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Abstract 

Background During the early stages of the COVID-19 pandemic, there was considerable uncertainty surrounding 
epidemiological and clinical aspects of SARS-CoV-2. Governments around the world, starting from varying levels of 
pandemic preparedness, needed to make decisions about how to respond to SARS-CoV-2 with only limited informa-
tion about transmission rates, disease severity and the likely effectiveness of public health interventions. In the face of 
such uncertainties, formal approaches to quantifying the value of information can help decision makers to prioritise 
research efforts.

Methods In this study we use Value of Information (VoI) analysis to quantify the likely benefit associated with reduc-
ing three key uncertainties present in the early stages of the COVID-19 pandemic: the basic reproduction number ( R0 ), 
case severity (CS), and the relative infectiousness of children compared to adults (CI). The specific decision problem we 
consider is the optimal level of investment in intensive care unit (ICU) beds. Our analysis incorporates mathematical 
models of disease transmission and clinical pathways in order to estimate ICU demand and disease outcomes across a 
range of scenarios.

Results We found that VoI analysis enabled us to estimate the relative benefit of resolving different uncertainties 
about epidemiological and clinical aspects of SARS-CoV-2. Given the initial beliefs of an expert, obtaining more 
information about case severity had the highest parameter value of information, followed by the basic reproduction 
number R0 . Resolving uncertainty about the relative infectiousness of children did not affect the decision about the 
number of ICU beds to be purchased for any COVID-19 outbreak scenarios defined by these three parameters.

Conclusion For the scenarios where the value of information was high enough to justify monitoring, if CS and R0 are 
known, management actions will not change when we learn about child infectiousness. VoI is an important tool for 
understanding the importance of each disease factor during outbreak preparedness and can help to prioritise the 
allocation of resources for relevant information.

Keywords Outbreak preparedness, Value of information, Mathematical modelling, COVID-19

*Correspondence:
Peter U. Eze
peter.eze@unimelb.edu.au
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12913-023-09479-4&domain=pdf


Page 2 of 13Eze et al. BMC Health Services Research          (2023) 23:485 

Background
When confronted with an emerging infectious disease, 
public health managers face the challenge of allocating 
finite health resources to maximise outbreak prepared-
ness [1, 2]. However, many important characteristics of 
emerging infectious diseases are unknown in the early 
stages of an outbreak, which complicates the allocation 
of funds when it is most urgently needed. Faced with 
this challenge, public health managers can decide to 
allocate available resources under uncertainty to man-
age an outbreak, or invest some of these resources to 
reduce uncertainty by collecting additional information 
about the disease outbreak. Under time and resource 
constraints, strategically collecting the most valuable 
information is even more critical [3] as obtaining new 
information can be time consuming and come with 
both direct and opportunity costs [4, 5]. In the case 
of an emerging infectious disease, time and resources 
invested in collecting information could instead be 
invested directly into outbreak preparedness or inter-
ventions. An example of such a decision, relevant in 
the early stages of the COVID-19 pandemic, was the 
acquisition of Intensive Care Unit (ICU) beds. While it 
was clear that increased capacity of health care systems 
would be needed, yet determining the optimal level of 
investment was not straightforward. Value of Informa-
tion (VoI) analysis is a decision tool that helps manag-
ers make transparent and accountable decisions when 
faced with this dilemma of either acting under uncer-
tainty or gathering more information about a given sit-
uation before acting [6].

VoI analysis was first developed by Raiffa & Schlaifer 
[6] in 1961 for application in investment risk analysis. VoI 
has been applied to ecological and environmental con-
servation problem-solving and analysis [3, 4, 7–10]. In 
the field of epidemiology and public health economics, 
VoI has been applied for the prioritization of information 
gathering during vaccination and other non-pharmaceu-
tical interventions, and for the assessment of health tech-
nology adoption [11–13]. Bradbury et  al [12] provides 
a compelling example of how VoI analysis can inform 
decision making. In that study, VoI was applied to the 
analysis of an emergency vaccination campaign for Foot-
and-Mouth Disease (FMD) in livestock. There was sub-
stantial uncertainty around vaccine efficacy, the time lag 
between vaccination and conferral of immunity on the 
animals against the virus, and the daily capacity to deliver 
vaccines. With some defined uncertainties (expanded 
into 27 scenarios), management actions and objectives, 
Bradbury et  al [12] found that resolving these uncer-
tainties would lead to an average savings of 55 million 
pounds among other benefits in reducing the number of 
infected animals as well as the duration of the epidemic. 

The implication of this finding is that they could identify 
the most valuable uncertainty to resolve.

Faced with the COVID-19 pandemic, many questions 
were raised about the capacity of healthcare systems 
around the world to cope with emerging disease out-
breaks [14, 15]. During the early outbreak of COVID-19 
in Wuhan, 75% of deaths resulted from lack of access to 
mechanical ventilation [16]. Similar experiences in Italy 
and Singapore showed the importance of ICU prepared-
ness for respiratory disease outbreaks [17, 18]. Increasing 
the number of ICU beds and other critical care prepa-
rations will increase the survival rate of severe COVID-
19 cases. Noting that acquiring more ICU beds alone is 
not sufficient and appropriate management practices are 
essential to optimum utilisation of hospital resources [17, 
19, 20].

Here, we explore how managers can use VoI to decide 
whether to invest in gathering further information about 
COVID-19 disease dynamics before purchasing ICU 
beds or to purchase ICU beds directly without collect-
ing further information. We study how three uncertain 
parameters relate to ICU demand: the basic reproduc-
tion number ( R0 ), case severity (CS) and the relative 
infectiousness of children compared to adults (CI). We 
aim to discover which parameter is the most valuable to 
enable good decisions around ICU preparedness. We use 
a dynamic transmission model and a clinical pathways 
model [21] to quantify potential ICU demand, and then 
apply the VoI analysis.

Method
VoI analysis estimates the value to be gained from resolv-
ing uncertainty [3, 6]. In this section, we present an appli-
cation of VoI to the problem of deciding the appropriate 
level of investment in ICU bed capacity prior to a novel 
infectious disease outbreak, given uncertainty about local 
transmission and severity characteristics of the disease. 
We first define the problem context used as our case 
study. We present the management objectives in terms of 
preparing for a COVID-19 outbreak in a resource-con-
strained setting. We define the management actions that 
can be chosen to meet the objective(s). We then intro-
duce two VoI methods that assess how resolving trans-
mission and severity uncertainties affects the choice of 
management actions. We also describe the models used 
to generate the input data for our analysis.

Problem context and case study
The World Health Organization Regional Office for the 
West Pacific (WPRO) monitors the public health per-
formance of about 1.9 billion people across 37 coun-
tries in the West Pacific region. Across the WPRO 
countries, the healthcare system is generally under 
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stress and requires strengthening especially for novel 
outbreaks [22]. ICU capacity varies significantly across 
countries in the WPRO region, with a capacity range in 
some as low as just a few (if any) beds to enable care 
of severe cases of COVID-19 [14]. Others do have ICU 
beds but their numbers may be insufficient during a 
large outbreak. Information such as the characteristics 
of the population and nature of the outbreak are impor-
tant features that influence the required number of ICU 
beds in these countries. Unfortunately, this information 
is often missing. Here, we use VoI to provide insight 
into which information is most valuable to prepare for 
a COVID-19 outbreak in the WPRO region. We con-
sidered a typical urban settlement in the Asia-Pacific 
Islands with an approximate population of 450,000 with 
9 ICU beds for COVID-19 (Table 1). This choice corre-
sponds to a relatively high populated settlement within 
the Asia-Pacific islands. The model inputs for this pop-
ulation are presented in the accompanying Supplemen-
tary information (Section 1, Table S1).

Objective and actions
The first step in formulating VoI analysis is defining the 
management objective and the actions that will lead to 
achieving these objectives. This approach is necessary 
because a piece of new information is only valuable if it 
will lead to a change in outcomes.

The broad objective is to minimise the health impact 
of COVID-19 through the optimal provisioning of ICU 
beds for both COVID-19 and other existing diseases 
within a population. We translate this broad objective 
into: minimising the deficit or excesses in newly acquired 
ICU beds for COVID-19 outbreak preparation. The out-
come measure is the sum of ICU bed shortfall over the 
duration of the outbreak. Because increasing the num-
ber of ICU beds for COVID-19 also comes at a real cost 
and an opportunity cost, our objective includes mini-
mising surplus allocation of ICU beds to COVID-19 
that could result in an adverse effect on other existing 
diseases in the given population. Hence, we intend to 
minimise the absolute difference between any newly 

acquired ICU beds before an outbreak plus existing 
ICU beds, and the actual number of ICU beds utilised 
to contain an outbreak.

We define the actions available to a health manager 
as various increase options in ICU beds capacity from 
0 to 200. We consider only the first five discrete actions 
available to a decision-maker (using increments of 50 
beds):

• a0 : Do nothing.
• a1 : Increase capacity by 50 ICU beds.
• a2 : Increase capacity by 100 ICU beds
• a3 : Increase capacity by 150 ICU beds
• a4 : Increase capacity by 200 ICU beds

The choice of maximum expansion of up to 200 ICU 
beds is a reflection of the plausible range for a Low-
and-medium Income Country (LMIC), based on dis-
cussion with health system researchers within the 
region under study. Further, the idea of ICU bed is not 
limited to the equipment itself but the personnel and 
logistics required to operate the ICU beds. Therefore, 
we limit the actions to the maximum plausible irre-
spective of actual demand.

There are a range of methods that assist in VoI 
analysis [3, 6]. The expected value of perfect informa-
tion (EVPI) quantifies how beneficial it is to resolve all 
uncertainty before making a decision. The expected 
value of partial information (EVPXI) estimates the 
improvement in decision outcomes if information 
is resolved about one (or more) parameter. Both 
approaches calculate expected values and therefore 
assume a risk neutral situation [23].

Expected value of perfect information
We define a COVID-19 outbreak scenario, s, as a com-
bination of values of three epidemiological parameters: 
case severity CS, basic reproduction number R0 , and 
child infectiousness CI. These parameters are uncertain 
and correlate with early factors used in determining the 
number of patients that may need access to the ICU of 
a hospital during a COVID-19 outbreak [24].

Given an uncertain scenario s ∈ S , and a set of alter-
native actions a ∈ A , the EVPI is the difference between 
the expected outcomes under certainty ( EVcertainty ) and 
uncertainty ( EVuncertainty ) [3, 6].

Because our outcomes are measured as a shortfall 
(which is a form of health cost instead of health ben-
efit), we use absolute values for the calculation of EVPI 

(1)EVPI = |EVcertainty − EVuncertainty|

Table 1 Population-level parameters: A critical care hospital with 
18 ICU beds, of which half are assumed to be reserved for COVID-
19 patients

S/N Parameter Value

1. Population 450,000

2. Total ICU Bed 18

3. ICU Bed for COVID-19 9
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to avoid negative values during computation. Under 
uncertainty, it is assumed that decision-makers will 
implement the action that minimises the expected cost 
outcomes under all possible scenarios. Given a number 
of scenarios, N, in a set, S: 

 with V(a,  s) the cost function that represents the out-
come of implementing action a in scenario s, and ps is the 
probability of scenario s occurring.

Under certainty, it is assumed that decision-makers 
will first invest in resolving uncertainty prior to mak-
ing a decision a that minimises the cost of an outbreak 
scenario.

We define our cost function V(a, s) such that it incor-
porates the effect of other diseases requiring ICU beds. 
For each scenario s, and corresponding action a, the cost 
function V(a, s) measures the level of shortfall or excess 
in ICU beds in preparedness for a COVID-19 outbreak:

Where U(a, s) is the utility of an action a in scenario s, 
and γ is a discount factor that takes value between 0 and 
1 to represent the impact on other diseases when newly-
acquired ICU beds (B(a)) are allocated to COVID-19 to 
the detriment of other non-COVID severe illnesses. In 
countries where bed allocation to COVID-19 does not 
cause problems for other existing conditions in the soci-
ety γ should be set to 0. Countries that cannot afford to 
have any extra allocation to COVID-19 would assign 
γ = 1.

We define the utility of an action a, in a given sce-
nario s, as

Where X(s) is the shortfall in ICU beds required to 
address an outbreak under scenario s and B(a) is the 
number of ICU beds acquired while implementing 
an action, a. The utility U(a,  s) is optimised when the 

(2a)EVuncertainty = min
a

N

s=1

V (a, s).ps

(2b)EVcertainty =

N
∑

s=1

ps.min
a

V (a, s)

(3)

V (a, s) =

{

γ |U(a, s)|, if U(a, s) < 0 ; 0 ≤ γ ≤ 1

U(a, s), otherwise

(4)U(a, s) = X(s)− B(a)

acquired ICU beds B(a) exactly matches a possible short-
fall in ICU beds X(s) during an outbreak scenario s.

In accordance with our objective, our cost function 
V(a,  s) penalises a shortage of ICU beds for COVID-19 
(U(a, s)) but also recognises that excess allocation of ICU 
beds to COVID-19 to the detriment of other diseases 
that also require ICU beds ( γ |U(a, s)| ) is not an optimal 
decision.

Expected Value of Partial Perfect Information (EVPXI)
EVPI determines the value of resolving all uncertainty in 
a decision process. However, EVPI does not recommend 
which uncertain scenario to resolve first [3]. This can 
be useful in cases where EVPI is high enough and health 
managers need to determine which of the uncertain sce-
narios is most important to resolve. The calculation of 
EVPXI helps guide such a decision. EVPXI calculates 
the improvement in expected outcomes when resolving 
uncertainty about a scenario and is expressed as:

Where EVcertainty(y) corresponds to the expected value 
when uncertainty about scenario y being true or false 
is resolved. Because we are using a cost function rather 
than a payoff, we use an absolute value to ensure that a 
positive value is returned as EVPXI. When computing 
the expected value of the hypothesis y, we have one of 
two outcomes: either y is true (with probability py=true ) 
or it is not (with probability py=false ). Formally:

 where the first term calculates the expected value in the 
case where scenario y is true with probability py=true , 
and the second term calculates the expected values in 
the case where y is false [3]. If y is false, then calculating 
the expected outcomes requires determining ps|y = false , 
i.e. the re-normalised probability distribution computed 
for the remaining uncertain scenarios. For example, let 
ps = {0.2, 0.5, 0.3} be our probabilities in three scenarios: 
s1 , s2 and s3 . When we resolve s1 to be false, then our prob-
abilities in s2 or s3 change to ps|y=false = {0.625, 0.375}.

The value of resolving individual parameters
The scenario modelling is useful to estimate the expected 
outcomes of a management decision. However, from a 
research perspective, it might be easier to quantify the 
effect of resolving uncertainty about only one parameter 
at a time, instead of combined values represented by a 
scenario. For example, health managers could study only 

(5)EVPXI = |EVcertainty(y) − EVuncertainty|

(6)EVcertainty(y) = py=true min
a

V (a, y)+ (1− py=true)

N
∑

s=1|s �=y

min
a

V (a, s).ps|y=false
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how case severity CS being Low, Medium or High affects 
ICU requirements. To find out which parameter uncer-
tainty is worth reducing, we can reapply the EVPI Eq. (1) 
. However, we first need to redefine X(s) in the case where 
s is now explicitly differentiating the contribution of each 
parameter, i.e. s = {sR0 , sCS , sCI } . The value of resolving 
an individual parameter becomes the marginal expected 
outcomes over the set of unknown parameters and can 
be expressed as:

For example, if we are only interested in studying 
sub-scenarios in which sCS ∈ {Low,Medium,High} , 
we can compute the expected outcomes for XCS=Low , 
XCS=Medium and XCS=High assuming a uniform distribu-
tion over the values of the parameters R0 and CI. Specifi-
cally, to compute the cost for the sub-scenario where CS 
is High, we take an average of the model outputs of nine 
scenarios where XCS = High:

In other words, the term X(s) in Eq. (4) is replaced with 
the average value X(SCS = High) . Repeat the calcula-
tions for X(SCS = Medium) and X(SCS = Low) . Hence, 
for resolving the case severity parameter uncertainty, 
we are concerned with only three broad scenarios where 
CS = (Low|Medium|High) . With these scenarios, we 
compute an EVPI for CS. We then repeat this process for 
R0 and CI. The parameter with highest EVPI will need to 
be resolved first.

Infectious disease modelling and simulation
We briefly describe the model employed to compute the 
shortfall of ICU beds X(s) for each of the 27 outbreak 
scenarios defined by three parameters, each stratified 
into three value space. We use a combined transmission 
model (TM) and clinical pathway model (CPM) to esti-
mate the cost of a COVID-19 outbreak in terms of the 
shortfall in ICU beds and explored how this cost changes 
for different combinations of disease parameters R0 , 
CS, and CI. We build on previously published Suscepti-
ble-Exposed-Infectious-Recovered (SEIR) and clinical 
pathway models [21] developed to inform intervention 
decisions for both Influenza and COVID-19 outbreaks 
[25] to compute X(s) (Fig. 1).

The SEIR model compartmentalises a population into 
susceptible, exposed, infected or recovered segments. 

X(sR0
= x) = Ey∼sCS ,z∼sCI

[X(x, y, z)],with x ∈ {Low,Medium,High}

X(sCS = y) = Ex∼sR0
,z∼sCI

[X(x, y, z)],with y ∈ {Low,Medium,High}

X(sCI = z) = Ex∼sR0
,y∼sCS

[X(x, y, z)],with z ∈ {Low,Medium,High}

X(sCS = High) =

∑

x∈sR0,z∈sCI
X(x, sCS = High, z)

9

It uses differential equations to represent how the num-
ber of people in each compartment changes over time 
based on some model parameters including R0 [26] 
and relative infectiousness of children (CI). The clinical 
pathway model, on the other hand, applies to individu-
als who become infected and also present themselves 
for medical attention. Patient presentation at different 
levels of severity is represented by the CS level param-
eter. The model’s population is age-structured such that 
for each scenario, the proportion of individuals in an 
age group with severe infection differs by age group. 
For example, the age ranges 0− 19 in ( CSLow ) will have 
0.062% of its population having a severe infection. The 
proportion for the age range 60 - 69 years for CSLow is 
15.4% but for CSMedium , the proportion increases to 
66% for this age range 60-69 years. Details of these pro-
portions are provided in Section  1 of the Supplemen-
tary information.

We selected parameter combinations as follows. We 
first stratified each parameter range into three categories: 
Low, Medium or High (Table  2) based on observations 
made during the early stages of the COVID-19 pan-
demic (see Section 1 in Supplementary information). To 
ensure efficient coverage of parameter space, we selected 
specific parameter values from each of the nine possible 
combinations of these categories using Latin Hypercube 
Sampling (LHS)[27]. Hence, when simulating a parame-
ter value from the Low, Medium or High category, we first 
divided the category into 200 subintervals of equal prob-
ability and then selected a value uniformly at random 
from each of those subintervals, yielding 200 parameter 
values within a category. This approach helped us to inte-
grate uncertainty within the decision process.

In Table 2, the value of CS determines the proportion 
of cases that become severe within the population. Only 
severe cases get hospitalized and only a fraction of the 
hospitalized cases end up in the ICU unit. Hence, the 
higher the value of CS, the higher the proportion of peo-
ple that are likely to require an ICU bed.

A summary of the models applied to this study is 
shown in Fig. 1.

We define R0 as:

Table 2 Qualitative and Quantitative Stratification of Input 
Parameters studied. The LHS Monte-Carlo sampling framework 
was used for sampling in each interval

Parameter Low value Medium value High value

Basic Reproduction Number 
( R0)

1− < 1.5 1.5− < 2.5 2.5 - 3.0

Case Severity (CS) 1 2 3

Child infectiousness (CI) 0− < 40% 40− < 70% 70 - 100%
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where � is the probability of getting infected per contact 
between an infectious and a susceptible individual, κ is 
the contact rate between infectious and susceptible indi-
viduals, and d is the duration of infectiousness of infected 
individuals before recovery or death.

The shortfall in ICU beds (after the available ICU beds 
are exhausted) required per outbreak scenario, X(s), was 
estimated through simulations. During the TM and CPM 
simulations, the values of R0 , CS and CI were sampled 
1000 times within their uniform range of values. How-
ever, during the VoI simulations, the expert beliefs in 
Table 3 were used to scale the output of the models (X(s)) 
for each of the 27 scenarios presented in Table 4.

Sensitivity analysis on prior information
In the previous sections, we have assumed that each sce-
nario was assigned a prior probability of occurrence ps . 
This prior information influences the result of value of 
information analysis. In the absence of prior knowledge, 
we assumed equal chance over the values of the unknown 
parameters ( R0,CS,CI ) being Low, Medium or High.

(7)R0 = � ∗ κ ∗ d To study the influence of these probabilities ps on 
the value of information, we also defined unequal 
chances over the parameter categories. We consid-
ered priors where we had a “Strong belief ” that all 
the parameters are either Low, Medium or High. 
Table  3 provides the probability distribution over 
each of the parameter categories for these three pri-
ors. For example, for the “belief in low outbreak”, 
we will assume that the scenario corresponding to 
sR0 = sCS = sCI = Low will have the highest probability 
p(sR0 = Low) = p(sCS = Low) = p(sCI = Low) = 0.5.

Assuming independence, the joint probability, 
p(R0,CS,CI) that an epidemic belongs to one of the 
27 outbreak scenarios is the combinations of Low, 
Medium and High parameter values:

As an example, a belief that a future outbreak will 
have Low R0 , High Severity and Low Child Infectious-
ness has the probability:

(8)p(sR0 ,CS,CI) = p(sR0)× p(sCS)× p(sCI )

p(sR0
= Low, sCS = High, sCI = Low) = 0.5 × 0.2 × 0.3 = 0.03

Fig. 1 The transmission model and the clinical pathways model: Only infected and managed individuals who do not recover without treatment 
and who present at the hospital (M) can require an ICU bed. In this study, we consider these managed cases that are likely to require an ICU bed but 
may not access it. Parameter details are provided in theSupplementary information

Table 3 Beliefs in the nature of Outbreaks: The prior beliefs of 0.5 for all p(sR0 ) , p(sCS ) and p(sCI) in each category (Low, Medium or High) 
defines a strong belief that an outbreak will be low, mild or severe. The baseline belief (not shown in this table) is No prior knowledge 
where an expert has no prior knowledge about the possible value range for R0 , CS and CI. In the baseline belief, the probability that the 
parameters assume Low, Medium or High value ranges are all equal: p(sR0 ) = p(sCS) = p(sCI) = 0.33

+

Belief in low outbreak Belief in medium outbreak Belief in severe outbreak

category p(sR0 ) p(sCS) p(sCI) p(sR0 ) p(sCS) p(sCI) p(sR0 ) p(sCS) p(sCI)

Low 0.5 0.5 0.5 0.3 0.3 0.3 0.2 0.2 0.2

Medium 0.2 0.2 0.2 0.5 0.5 0.5 0.3 0.3 0.3

High 0.3 0.3 0.3 0.2 0.2 0.2 0.5 0.5 0.5

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Hence, our sensitivity analysis represents the 27 
hypothetical scenarios of a novel disease outbreak 
based on all possible combinations of the 3 uncertain 
parameters under consideration, each grouped into 
high, medium or low values.

Results
Cost of an outbreak from simulations
The first result we provide is the shortfall in ICU beds, 
X(s), for each scenario s1 to s27 obtained through simu-
lations of the transmission and clinical pathway models 
(Table  4). The X(s) values reported in this table are the 
95th percentile of the maximum ICU bed shortfall for all 
the simulations per scenario. The choice of 95th percentile 

guarantees that 95% of ICU requirement per outbreak 
scenario is met.

The scenarios where X(s) = 0 imply that existing ICU 
beds are enough to take care of any severe outbreak. It 
could also mean that the outbreak is not severe enough 
to cause critical illness. So, there is no shortfall in ICU 
beds that requires additional purchase or assignment 
to COVID-19. When case severity is Low, X(s) = 0 
irrespective of the value of R0 and child infectiousness. 
X(s) is also zero when case severity is Medium but R0 is 
Low; child infectiousness will not matter. In the other 
extreme, when case severity is High and R0 is also High, 
X > 1000 ICU beds irrespective of the value of child 
infectiousness. A decision tree is provided in Fig. S3 of 
supplementary information to show the combinations 
of parameters and how large the X(s) can be in terms of 
excess ICU bed demand.

Expected value of perfect information
The expected value of perfect information (EVPI) 
depends on the prior information on the most likely sce-
nario (beliefs) and the impact of other diseases (denoted 
by γ ). Given that γ will be country-dependent, we vary 
the value of γ to interpret our results.

Under No prior knowledge (Fig.  2 - blue curves), EVPI 
varied from 0 to 65 ICU beds depending on how we 
accounted for the impact of other disease ( γ = 0 to γ = 1).

Recall that γ is a discount factor that represents the 
impact on other diseases when newly-acquired ICU beds 
(B(a)) are allocated to COVID-19 to the detriment of 
other non-COVID severe illnesses

When γ = 0 and EVPI equals zero or is very small, it 
means that there is no need to gather more information 
before acting. When γ = 0.8 , there is a significant conse-
quence of acting without collecting further information. 
In such case, if the cost of collecting further information 
before acting is less than the financial or health cost of 
65 ICU beds, the management should invest in resolving 
the parameter ( R0 , CS and CI) uncertainties before decid-
ing which action (number of ICU beds to purchase for 
COVID-19) to take.

For a given prior belief in either low, medium, or severe 
outbreak (Fig. 2), the EVPI varies for a fixed γ . At γ = 0.8 , 
belief in severe outbreak has the highest EVPI. This means 
that there is more value in collecting further information 
about other severe non-COVID disease before determining 
the number of ICU beds to acquire for COVID-19. Informa-
tion gathering is less important, if there is a belief in medium 
outbreak and even less important when there is a belief in 
low outbreak. However, the EVPI of 33 ICU beds for belief in 
low outbreak is substantial and thus further information to 
resolve parameter uncertainties could be sought if the cost 

Table 4 Shortfall in ICU beds, X(s) for each scenario: The shortfall 
in ICU beds is the direct output from the transmission model 
after each of the scenarios is run. Each scenario is a unique 
combination of the outbreak parameters: transmissiblity ( R0 ), case 
severity (CS) and child infectiousness (CI)

Parameter States Shortfall 
in ICU 
bed

Scenario ID R0 Case Severity (CS) ChildInf (CI) X(s)

1 Low Low Low 0

2 Low Low Medium 0

3 Low Low High 0

4 Low Medium Low 0

5 Low Medium Medium 0

6 Low Medium High 0

7 Low High Low 0

8 Low High Medium 0

9 Low High High 345

10 Medium Low Low 0

11 Medium Low Medium 0

12 Medium Low High 0

13 Medium Medium Low 0

14 Medium Medium Medium 29

15 Medium Medium High 74

16 Medium High Low 552

17 Medium High Medium 1075

18 Medium High High 1406

19 High Low Low 0

20 High Low Medium 0

21 High Low High 0

22 High Medium Low 46

23 High Medium Medium 102

24 High Medium High 157

25 High High Low 1389

26 High High Medium 1584

27 High High High 1485
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of such information is lower than the financial or health cost 
of 33 ICU beds. When there is a maximum concern about 
non-COVID severe illness ( γ = 1) , then belief in severe out-
break has the highest EVPI of 91 ICU beds. This means that 
further information will be valuable to confirm this belief 
before choosing the best available management action.

The results show that the value of information 
increases as the excess allocation discounting factor, γ , 
increases until a peak is reached. This trend is consist-
ent across all scenarios. Only belief in severe outbreak 
increases EVPI continuously with γ until γ = 1 . Hence, 
the value of learning about the severity of COVID-19 
is affected by our belief that other diseases will also be 
severe. Conversely, if one believes that excess allocation 
of ICU beds to COVID-19 will increase the severity of 
other pre-existing diseases, then there is greater value in 
learning if COVID-19 will actually be severe in order to 
ensure optimum allocation of ICU beds without excesses.

We note that when γ = 0 , the EVPI = 0 . If the impact 
of other non-COVID conditions do not matter in a coun-
try, the best action is to purchase or allocate the maximum 
available ICU bed to COVID-19. There is no value in seek-
ing further information about the nature of an outbreak.

Expected value of partial information and per parameter 
EVPI
The decision to gather more information depends on 
the value of the EVPI being ‘high enough’. The threshold 

for a high enough EVPI depends on the context and on 
the risk preference of health managers. If the EVPI is 
deemed high, collecting more information is desirable. 
In this case, we may want to determine which param-
eter is most important to collect information about. 
EVPXI per scenario and parameter-level EVPI help us 
to prioritise information collection at the scenario and 
parameter levels.

Figure 2 shows that the prior belief in severe outbreak 
has large EVPI across γ > 0 . We, therefore, use this 
prior of belief in severe outbreak to study which sce-
nario and parameters we should be resolving first when 
there are inadequate resources to resolve all other sce-
narios and parameters uncertainty.

Table  5 presents the EVPXI at γ = 1 and assuming 
belief in severe outbreak. Scenario 17 has the highest 
value of information and therefore should be resolved 
first. It also shows a number of scenarios where EVPXI 
equals zero. These zero-value scenarios belong mostly 
to where the parameters take Low values. That means 
that there is no value in gathering information on these 
scenarios before acting. A second cluster is seen where 
EVPXI are less than 4 ICU beds. We consider these 
scenarios to have low value of information. For these 
two groups of scenarios, management could continue 
without resolving uncertainty for these scenarios. 
However, for the third cluster the EVPXI range from 
5 to 10 ICU beds, it is reasonable to assess that there 

Fig. 2 EVPI varies with discount factor γ and prior belief in the strength of an outbreak. EVPI reaches a peak at γ = 0.8 (yellow dashed line) except 
for the scenarios with belief in severe outbreak. The factor, γ is a region-specific factor that accounts for the impact of COVID-19 on other existing 
diseases in that region
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will be a significant impact of acting without gathering 
further information about the state of the parameters 
that define the scenarios in this cluster. The third clus-
ter contains the scenario where no parameter assumes 
Low value.

Scenario 17 represents the case where R0 , case sever-
ity and child infectiousness are Medium, High and 
Medium, respectively (see Tables 4 and 5). There is high 
value in resolving this scenario first, which means that 
resolving if this scenario is occurring or not would have 
the highest gain in management outcomes in compari-
son with other scenarios. However, due to the depend-
ence in these computation methods, after each high 
value scenario is resolved to be actually true or false, 
the most uncertain scenario could change. We cannot 
determine if scenario 18 (second highest EVPXI) should 
be resolved next until we first resolve scenario 17. The 
EVPXI will need to be re-computed before the next 

scenario with the highest expected value of information 
is determined.

If there are inadequate resources to collect more infor-
mation about all three parameters that constitute each 
scenario, then EVPXI cannot tell us which parameter we 
should focus our research on. To solve this problem, we 
conducted EVPI on separate parameters. Figure 3 shows 
the value of resolving the uncertainty surrounding each 
of the three parameters without having the knowledge of 
the other two parameters.

Figure 3 shows that case severity is the parameter that 
mostly drives the value of information for optimum ICU 
bed acquisition. The excesses and shortages are deter-
mined by the case severity of COVID or non-COVID 
diseases in a country ( γ ). This is explained in Fig. 4 using 
EVPXI for case severity (Low, Medium and High).

From Fig.  4, the highest research priority is resolving 
if the case severity of disease outbreak is high or not. 

Table 5 EVPXI at γ = 1 and with a prior strong belief in severe outbreak: Scenario 17 has the highest VoI and therefore should be 
resolved first

Parameter States Belief in severe outbreak

Scenario ID p(s) R0 Severity (CS) ChildInf (CI) EVPXI ( γ = 1)

1 0.008 Low Low Low 0.00

2 0.012 Low Low Medium 0.00

3 0.020 Low Low High 0.00

4 0.012 Low Medium Low 0.00

5 0.018 Low Medium Medium 0.00

6 0.030 Low Medium High 0.00

7 0.020 Low High Low 0.00

8 0.030 Low High Medium 0.00

10 0.012 Medium Low Low 0.00

11 0.018 Medium Low Medium 0.00

12 0.030 Medium Low High 0.00

13 0.018 Medium Medium Low 0.00

19 0.020 High Low Low 0.00

20 0.030 High Low Medium 0.00

21 0.050 High Low High 0.00

22 0.030 High Medium Low 1.00

25 0.050 High High Low 1.60

14 0.027 Medium Medium Medium 1.80

27 0.125 High High High 2.40

15 0.045 Medium Medium High 3.8

9 0.050 Low High High 4.00

16 0.030 Medium High Low 4.00

26 0.075 High High Medium 4.00

24 0.075 High Medium High 4.90

23 0.045 High Medium Medium 5.20

18 0.075 Medium High High 6.40

17 0.045 Medium High Medium 10.63
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With no sufficient resources to conduct research about 
all the severity levels, a binary test on High Severity will 
reduce the uncertainty surrounding the optimum allo-
cation of ICU beds between COVID and non-COVID 
patients. The EVPXI will then be computed again for 
low case severity (CS(Low)) or medium case severity 
(CS(Medium)) to determine which hypothesis will be 
resolved next. Similar analysis can be performed for R0 . 
The outcome of similar analysis for R0 is shown in Fig. 5.

Finally, an equivalent analysis for Child Infectiousness 
shows zero value for all its possible states (Low, Medium, 
or High). Therefore, if case severity and R0 are known, 
management action will not change when we obtain new 
knowledge about child infectiousness. Thus, there is no 
need to spend any research funds on studying child infec-
tiousness before deciding on optimal ICU bed allocation.

Discussion
We have investigated how VoI analysis can help guide 
COVID-19 outbreak preparedness when considering 
the requirement for ICU beds in the early stages of an 
outbreak.

Our results suggest that reducing uncertainty about 
case severity and R0 were most valuable because 
increased knowledge of these factors would have the 
greatest impact on a decision about how many ICU beds 
were required. In contrast, reducing uncertainty about 
child infectiousness was less likely to affect a decision 
about ICU bed requirements. Hence, in the context of 
this case study, VoI analysis could enable a manager to 
make more informed decisions about where they allo-
cate resources in the early stages of an outbreak. Spend-
ing resources on studying child infectiousness before 

Fig. 3 EVPI for CS, R0 and CI parameters: For all scaling factors, γ , case severity for an outbreak has the highest value of information, then R0 . There is 
zero value for resolving only the uncertainties surrounding Child infectiousness for all γ

Fig. 4 EVPXI for case severity (Low, Medium and High): For all γ , resolving if case severity is High has the highest value of information followed by if 
it is Low
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deciding on how many ICU beds should be allocated to 
COVID-19 is unnecessary, as it will not affect the deci-
sion outcomes. Spending resources on resolving sever-
ity and transmissibility, on the other hand, could affect 
a decision outcome about investment in ICU capacity. 
Hence, this study illustrates how mathematical modeling 
and VoI analysis can provide evidence to enable health 
managers to decide how resources should be allocated, 
leading to better decisions about outbreak preparedness.

Note that our analysis was conditioned on the specific 
question that was being addressed about ICU capac-
ity, and does not mean that the relative infectiousness of 
children is never a valid factor to consider in preparing 
for an outbreak. If the question concerns other forms of 
preparedness, such as providing general ward beds and 
health workers, VoI analysis may well reveal that child 
infectiousness is an important factor to be resolved.

To put this work into practical context and in line with 
existing literature, we consider financial and health costs 
associated with public health decisions during a COVID-
19 outbreak. In financial context, an ICU bed unit costs 
$37,500 (range: $25,000 - $50,000) [28] to be purchased and 
installed. So, taking belief in severe outbreak and γ = 0.7 
as an example, we have EVPI = 69 ICU beds which would 
cost $2.59 million. However, human health and life are not 
directly measured in dollars. The chosen health cost of 
information is the number of deaths and other COVID-19 
morbidity that will result from a shortfall of 69 ICU beds 
for patients that may require them. Hence, considering 
health cost, a unit shortage in ICU beds could increase the 
mortality rate of the initial strain of COVID-19 by 0.0034% 
of a given population [14, 29] in a non-vaccinated popula-
tion. Based on our study objective, having perfect informa-
tion about an outbreak helps in optimal allocation of ICU 

beds to avert this loss, which can be significant as this pro-
jection means that 34 people in every one million could 
die. This benefit of optimal allocation, irrespective of the 
outbreak scenario, is equivalent to the dollar cost or health 
cost of (not having) 69 ICU beds when they are required for 
either COVID or non-COVID severe cases.

From the cost analysis above, we can see that VoI analy-
sis helps to explain why the choices made by the manager 
are the best given the information available at the time. 
This justification is necessary in order to account for possi-
ble losses or gains in the long run. For this study, VoI could 
help to explain that $2.59 million needs to be spent on pur-
chasing ICU beds in order to increase the chance of saving 
34 people per 1 million of the population from dying from a 
severe COVID-19 infection. For the population size consid-
ered in this study (about half a million) and for the γ = 0.7 , 
only half of the dollar cost ($1.29 million) should be spent.

VoI analysis is an integral part of the adaptive man-
agement process in fields such as ecology [3, 9] and 
public health management [12] . Adaptive management 
is a structured and iterative process that incorporates 
uncertainty for robust decision-making. A new itera-
tion is required when new information becomes avail-
able through a monitoring and feedback process. As 
more information about an outbreak becomes available, 
VoI analysis helps public health managers to refine their 
management actions to optimise health outcomes. When 
VoI is high, the expected benefit of gathering further 
information is justified - triggering an adaptive manage-
ment process to gather the new evidence that can be used 
to review management actions [3]. The required informa-
tion can be obtained by carrying out further research in 
the literature or setting up experiments to obtain the cur-
rent values of the parameters. This new information may 

Fig. 5 EVPXI for R0 (Low, Medium, High): Resolving if R0 is Low has the highest value of information for all γ . Resolving if R0 is High or Medium is not 
required before the decision on the number of ICU beds to be acquired for COVID and non-COVID infections
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result in a different choice of action that will lead to a dif-
ferent outcome than the action chosen before new infor-
mation became available.

In the early outbreak of an infectious disease when not 
much is known about the disease, mathematical modeling 
helps one to study the dynamics of the disease. Mathemat-
ical models enables the study of what-if or hypothetical 
scenarios to understand certain characteristics of the dis-
ease such as duration, peak time, transmissibility, severity 
and the impact of various possible interventions. Mathe-
matical modeling, therefore, provides the expert informa-
tion when there is no existing information from experts in 
the outbreak. Also, mathematical models reduce the bur-
den of assembling numerous experts in order to provide 
a distribution for various parameters instead of relying on 
a single data point. In our case study, we can see how we 
utilised models to generate the expert input used in our 
VoI analysis. Beyond this input generation, mathemati-
cal models have become an invaluable tool in predicting, 
assessing and controlling potential outbreaks [21, 30].

In our case study, we chose to use the shortfall of ICU 
beds as a proxy for the costs associated with a severe 
COVID-19 outbreak. An alternative would be to quantify 
the economic costs associated with not having sufficient 
ICU beds, for example, using Quality-adjusted life years 
(QALY) or Disability-adjusted life years (DALY). Note also 
that while the case study used in this paper has focused 
solely on preparedness in terms of ICU bed capacity, there 
are many management decisions required for pandemic 
preparedness and response. Other preparedness includes 
stocking prophylactic drugs, recruitment of more health 
workers and quarantine services, among others [29, 31]. 
However, the general approach proposed in this paper can 
be applied to a broad range of decisions involved in the 
pandemic response.

A potential limitation of our work is that in our exemplar 
scenario, we focused on three uncertain parameters: sever-
ity, child infectiousness and R0 . It is possible that model 
parameters for which we assumed fixed values, such as 
the latent period, may also affect model outcomes. While 
the values we used for these fixed parameters were based 
on the best available evidence at the time, the impact of 
uncertainty in these parameters remains to be explored. 
However, the focus of our work is on an example of how to 
utilise VoI for preparedness for a novel respiratory disease 
outbreak, with COVID used as a case study.

Appendix
This paper contains a Supplementary information on the 
parameters and methods used for the simulation and 
clinical pathway models.
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