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Abstract 

Purpose  There is scientific evidence that ionizing radiation (IR) can be responsible for various health hazards that are 
one of the concerns in occupational exposure. This study was performed to evaluate DNA damage and antioxidant 
status in hospital workers who are occupationally exposed to low doses of IR.

Materials and methods  In this study, twenty occupationally exposed to low doses of IR (CT and angiography) com-
prising with control groups which matched them. In order to investigate the effects of chronic irradiation of radiation 
workers, Micronuclei (MN) frequency and the antioxidant activity of Superoxide Dismutase (SOD), Catalase (CAT) and 
Total Antioxidant Capacity (TAC) were measured. Then, to check adaptation against high challenge dose, the samples 
(in all groups) were irradiated in vitro and MN frequency was compared. Finally, to investigated the effect of the high 
dose after the acute and chronic low dose of ionizing radiation, MN frequency was compared in two groups (the con-
trol group that was to in-vitro irradiated (acute low dose + high dose) and radiation workers (chronic low dose + high 
dose)).

Results  MN frequency in the occupationally exposed group (n = 30) increased significantly when compared to the 
control group (p-value < 0.0001). However, chronic irradiation of radiation workers could not lead to an adaptive 
Sresponse, while acute low-doses could produce this effect (p-value ˂ 0.05). In addition, the activity levels of antioxi-
dant enzymes SOD, CAT, and TAC were not statistically different between the radiation workers and the control group 
(p-value > 0.05).

Conclusions  We observed that exposure to low doses of IR leads to increased cytogenetic damage, could not 
cause an adaptive-response, and improve antioxidant capacity in radiation workers. Controlling healthcare workers’ 
exposure is the first step to improving the health of hospital workers and the quality of patient care, thus decreasing 
human and economic costs.
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Introduction
Ionizing radiation (IR) plays an important role in the 
modern world. Humans are constantly exposed to these 
rays through the environment, occupation, medical use, 
or other sources [1]. We know that IR is effective in treat-
ing and diagnosing various diseases for patients, but the 
effects of their occupational exposure on medical staff 
such as cataracts, cardiovascular disease and of course 
cancer cannot be ignored. Although the dose received by 
most hospital staff who are exposed to low doses of ion-
izing radiation (LDIR) lied within the specified range of 
The International Commission on Radiological Protec-
tion (ICRP), but in recent decades the use of high-dose 
techniques has raised concerns. A personal dosimeter 
that is routinely used may underestimate the actual expo-
sure, not only for the detecting threshold of dosimeters 
but maybe it is in the wrong place. Note that the occupa-
tional hazards of these individuals are not limited to the 
time they are on duty, but their effects will increase with 
more exposure to IR, and according to the available evi-
dence, may affect future generations [2, 3]. Although the 
effects of high doses of ionizing radiation (HDIR) are well 
known, the equivocations of LDIR have still remained 
ambiguous [4]. Biological responses to LDIR depend on 
various physical factors. The first and most important 
factor is the total absorbed dose and nature of radiation 
exposure, i.e., acute or chronic irradiation [5]. Other fac-
tors include the distribution of radiation sources and 
dimensions of biological targets [6]. We know that IR 
causes single-strand and double-strand DNA breaks and 
genomic instabilities [7]. These lesions are usually diag-
nosed and repaired quickly by cellular mechanisms, but 
few remain and are seen later in the cell cycle. Accord-
ing to the studies after radiation to adapt and maintain 
the survival of the cells, various pathways are activated in 
different time [8]. For example, after a few hours of radia-
tion, reactive oxygen species (ROS) scavengers and sign-
aling pathways leading to apoptosis are activated. Within 
a few days, DNA repair pathways and after several weeks, 
immune responses appear [9]. On the other hand, LDIR 
can reduce the genomic damage to human lymphocytes 
caused by subsequent high doses. The phenomenon is an 
example of an "adaptive-response" which is often evoked 
as possible mechanisms to stimulate specific protective 
functions [10].

IR interacts directly with specific molecules in the cell, 
including water [11]. In this interaction, most of the IR 
energy is spent expelling electrons from the water mol-
ecule. The product of such a collision is ROS including 
hydroxyl radicals (OH°), which are highly reactive and, if 
formed near biological molecules, have the potential to 
cause immediate oxidative damage [12]. The occurrence 
of chain reactions and the production of destructive free 

radicals leads to a series of damages, generally referred to 
as oxidative stress [13]. Nevertheless, antioxidants are an 
important defense system to counteract the effects of this 
oxidative stress which contribute to removing ROS pro-
duced both directly or indirectly [14].

IR can cause oxidative stress and subsequently produce 
ROS and release free radicals. Its effects in the DNA dam-
age—the indirect effect—and even changes in mitochon-
drial physiology -as the center of oxidative metabolism-. 
Finally, it can lead to increase genomic instability in irra-
diated cells [15, 16]. One way to protect against ROS is 
through antioxidant molecules such as glutathione (GSH) 
as well as antioxidant defense enzymes such as catalase 
(CAT) and superoxide dismutase (SOD). There is usually 
a balance between ROS and antioxidants, but an imbal-
ance can result from a disease or prolonged exposure to 
IR, which can lead to oxidative stress. Chronic oxidative 
stress is itself a cause of DNA damage leading to many 
diseases such as cancer [17]. Various hypotheses have 
been proposed to describe the adaptive-response mech-
anisms of LDIR. The most important is to stimulate the 
immune system, accelerate DNA damages detection and 
repair, and increase antioxidant levels [18].

However, concern about occupational exposures 
increased with the publication of study results in the 
first half of the past century. Therefore, creating restric-
tions to maintain health and prevent adverse effects was 
a serious matter [19]. In this regard, ICRP recommends a 
dose limit of 50 mSv in any one year and 20 mSv averaged 
over defined periods of 5 years [20]. One of the occupa-
tional groups that are most consistently exposed to LDIR 
is hospital workers [21]. So far, in studies, the effects of 
this chronic radiation have been measured using vari-
ous methods in the changes of different factors. Such as 
examining chromosomal abnormalities (dicentric, ring, 
translocation), cytokinesis block micronucleus (CBMN), 
premature chromosome condensation (PCC), comet 
assays, and as well as hematological and biochemical 
parameters [22, 23]. Each of these methods has strengths 
and weaknesses. Among them, micronuclei assay is a reli-
able and sensitive method, especially for low doses [24].

The present study was performed to analyze the 
cytogenetic damage associated with IR as well as to eval-
uate the incidence of adaptive-response using a micro-
nucleus test plus measurement of antioxidant levels in 
hospital workers exposed to occupational radiation from 
LDIR. Their results are then compared with the control 
group findings.

Materials and methods
Selection of subjects
Participants in this study included 30 volunteers 
recruited with informed consent. Studies have shown 
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that age, gender, smoking habits, and residence can 
affect the results. To minimize these factors, all vol-
unteers in this study were male and minority smokers. 
They were all asked to fill in a questionnaire including 
questions about lifestyle, work experience, and medica-
tion. The exposed participants (N = 20) included radia-
tion workers in CT scan and angiography working in 
Imam Reza Hospital in Mashhad. The control group 
(N = 10) matched the exposed groups regarding gender, 
age, and smoking status. The characteristics of each of 
the 30 volunteers are summarized in Table 1. Calibration 
procedures of all exposure systems was done according 
to regional regulations and approved by National Radia-
tion Protection Department (NRPD) of Nuclear Regula-
tory Authority (INRA).

Irradiation of sample
The blood samples of the exposed participants were 
divided into two sub-groups, background damage assess-
ment, and the other by applying a dose of 4 Gy to eval-
uate adaptive-response induction (HD). Also, for the 
control group, the samples were divided into three sub-
groups, to investigate the background damage, irradi-
ated at a dose of 50 mGy and after 4 h at a dose of 4 Gy 

(LD + HD), and the last flask was applied only 4 Gy dose 
of IR (HD) as shown schematically in Fig. 1. Irradiation 
with 6 MV accelerators was performed in the field of 
20 × 20, SSD = 100 cm at a 180-degree gantry angle. The 
dose rate used to deliver the Low Dose (50  mGy) was 
considered to be 50 cGy/min, and for delivering the High 
dose (4 Gy) dose rate was 200 cGy/min.

Blood sampling
For each participant, nearly 0.5  mL of the peripheral 
blood sample was taken in heparinized vacuum tubes 
(Becton Dickinson) to perform the CBMN test. Approx-
imately, 2  mL of the blood sample was poured into the 
clot tube and the separated plasma was stored at -80 °C 
to analyze the oxidative plus antioxidant levels.

Cytokinesis‑Block Micronucleus (CBMN) assay
The CBMN assay was performed according to Fenech 
and Morley, albeit with minor modifications to achieve 
the best efficiency [25–27]. Half a mL of peripheral whole 
blood was added to RPMI 1640 medium (Gibco) contain-
ing antibiotics (penicillin 100  IU/mL and streptomycin 
100 μg/mL (Sigma), 20% fetal bovine serum (Gibco), and 
1% phytohemagglutinin, and incubated at 37  °C and 5% 
CO2 for 72 h. After 44 h from culture initiation, cytocha-
lasin-B (Sigma) was added at a final concentration of 5 μg/
mL. Lymphocytes in peripheral blood were fixed in cold 
and fresh methanol/acetic acid (6:1), then air-dried and 
stained with 7% Giemsa solution. Two parallel cultures 
were determined per subject. So, in a total of 1000 binu-
cleated (BN) lymphocytes (The two nuclei in a BN cell 
should have intact nuclear membranes and be situated 
within the same cytoplasmic boundary, approximately 
equal in size and staining intensity), the frequencies of 
MN scored (The boundary should be distinguishable, 
have the same staining intensity as the main nuclei but 
smaller and not overlap with them) were analyzed.

Table 1  The demographic characteristics of exposed and 
control groups

participants Control group Medical exposure

CT Angiography

Number of volunteers 10 10 10

Age (year) Mean ± SD 38.1 ± 9.06 36.7 ± 5.73 39.5 ± 8.97

Duration of employ-
ment (years) Mean ± SD

- 15.7 ± 4.19 17.7 ± 7.11

Smoking Habit

Yes:NO 2: 8 2: 8 2: 8

Fig. 1  Schematic of the studied groups and their related codes
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Measurements of antioxidant level
After frozen plasma samples were reached room tem-
perature, samples were subjected to the following deter-
minations: SOD activity via the madesh colorimetric 
method, CAT activity through formaldehyde colorim-
etry, and TAC upon oxidation based on ferryl myoglobin 
radicals. SOD, CAT, and TAC levels were quantitated 
by using ELISA (570 nm for SOD, 540 nm for CAT, and 
412 nm for TAC) in accordance with the kit instructions 
(Teb Pazhouhan Razi, Tehran, Iran).

Statistical analysis
In this study, GraphPad Prism software version 8.0.2 was 
used to analyze the data. Firstly, the normal distribution 
of data in all groups was investigated. Then, for statistical 
analysis of the results between two independent groups, 
t-test and U test (Mann–Whitney) were employed for 
normal and abnormal distribution, respectively. Also, 
one-way ANOVA test was used for statistical analy-
sis of the results between several groups with normal 
distribution.

Results
The demographic characteristics of participants
The demographic characteristics of all participants in the 
study are summarized in Table 1.

It should be noted that none of the participants in the 
study exceeded the occupational dose limit of 20  mSv 
/ year. There was no statistically significant difference 
between the ages of groups. Also, due to hormonal 
changes in women and the possibility of gender affecting 
the MN frequency, only male participants were selected. 
Since many substances in cigarette smoke are genotoxic, 
and therefore, cytogenetic damage seems to be a suit-
able biomarker to determine the effect of smoking [28]. A 
smaller number of smoking participants were recruited. 
These differences were not statistically significant 
between groups. And because many studies, a significant 
relationship between MN frequency and increasing age 
has been reported [29]. Therefore, the volunteers selected 
that there is no statistically significant difference between 
their average age in all groups.

Oxidative stress
To evaluate the possibility of increasing antioxidant 
capacity in radiation workers,the levels of antioxidants 
(is summarized in Table  2) among the participants 
were compared between the two groups of exposed 
and controls (Fig.  2). The P-value obtained from sta-
tistical analysis using the ANOVA test showed more 
than 0.05 in the comparison of groups. So there is no 

significant difference between any of the groups at the 
level of SOD (Fig. 2A), CAT (Fig. 2B), and TAC (Fig. 2C) 
(p-value > 0.05).

Cytogenetic analysis in exposed and control groups
The MN frequency (mean ± SD) for all groups is sum-
marized in Table  3. The MN frequency in the expo-
sure group was significantly higher than in the control 
group (p-value < 0.0001) (Fig.  3). Also, there was a sig-
nificant correlation between MN and years of employ-
ment among radiation workers (r = 0.5026, P = 0.0239) 
(Fig.  4A). However, there was no significant correlation 
between MN and age in any of the groups within this age 
range (r = 0.257, P = 0.169) (Fig.  4B). There was no sta-
tistically significant difference either in MN frequency 
between smokers and non-smokers in both groups 
(p-value = 0.479). The MN frequency evaluation did 
not confirm the occurrence of the adaptive-response in 
chronically exposed group (Fig. 5A). On the other hand, 
incidence of adaptive-response has been obvious in acute 
LD group (Fig.  5B). In this comparison, it was assumed 
that radiation workers received chronically LD during 
their years of employment.

Discussion
In this study, two assays (biochemical to evaluate oxida-
tive stress and micronucleus to assess background dam-
age and adaptive-response) were used to evaluate the 
effects of exposure to LDIR on radiation workers. In the 
present study, the antioxidant levels of SOD, CAT, and 
TAC were measured in medical radiation workers and 
compared with the control group. SODs are part of the 
enzyme’s defense system against oxidative stress by con-
verting the superoxide radical anion to H2O2  [30]. Our 
results revealed that the level of antioxidant SOD in radi-
ation workers was not significantly different compared 
to the control group (Fig. 2A). Kumar et al. reported that 
the level of SOD in exposures was significantly lower 
than in the control group [31], and paradoxically some 
researchers even found a significant increase in SOD lev-
els in radiation workers [32, 33]. CAT is an antioxidant 
enzyme that converts H2O2 to water. This enzyme is 
expressed in most cells, organs, tissues, and of course, at 
high concentrations in the liver and red blood cells [34]. 
In this study, the level of this enzyme in blood serum 

Table 2  The levels of antioxidants (mean ± SD) for all groups

Control CT Angiography Exp(CT + Angio)

SOD 110.4 ± 5.043 118.1 ± 8.814 115.5 ± 5.565 116.8 ± 7.299

CAT​ 5.2130 ± 1.339 5.0795 ± 1.026 4.669 ± 1.112 4.874 ± 1.062

TAC​ 0.7357 ± 0.078 0.7087 ± 0.067 0.7553 ± 0.095 0.7320 ± 0.084
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was measured, and no statistically significant difference 
was observed between the two groups of exposures and 
control (Fig.  2B). This result is in agreement with some 
previous studies [10, 32]. However, there are some 

contradictory results [35–38]. Finally, TAC was measured 
to calculate all antioxidants present in the biological sam-
ple [39]. In the present study, there was no statistically 
significant difference in the level of TAC between the 
radiation workers and control groups (Fig. 2C). This con-
tradicts the report of Kumar et al., who reported that the 
TAC in radiation workers was significantly higher than in 
the control group [31].

It was previously reported that LDIR exposure can 
accelerate cellular aging by increasing ROS activity [40]. 
Evidence for ROS involvement in mechanisms is mainly 
associated with an external physical or chemical distur-
bance, of which radiation may be a major factor [38]. 
Meanwhile, strong antioxidant enzymes play a vital role 
in oxidative stress responses [41]. This is because there 
is a probability of a slight increase in oxidative stress 
in response to chronic occupational exposure to LDIR 
[42]. However, in this study it was observed that there 
was no significant difference in the levels of SOD, CAT, 
and TAC antioxidants between radiation workers and 
control group. Thus, these results do not support the 
theory of Hormesis.

Cytokinesis- block micronucleus assay has been used 
as a quantitative indicator of chromosomal damage both 
in-vitro and in-vivo in many studies [43, 44]. The results 
of this study indicated that the average frequency of MN 
in medical exposures was significantly higher than in 
the control group which is consistent with the results of 
other studies [31, 35, 37, 45–54]. However, some studies 
have not reported an increase in the frequency of MN 
[55–57]. This may be due to confounding factors such 
as gender or the dose received by the radiation. Interest-
ingly, there was a significant relationship between the 
MN frequency and years of employment (exposure to 
IR), which was positive (r = 0.5026, P = 0.0239) (Fig. 4A). 
As the years of working with IR increased, so did the fre-
quency of MN, with this result concurring with many 

Fig. 2  A Mean SOD activity obtained in exposed group (EXP = angiography + CT), CT, angiography and control, (B) Mean CAT activity obtained in 
exposed group (EXP = angiography + CT), CT, angiography and control, (C) Mean TAC. Error bars show standard deviation

Table 3  The MN frequency (mean ± SD) for all groups

Control CT Angiography Exp(CT + Angio)

Back-
ground

7.8 ± 2.3 20.7 ± 5.03 26.20 ± 4.8 23.45 ± 5.5

LD + HD 289.4 ± 55.8 - - -

HD 367.1 ± 39.8 347.2 ± 55.9 368.2 ± 70.3 357.7 ± 62.7

Fig. 3  Mean MN obtained in the exposed group 
(EXP = angiography + CT), CT, angiography, and control. Error bars 
show standard deviation
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studies [36, 37, 47–49, 51, 52, 54–57]. Some studies 
have reported an increase in the frequency of MN as a 
function of age in medical exposure [37, 51]. However, 
in this study, no relationship was observed between age 
and MN frequency, which is consistent with the reports 
of some studies [45, 52]. Naturally, increasing the years 
of employment is accompanied by increasing age, and 
separating the effect of these two factors requires more 
research.

The results of studies examining the relationship between 
smoking habits and MN frequency are highly controver-
sial. Several studies have reported a significant association 
between smoking and increased MN frequency in hospital 
workers and control radiologists [54, 56]. In others, no sig-
nificant relationship was found in either hospital workers 

or control radiographs, which is similar to the results of the 
present study [31, 36, 52].

Adaptive-response is a term used to describe an 
organism’s reaction to IR exposure or chemicals to 
minimize subsequent damages by activating various 
mechanisms such as gene expression or the synthesis of 
specific proteins [58–60]. To date, various studies have 
been performed on cells, plants, animals, and humans 
using different methods to examine the adaptive-response 
[61, 62]. However, studies on human blood lympho-
cytes have shown that this protective phenomenon does 
not occur equally in all individuals [63]. In other words, 
it does not occur as a general principle for all organisms 
and under different conditions. The genetic status of indi-
viduals in response to this phenomenon is important. 

Fig. 4  A The mean frequencies of micronuclei in medical radiation workers based on working duration, (B) The mean frequencies of micronuclei in 
medical radiation workers based on age

Fig. 5  A Mean MN obtained exposed group (EXP = angiography + CT), CT, angiography and control after 4 Gy (HD) irradiation. B Mean MN was 
obtained in two groups of LD + HD (first 50 mGy irradiation, 4 h elapsed and 4 Gy irradiation) and HD (4 Gy irradiation only) of the control group 
and exposed group (EXP = angiography + CT) after 4 Gy (HD) irradiation to evaluate the adaptive-response due to acute low dose. Error bars show 
standard deviation
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Thus, it seems that the adaptive-response cannot be con-
sidered valid in the practical application according to the 
general regulations of radiation protection [64]. So far, 
dose–response curves have been plotted using differ-
ent methods. These curves have shown that due to dose 
elevation, the frequency of cytogenetic damage will also 
increase [65].

However, some studies also emphasize that in some 
cases, by activating different signaling pathways at dif-
ferent doses, less damage may occur in high doses [66]. 
In this study, the damage after application of 4  Gy was 
examined using CBMN assay in two groups of medical 
radiation workers and control. Our results revealed that 
there was no statistically significant difference between 
the two groups after the application of the 4  Gy dose 
(Fig. 5A). This result was in agreement with the report of 
Jasik et al. [67]; They reported lack of adaptive-response 
by examining the level of chromosomal abnormalities, 
apoptosis, and MN between the two groups of radiation 
workers and control. In contrast, Barkinero et  al. [68] 
examined chromosomal abnormalities in 12 radiolo-
gists and compared the results with eight subjects as a 
control group. They reported that after 2 Gy irradiation, 
the frequency of chromosomal abnormalities in radiolo-
gists was significantly lower than in the control group. 
Also, Gorabi et  al., who used the micronucleus test in 
their study, reported that the frequency of MN during 
irradiation of 1 Gy and 2 Gy was significantly lower than 
in the control group [69]. In 2011, Rasso et al. reported 
a statistically significant difference between caspase-3 
activity after 2 Gy between 10 cardiovascular staff and 10 
control groups [10]. In another study that was conducted 
to investigate the adaptive response in people who are at 
a background radiation level higher than normal, they 
reported that the mean frequency of MN was signifi-
cantly lower in elder (> 40 years) individuals from high-
level natural radiation areas as compared to the young 
(≤ 40 years) individuals after 1 Gy and 2 Gy of challenging 
doses [70]. In the similar study, with proteomic approach 
was employed to study the response of human periph-
eral blood mononuclear cells. A total of 15 proteins were 
found to be statistically altered in individuals from high-
level natural background radiation areas when compared 
to individuals from normal-level natural radiation areas. 
More importantly, when challenged with an invitro dose 
of 2 Gy, added to a sample with a high dose background, 
responded with an up-regulation of many protective pro-
survival proteins such as protein disulfide- isomerase A1 
(PDIA1), peroxiredoxin 6 (PRDX6) and glucose-regu-
lated protein 78 kDa (GRP78). This indicates that human 
cells respond to LDIR through changes in the proteome 
to maintain adaptive homeostasis [71].

In this study, a comparison was made between two 
groups of controls, namely LD + HD (first 50  mGy irra-
diation, 4 h elapsed, and then 4 Gy irradiation) and HD 
(only a 4 Gy dose). Our results showed that the frequency 
of MN in the LD + HD group was significantly lower than 
in HD exposed to control group and radiation workers 
(Fig. 5B), It can suggest the adaptive-response induced by 
acute LD and not caused by chronic radiation. However, 
further studies are needed to confirm these results.

Studies examining the adaptive-response on human 
lymphocytes by applying HD following a LD in various 
ways have reported that damage could be mitigated by 
this protocol. Shelke et  al. observed the occurrence of 
adaptive-response after a 2  Gy of gamma radiation, 4  h 
after receiving 0.1  Gy, by examining NHEJ repair path-
way genes on peripheral blood samples from 20 healthy 
individuals [60]. In another study by Toprani et al., a sig-
nificant reduction in DNA damage to the blood 5cells 
in 12 of the 20 samples was observed after 2 Gy gamma 
irradiation following a 0.1  Gy dose [72]. Since the dose 
rate is likely to be an important factor in creating the IR 
effects [73], accordingly, the occurrence of IR effects in 
low dose-rate (chronic radiation over the years) and high 
dose-rate (acute radiation) may be different. In this study, 
this issue was investigated by comparison in two groups. 
The results indicated that there was no significant differ-
ence between any of the HD groups of radiation workers 
and control (Fig. 5A). These results strongly rule out the 
adaptive-response induced by chronic low doses. Note 
that no study has investigated such an issue so far.

Undoubtedly, our research also has limitations and 
weaknesses. The biological response to DNA dam-
age involves activating DNA repair and cell signaling 
pathways, which can ultimately affect cell cycle check-
point arrest and/or apoptosis [74]. Of course, the way 
of response during long-term exposure to LDIR has not 
been clearly defined. Therefore, it seems that conducting 
studies on a wide range of radiation workers and exam-
ining different pathways of cell signaling and biomarkers 
involved in it will help greatly. In addition, follow-ups of 
radiation workers during their years of employment in 
response to the effects of factors such as age, sex, smok-
ing, and even years of radiation exposure gave more 
definitive opinions. Thus, it seems interwoven processes 
occur at  low dose and low dose rate of IR and further 
studies are required to clarify all aspects of the issues of 
hormesis and adaptive-response hypothesis.

Conclusion
In this study, oxidative stress analysis was performed 
through measuring three levels of antioxidants includ-
ing SOD, CAT, and TAC. Simultaneously, micronucleus 
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frequencies were used to evaluate chronic exposure to 
LDIR on the health of radiation-workers.

We also discussed the occurrence of adaptive-response 
as one of the effects in the LDIR and investigated the 
occurrence of adaptive-response with an acute low dose 
and chronic low dose. Overall, our observations showed 
that chronic exposure to LDIR increases cytogenetic 
damage. In addition, it reduced neither the cytogenetic 
effects of subsequent high doses nor altered the antioxi-
dant levels.

Therefore, to evaluate the genotoxic effects of chronic 
exposure to ionizing radiation in radiation workers and 
the more secure use of IR in medicine, in addition to the 
continuous monitoring of medical radiation workers by 
using personal dosimeters and periodic health examina-
tions, biological markers are to be likewise, more com-
prehensive studies should be done.
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