Supplementary Material Appendix A for a full list of 
covariates included in the model).

Healthcare utilization  Using RAMQ medical services 
databases in the one year prior to admission, we collected 
information on the receipt of radiotherapy and/or chemo-
therapy services, number of outpatient visits, number of 

prescribing physicians, dispensing pharmacies, and the 
occurrence of a hospitalization or ED visit in the past year.

Medication use and hospital characteristics  Pre-admis-
sion use of opioids, benzodiazepine, non-opioid analge-
sics and antidepressant were measured using the RAMQ 
prescription claims database in the 12 months prior to 
admission as well as during the index hospitalization using 
data from the hospital pharmacy system. In-hospital char-
acteristics including the reason for the index admission, 
type of surgery received, length of hospital stay, admis-
sion to the intensive care unit (ICU), discharge destina-
tion were retrieved from the MED-ECHO hospitalization 
database and the use of electronic medication reconcilia-
tion software to finalize the discharge prescription.

Prescribing physician characteristics  Uniquely to this 
study, we retrieved organizational and physician’s charac-
teristics from the hospital data warehouse including phy-
sician’s years in practice, status (resident versus attending 
physician).

Opioid discharge prescription and initial opioid dispensa-
tion characteristics  Treatment changes made to opioid 
medications from the community were evaluated by using 
patients’ discharge prescriptions data in comparison to 
their community drug list. These methods were previ-
ously described elsewhere [15, 36]. Briefly, a categorical 
variable for whether a given opioid was stopped, contin-
ued or newly prescribed was derived. A binary variable 
for the presence of an opioid as part of the discharge pain 
regimen was constructed: patients with newly added or 
continued opioids were flagged as having an opioid pre-
scription. The first post-discharge opioid molecule (e.g., 
oxycodone, hydromorphone), dose (converted to mor-
phine milligram equivalents (MME) formulation (short-
acting vs long-acting), duration, and number of opioid 
prescriptions dispensed on the same day were measured 
using RAMQ pharmacy claims (Supplementary Material, 
Appendix B-C).

Statistical analyses
Descriptive statistics were used to characterize cancer 
patients who became FED users compared to those who 
did not [37]. Multivariable Cox Proportional Hazards 
(PH) models were utilized to determine the association 
between patient-, drug- and system-level characteris-
tics and FED use. Start of follow-up corresponded to 
the discharge date from the index hospitalization. End 
of follow-up corresponded to the day when the patient 
first met the definition of FED user, death, or to the end 
of the 12 month follow-up, whichever occurred first. The 
Lunn-McNeil (LM) approach for competing risk analyses 
extended to Cox PH models was used to account for the 
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possibility of death during the follow-up period [38–40]. 
Event indicator variables were created for the corre-
sponding event types (either FED use or death). The LM 
method uses a data augmentation approach to estimate a 
single completing risk model, which stratifies the results 
by the distinct baseline hazards for each event type [40, 
41]. Final variables included in the model were based on 
backward selection with a p-value of 0.1 used for a vari-
able inclusion with the exception of patient age and sex 
that were included to minimize residual confounding. 
The “events-per-variable” rule was used to guide the final 
number of variables in the model (excluding characteris-
tics of the initial opioid dispensation), with an event-to-
variable ratio of 10 [42]. For each covariate, the results 
were presented as adjusted hazard ratios (aHR), with 95% 
confidence intervals (CI). We tested the PH assumption, 
both globally and for each covariate in the multivariable 
Cox model, using the Grambsch and Therneau approach 
[43]. For covariates for which the PH hypothesis was 
violated (p < 0.05), we relied on smooth residual plots to 
assess how the corresponding adjusted hazard ratio var-
ied over the follow-up (Supplementary Material Appen-
dix D). Additionally, we also examined the reasons for 
the ED visits, as documented in the medical claims data-
bases, to provide additional information about the type 
of visits the frequent and non-frequent ED users experi-
enced during the follow-up period (Appendix E).

To investigate the association between characteristics 
of the initial opioid dispensation and FED use, we ran 
a separate Cox PH model accounting for all variables, 
including the opioid-related factors in the backward 
selection, but only among patients who filled at last one 
opioid prescription post-discharge. This additional eligi-
bility restriction was necessary in order to avoid immor-
tal time-bias as well as to reduce confounding by disease 
severity by only comparing these characteristics among 
opioid users [44, 45]. To maintain an appropriate tempo-
ral sequence that properly places the exposure relative to 
when the outcome occurs, only patients who filled their 
first post-discharge opioid prescription before they had 
their first post-discharge ED encounter were included in 
the model [46]. Cohort entry for this model was time of 
first dispensation to further reduce the opportunity for 
immortal time bias [47].

All analyses were performed using SAS version 9.4 
(SAS Institute, Cary, NC) and statistical models were 
analyzed using R (R Core Team, 2017).

Results
A total of 1253 cancer patients (Fig. 1) were discharged 
during the study period, with a mean age of 70.9 years. Of 
these, 57.5% were male, and 41.8% were discharged from 
a medical service (Table  1). The most frequent cancers 

Fig. 1  Flowchart of eligible cancer patients
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Overall
n = 1253

Non-Frequent Users
(0–3 ED visits)
n = 1071 (85.5%)

Frequent Users
(≥ 4 ED visits)
n = 182 (14.5%)

Patient-related characteristics
Age at admission (years)
Mean age (SD) 70.9 (11.8) 71.3 (11.8) 69.1 (11.5)

≤64 300 (23.9) 250 (23.3) 50 (27.5)

>64 953 (76.1) 821 (76.7) 132 (72.5)

N (%) N (%) N (%)
Gender

Female 532 (42.5) 459 (42.9) 73 (40.1)

Male 721 (57.5) 612 (57.1) 109 (59.9)

Medication copayment plan
No copayment 196 (15.6) 161 (15.0) 35 (19.2)

Partial copayment 294 (23.5) 248 (23.2) 46 (25.3)

Maximum copayment 763 (60.9) 662 (61.8) 101 (55.5)

Healthcare use in the one year pre-admission period
Mean (SD) Mean (SD) Mean (SD)

Emergency department (ED) visits 9.2 (14.5) 8.5 (14.3) 13.0 (15.5)

Hospitalizations 0.93 (2.21) 0.89 (2.3) 1.1 (1.8)

Ambulatory visits 14.5 (12.1) 14.1 (12.2) 16.9 (10.9)

N (%) N (%) N (%)
Radiotherapy 192 (15.3) 138 (12.9) 54 (29.7)

Chemotherapy 239 (19.1) 168 (15.7) 71 (39.0)

Mean (SD) Mean (SD) Mean (SD)
Number of prescribing physicians 4.8 (3.4) 4.6 (3.2) 5.9 (3.9)

Number of dispensing pharmacies 1.4 (0.85) 1.4 (0.86) 1.5 (0.81)

Active prescriptions at admission 8.7 (9.7) 8.5 (9.5) 10.2 (11.1)

Medication use in the one year pre-admission period
N (%) N (%) N (%)

Active opioid prescription at admission 207 (16.5) 159 (14.9) 48 (26.4)

History of opioid use 505 (40.3) 407 (38.0) 98 (53.9)

History of > 3 opioid dispensations 45 (3.6) 37 (3.5) 8 (4.4)

History of analgesics use 505 (40.3) 413 (38.6) 92 (50.6)

History of antidepressant use 270 (21.6) 226 (21.1) 44 (24.2)

History of benzodiazepines 503 (40.1) 403 (37.6) 100 (54.9)

Targeted comorbidities that may increase the risk of hospitalizations/ED visits
Charlson Comorbidity Index

0 14 (1.1) 14 (1.3) 0 (0)

1–2 247 (19.7) 232 (21.7) 15 (8.2)

≥3 992 (79.2) 825 (77.0) 167 (91.8)

Cardiovascular Diseases 602 (48.0) 508 (47.4) 94 (51.7)

Cerebrovascular Diseases 114 (9.1) 92 (8.6) 22 (12.1)

Pneumonia 124 (9.9) 101 (9.4) 23 (12.6)

Chronic obstructive pulmonary disease 349 (27.9) 292 (27.3) 57 (31.3)

Diabetes 245 (19.6) 197 (18.4) 48 (26.4)

Renal Disease 116 (9.3) 103 (9.6) 13 (7.1)

History of mental illness 190 (15.2) 158 (14.8) 32 (17.6)

History of substance& alcohol abuse 37 (2.9) 30 (2.8) 7 (3.9)

History of pain syndromes 515 (41.1) 431 (40.2) 84 (46.2)

Cancer diagnoses
Digestive 309 (24.7) 257 (24.0) 52 (28.6)

Lung 488 (38.9) 408 (38.1) 80 (43.9)

Breast cancer 274 (21.9) 232 (21.7) 42 (23.1)

Urologic 248 (19.8) 214 (19.9) 34 (18.7)

Table 1  Baseline characteristics of cancer patients according to their frequency of emergency department use
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Overall
n = 1253

Non-Frequent Users
(0–3 ED visits)
n = 1071 (85.5%)

Frequent Users
(≥ 4 ED visits)
n = 182 (14.5%)

Unspecified Cancer 88 (7.0) 76 (7.1) 12 (6.6)

In-hospital medication use
Antidepressants 220 (17.6) 184 (17.2) 36 (19.8)

Opioids 968 (77.3) 826 (77.1) 142 (78.0)

Benzodiazepines 855 (68.2) 731 (68.3) 124 (68.1)

Analgesics 1163 (92.8) 993 (92.7) 170 (93.4)

Characteristics of the index hospitalization
Reasons for admission

Cancer 368 (29.5) 315 (29.5) 53 (29.3)

Respiratory 201 (16.1) 180 (16.9) 21 (11.6)

Cardiovascular 177 (14.2) 160 (15.0) 17 (9.4)

Digestive 80 (6.4) 66 (6.2) 14 (7.7)

Genitourinary 60 (4.8) 55 (5.2) 5 (2.8)

Health services (examinations) 43 (3.5) 8 (4.4) 35 (3.3)

Infections 36 (2.9) 23 (2.2) 13 (7.2)

Musculoskeletal 29 (2.3) 25 (2.3) 4 (2.2)

Injection poisonings 20 (1.6) 18 (1.7) 2 (1.1)

Dermatological 20 (1.6) 16 (1.5) 4 (2.2)

Immune system 17 (1.4) 14 (1.3) 3 (1.7)

Metabolic 16 (1.3) 9 (0.8) 7 (3.9)

Other 1 165 (13.2) 137 (12.8) 28 (15.4)

Neurological/behavioral 11 (0.9) 10 (9.3) 1 (5.5)

Received surgery 639 (51.0) 563 (52.6) 76 (41.7)

  Type of Surgery Received

    Cardiac 118 (9.4) 108 (10.1) 10 (5.5)

    Gastrointestinal 49 (3.9) 44 (4.1) 5 (2.8)

    Thoracic 417 (33.3) 358 (33.4) 59 (32.4)

    Unrelated 55 (4.4) 53 (4.9) 2 (1.1)

Length of hospital stay, days
Mean (SD) 8.9 (11.6) 8.7 (11.7) 8.6 (11.4)

  <6 166 (13.3) 143 (13.4) 23 (12.6)

  ≥6 1087 (86.8) 928 (86.6) 159 (87.4)

Admission to the ICU 97 (7.7) 81 (7.7) 16 (8.8)

Medication reconciliation used 291 (23.2) 255 (23.8) 36 (19.8)

Attending physician years of practice
  1–20 350 (27.9) 291 (27.2) 59 (32.4)

  20–40 661 (52.8) 575 (53.7) 86 (47.3)

  >40 242 919.3) 205 (19.1) 37 (20.3)

Discharge prescription signed by
  Attending physician 280 (22.3) 241 (22.5) 39 (21.4)

  Resident 973 (77.6) 830 (77.5) 143 (78.6)

Home discharge destination
  Home 1147 (91.5) 975 (91.0) 172 (94.5)

  Long-term care facility 106 (8.5) 96 (8.9) 10 (5.5)

Pain regimen at discharge
Opioid prescription 1017 (81.2) 870 (81.2) 147 (80.8)

Analgesic prescription 814 (64.9) 694 (64.8) 120 (65.9)

Characteristics of the initial opioid dispensation post-discharge2,3

Filled an opioid prescription post-discharge 475 (37.9) 357 (33.3) 118 (64.8)

Filled an opioid prescription within 30 days’ post-discharge 444 (93.5) 331 (92.7) 113 (95.8)

Filled ≥1 type of opioid 36 (7.6) 26 (7.3) 10 (8.5)

Table 1  (continued) 
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were respiratory (38.9%) and upper digestive (24.7%) 
(Table 1).

Overall, 14.5% (n = 182) of patients became FED users 
and 19.3% (n = 242) died during the follow-up (Table 1). 
The mean time of follow-up for FED users was 208.1 
days. When compared to patients with < 4 ED visits, 
patients who became FED users were more likely to 
have had a higher mean number of ED (13.0 vs 8.5) and 
ambulatory visits (16.9 vs 14.1) in the pre-admission 
year, had received radiotherapy (29.7% vs 12.9%) or che-
motherapy during those 12-months (39.0% vs 15.7%), 
and already had an active opioid prescription at admis-
sion (26.4% vs 13.0%). FED users were also more likely to 
have had a history of opioid (53.9% vs 38.0%), analgesic 
(50.6% vs 38.6%) and benzodiazepine (54.9% vs 37.6%) 
use before their admission, as well as have a higher (≥3) 
CCI index (91.8% vs 77.0%). FED users were less likely to 
have received surgery during their index hospitalization 
(41.7% vs 52.6%).

At discharge, 81.2% of patients received an opioid pre-
scription (Fig.  2, Table  2). Most discharge opioid pre-
scriptions were newly initiated, as 62.6% of patients did 
not have an opioid dispensation in the year proceeding 
their hospitalization (Fig.  2). Once in the community, 
37.9% of patients had at least one opioid dispensed, 
which always preceded their ED visit (Table 1).

The most common dispensed opioids were oxycodone 
(57.3%) and hydromorphone (31.8%) (Table  1). With 

respect to post-discharge opioid consumption, FED users 
had similar characteristics to non-FED users in terms of 
the dose, duration and formulation of the first post-dis-
charge opioid prescription but were more likely to have 
filled a prescription for hydromorphone (39.8% vs 29.1%) 
(Table 1).

In the multivariable Cox model (Table 2), patients who 
had a history of ≥ 1 ED visit pre-admission were associ-
ated with an increased likelihood of transitioning into a 
FED user post-discharge (aHR 1.80, 95% CI 1.20–2.80). 
Patients receiving chemotherapy preadmission were 2.6 
times more likely to become FED users (aHR 2.60, 95% 
CI, 1.80–3.70). Having a higher CCI (≥3) (aHR: 2.0, 95% 
CI: 1.2–3.4), a history of diabetes (aHR: 1.60, 95% CI: 
1.10–2.20), heart disease (aHR: 1.50, 95% CI: 1.10–2.20), 
or lung cancer (aHR: 1.70, 95% CI: 1.10–2.40), were all 
independently associated with an increased likelihood 
of becoming a FED user. Having had surgery (cardiac 
(aHR: 0.33, 95% CI: 0.16–0.66), gastrointestinal (aHR: 
0.34, 95% CI: 0.14–0.82) and thoracic (aHR: 0.45, 95% CI: 
0.30–0.67) led to a decreased risk of FED use. Patients 
with a preadmission history of opioid use had a 40% 
higher risk of becoming FED users during the one-year 
post-discharge (aHR 1.40, 95% CI 1.10–1.90) and a 70% 
increased risk of FED use with a history of benzodiaz-
epine use (aHR 1.70, 95% CI 1.10–2.20). In the subset 
of 475 (37.9%) of patients who filled at least one opioid 
dispensation post discharge, having had ≥15 ambulatory 

Overall
n = 1253

Non-Frequent Users
(0–3 ED visits)
n = 1071 (85.5%)

Frequent Users
(≥ 4 ED visits)
n = 182 (14.5%)

MME Dose
  ≤20 100 (21.1) 74 (20.7) 26 (22.0)

  20–50 267 (56.2) 201 (56.3) 66 (55.9)

  50–90 93 (19.6) 73 (20.5) 20 (16.9)

  >90 15 (3.2) 9 (2.5) 6 (5.1)

Days’ Supply
  ≤7 238 (50.1) 181 (50.7) 57 (48.3)

  >7 237 (49.9) 176 (49.3) 61 (51.7)

Formulation
  Short-acting 444 (93.5) 335 (93.8) 109 (92.4)

  Long-acting 31 (6.5) 22 (6.2) 9 (7.6)

Type of opioid
  Codeine 10 (2.1) 9 (1.9) 1(0.9)

  Hydromorphone 151 (31.8) 104 (29.1) 47 (39.8)

  Oxycodone 272 (57.3) 215 (60.2) 57 (48.3)

  Fentanyl 9 (1.9) 8 (2.2) 1 (0.9)

  Methadone 2 (0.4) 1 (0.3) 1 (0.9)
ED = emergency department; SD = standard deviation; ICU = intensive care unit; MME = milligram morphine equivalent
1 Other: pain, vomiting, nausea, dizziness, swelling
2 These numbers are presented only among those who filled an opioid dispensation post-discharge, before their first

ED visit following the index hospitalization (n = 792)
3Percentage of opioid characteristics is calculated based on the total number of patients with at least one dispensation (n = 475)

Table 1  (continued) 
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visits (aHR 1.54 95% CI 1.06–2.34) preadmission was 
also associated with FED use (as compared to the main 
model) (Table 3)

The PH hypothesis was rejected by the global test 
(p = 0.021 and for three of the selected covariates (p < 0.05 
for each). Appendix D of the Supplementary Material 
describes how the corresponding aHR’s of each of these 
covariates varied with increasing follow-up.

With respect to the reasons for the ED visits, in Appen-
dix E, we see the descriptive breakdown comparing 
the most common documented reasons in the ED vis-
its experienced by non-frequent ED users and the FED 
users. In the breakdown of the reasons associated with 
the ED visits (multiple reasons could be documented 
within the same healthcare encounter), among the FED 
users, 50% of the visits were for cancer-related diagno-
ses, as compared to 36.6% for the non-frequent users. 
We also observed higher percentage of documented rea-
sons for infections and cardiovascular related symptoms. 
The percentage of visits related to the receipt of clinical 
follow-up care within the ED setting was similar across 
non-frequent ED users and FED users.

Discussion
We found that cancer patients recently discharged from 
hospital are at risk of FED visits. Higher pre-admission 
ED use, ambulatory visits, receipt of radiotherapy and/
or chemotherapy, a greater number of comorbidities, 
a history of heart disease, diabetes, or lung cancer, and 
pre-admission use of opioids and benzodiazepines were 
associated with a higher risk of FED use.

Several studies have shown a link between FED use and 
higher number of past ED visits, history of heart disease, 
and increased comorbidity profile [22, 25, 33, 35, 48–50]. 
In this study, however, we were able to investigate the 
potential impact of additional system-level, organiza-
tional or opioid related medication factors on FED use 
[29–31, 51], which led to interesting observations. For 
example, we found that the receipt of any type of surgery, 
was associated with a decreased risk of FED use. This 
finding might be related to the implementation of stan-
dardized care pathways that include discharge planning 
and better follow-up protocols [52, 53]. However, this 
finding may be a reflection of having patients in the study 
cohort that are at an early stage of their cancer disease 
and, thus, excluding the sickest population; the results 
should be replicated, in addition to investigating the 
effect measure modification of having surgery on the risk 

Fig. 2  Flowchart of opioid consumption according to cancer patients’ receipt of opioid prescription at discharge, previous history of opioid use and 
post-discharge dispensations
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Variable Adjusted HR1

(95% CI)
Demographics
Age

  <65 Reference

  ≥65 0.9 (0.7–1.2)

Gender

  Female Reference

  Male 1.2 (0.9–1.6)

Healthcare use characteristics
Emergency department (ED) visits

  0 Reference

  ≥1 1.8 (1.2–2.8)
Ambulatory visits

  <15 Reference

  ≥15 1.2 (0.89–1.7)

Radiotherapy

  No Reference

  Yes 1.4 ( 0.91 − 2.0)

Chemotherapy

  No Reference

  Yes 2.6 (1.8–3.7)
Comorbidities
Charlson Comorbidity Index

  0–2 Reference

  ≥3 2.0 (1.2–3.4)
Renal disease

  No Reference

  Yes 0.6 (0.4–1.1)

Diabetes

  No Reference

  Yes 1.6 (1.1–2.2)
Heart disease

  No Reference

  Yes 1.5 (1.1–2.2)
Lung cancer

  No Reference

  Yes 1.7 (1.1–2.4)
Medication use
History of benzodiazepine use

  No Reference

  Yes 1.7 (1.1–2.4)
History of opioid use

  No Reference

  Yes 1.4 (1.0–1.9)
In-hospital characteristics
  Type of surgery

    No surgery Reference

    Cardiac 0.33 (0.16–0.66)
    Gastrointestinal 0.34 (0.14–0.82)
    Thoracic 0.45 (0.30–0.67)
    Unrelated 0.21 (0.05–0.89)
Admission to the ICU

  No Reference

Table 2  Association between frequent emergency department use and patient-, medication-, and system-related characteristics 
(n = 1253)
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of FED, using larger cohorts within existent databases 
that link clinical information to administrative databases.

Previous studies have found opioid dose to be associ-
ated with increased risk of long-term opioid use and its 
associated adverse events [54–56]. In our study, we found 
that opioid prescriptions often went unfilled and opioid 
use was not associated with increased risk of FED, which 
may be a reflection of patients included at an early stage 
of their cancer disease. While our findings showed that 
initial doses of dispensed opioids did not exceed recom-
mended thresholds and did not lead to increased risk of 
incurring a high-number of acute healthcare events [57], 
a longer follow-up window may be needed to accurately 
reflect the role of opioid patterns of use and dose on the 
risk of FED use. However, over time, patients, progress-
ing to later disease stages, may add several medications 
to maximize pain control, accumulating longer use 
over time [58–60], which could consequently result in 
increased risk of opioid-related morbidity and healthcare 
utilization.

Challenges in cancer-related pain management have 
highlighted the need to link electronic health records 
with prescription drug monitoring to better track 
patients data and provide safe transitions of care [61]. In 
out sudy, we demonstrated that it is possible to link these 
types of data sources, which, in turn, allowed us to accu-
rately track all in-patient care as well as discharge pre-
scriptions to identify at-risk profiles. Thus, this approach 
offers the possibility of developing real-time tools that 
could flag medications’ status at transitions in care, as 
well as document any complexities in medication regi-
mens that may require further monitoring, and help cli-
nicians to re-evaluate high-risk cancer patients.

The study’s strengths included comprehensive linked 
data on each patient’s care trajectory including detailed 
clinical data, information on opioid prescription written 
at the transitions in care, as well as administrative data 
that enabled us to measure patient attributes that would 
not normally be feasible. Accessing information from a 

single, universal health insurance coverage provider fur-
ther strengthens the findings, by detailing consumption 
of all healthcare, without regards to type or site. Risk of 
competing events, a concept first introduced within clini-
cal research in the oncology field [62], and particularly 
important in cancer patients, who are at a higher risk of 
death, has not been previously explored when assessing 
predictors of FED use. To our knowledge, this study is 
the first to investigate patient, system-level and opioid-
related characteristics, and provide further insights into 
the opioid patterns of use that may lead to increased 
healthcare use using adequate modelling techniques 
accounting for competing risk of death.

Some limitations of our work merit emphasis. First, 
this was an observational study and, although we used 
robust statistical procedures, the results should be inter-
preted cautiously without inferring causality. We sought 
to minimize confounding of FED use by severity by 
including a wealth of detailed information that reflect 
patient’s disease severity and medication use. Neverthe-
less, despite considering the receipt of chemotherapy and 
radiotherapy, there could still be a possibility for resid-
ual confounding by cancer severity. Second, results may 
not be generalizable to other settings. Third, we used a 
definition of ≥ 4 ED visits to classify frequent users and, 
since other studies have used thresholds ranging from 
4 to 12 visits per year, our results may depend on how 
frequent use is defined. Fourth, while we presented the 
documented reasons for the ED visits, we did not study 
the independent associations with outcome-specific ED 
visits; we also did not include information on the avail-
ability of follow-up care receipt, acknowledging the pos-
sibility that some of the ED visits may be truly emergent 
and necessary given the patient disease profile. Fifth, as 
part of the prescribing characteristics, we did not look 
at whether the prescribing physicians were specialists, 
generalists, or palliative care physicians, and as such, we 
cannot comment on the role of the type of prescriber in 
the studied associations; this area should be explored in 

Variable Adjusted HR1

(95% CI)
  Yes 1.67 (0.98–2.8)

Hospital LOS, days

  <6 Reference

  ≥6 1.2 (0.76–1.8)

Discharge prescription for a non-opioid analgesic

  No Reference

  Yes 1.32 (0.95–1.9)
HR = hazard ratio, CI = confidence interval, LOS = length of hospital stay
1Adjusted for all the variables in the table. Covariate selection was based on backward selection, using a p-value of 0.1 for variable inclusion, as well as a number of 
characteristics with low p-values. The final number of variables selection was based on the events-per-variable rule, where the total number of variables in the final 
model did not fall beyond an event-to-variable ratio of 10. Statistically significant findings are bolded. In total, there were 242 patients (19.3%) who had died before 
having the opportunity to become frequent emergency department users.

Table 2  (continued) 
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Table 3  Association between frequent emergency department use and patient-, medication-, system- and opioid-related 
characteristics among patients who filled an opioid prescription before their first post-discharge emergency department visit (n = 475)
Variable Adjusted HR1

(95% CI)
Healthcare use characteristics
Emergency department (ED) visits

  0 Reference

  ≥1 1.73 (1.08–2.75)
Ambulatory visits

  <15 Reference

  ≥15 1.54 (1.06–2.34)
Chemotherapy

  No Reference

  Yes 2.05 (1.40–3.00)
Comorbidities
  Renal disease

  No Reference

  Yes 0.46 (0.20–1.26)

Heart disease

  No Reference

  Yes 1.95 (1.27–2.97)
Diabetes

  No Reference

  Yes 1.75 (1.14–2.69)
Lung cancer

  No Reference

  Yes 1.71 (1.07–2.74)
Medication use
Active opioid prescription at admission

  No Ref

  Yes 0.83 (0.52–1.32)

In-hospital characteristics
Antidepressant use

  No Ref

  Yes 1.19 (0.76–1.87)

Type of surgery

  No surgery Reference

  Cardiac 0.18 (0.06–0.49)
  Gastrointestinal 0.35 (0.14–0.93)
  Thoracic 0.42 (0.26–0.70)
  Unrelated 0.18 (0.04–0.80)
Admission to the ICU

  No Reference

  Yes 2.20 (0.99–4.88)

Discharge prescription for an opioid medication

  No Reference

  Yes 1.53 (0.95–2.47)
HR = hazard ratio, CI = confidence interval, LOS = length of hospital stay
1Adjusted for all the variables in the table. Covariate selection was based on backward selection, using a p-value of 0.1 for variable inclusion, as well as a number of 
characteristics with low p-values. The final number of variables selection was based on the events-per-variable rule, where the total number of variables in the final 
model did not fall beyond an event-to-variable ratio of 10. Statistically significant findings are bolded. In total, there were 92 patients (19.4%) who had died before 
having the opportunity to become frequent emergency department users.
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future avenues of research. Finally, generalizability of our 
findings may be limited due to studying only stage I-III 
patients, which excludes the sickest of the population, 
and represents patients that are at the earliest stage of 
their cancer progression.

In conclusion, this study used comprehensive data to 
assess the association between various risk factors with 
FED use. These results may help hospitals and commu-
nity health providers to improve the quality of cancer 
care through providing alternative treatments for high-
risk cancer patients.
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