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Abstract 

Background  Institutions or clinicians (units) are often compared according to a performance indicator such as in-
hospital mortality. Several approaches have been proposed for the detection of outlying units, whose performance 
deviates from the overall performance.

Methods  We provide an overview of three approaches commonly used to monitor institutional performances for 
outlier detection. These are the common-mean model, the ‘Normal-Poisson’ random effects model and the ‘Logistic’ 
random effects model. For the latter we also propose a visualisation technique. The common-mean model assumes 
that the underlying true performance of all units is equal and that any observed variation between units is due to 
chance. Even after applying case-mix adjustment, this assumption is often violated due to overdispersion and a post-
hoc correction may need to be applied. The random effects models relax this assumption and explicitly allow the true 
performance to differ between units, thus offering a more flexible approach. We discuss the strengths and weak-
nesses of each approach and illustrate their application using audit data from England and Wales on Adult Cardiac 
Surgery (ACS) and Percutaneous Coronary Intervention (PCI).

Results  In general, the overdispersion-corrected common-mean model and the random effects approaches pro-
duced similar p-values for the detection of outliers. For the ACS dataset (41 hospitals) three outliers were identified in 
total but only one was identified by all methods above. For the PCI dataset (88 hospitals), seven outliers were identi-
fied in total but only two were identified by all methods. The common-mean model uncorrected for overdispersion 
produced several more outliers. The reason for observing similar p-values for all three approaches could be attributed 
to the fact that the between-hospital variance was relatively small in both datasets, resulting only in a mild violation of 
the common-mean assumption; in this situation, the overdispersion correction worked well.

Conclusion  If the common-mean assumption is likely to hold, all three methods are appropriate to use for outlier 
detection and their results should be similar. Random effect methods may be the preferred approach when the 
common-mean assumption is likely to be violated.
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Background
The detection and management of outliers when moni-
toring institutional performance is important in main-
taining and improving the quality of health care. In the 
UK, NHS England monitors the performance of hospitals 
and individual clinicians to help them identify necessary 
improvements for patient care. For example, national 
audit programs exist in Diabetes, Dementia, Lung can-
cer, Cardiovascular Outcomes, and other fields. Nowa-
days, outlier detection is an essential aspect of such 
audits. Patients seek to receive the best possible health 
care, and government bodies and healthcare providers 
seek to identify high and low performers to guide quality 
improvement in clinical care.

The implications of being classified as an outlier can 
be huge. Low-performing hospitals are likely to face 
intense scrutiny and patients might choose to avoid low-
performing hospitals or surgeons. However, failing to 
identify outliers with poor performance may jeopardise 
patient safety.

Outlier methodology may be applied to both measures 
of processes of clinical care (e.g., waiting times) as well 
as outcomes of care (e.g., complication rates, procedural 
mortality). For the purposes of this paper, we use the 
term ‘unit’ to refer to the entities whose performance is 
monitored; units can be hospitals, individual hospital cli-
nicians, general practices or general practitioners.

The aim is to identify units whose performance 
diverges substantially from the expected performance of 
a group of units or from an externally set target. These 
units are often said to be ‘outliers’. Depending on the 
degree of divergence from the performance target, units 
have been described [1, 2] as ‘normal’, ‘high/low alerts’ 
or ‘high/low alarms’, with each term describing progres-
sively greater deviation from the performance target. For 
example, we may want to monitor hospital performance 
with respect to mortality following cardiac surgery. In 
this case, the units are the hospitals and each observation 
within a hospital corresponds to a surgical procedure on 
an individual patient.

Differences in the performance between units will 
in part be due to differences in the characteristics of 
patients in each unit (the unit’s case-mix). For example, 
when hospitals are compared with respect to in-hospital 
mortality following a cardiac procedure, it is likely that 
different hospitals treat patients with different risk pro-
files. Hospitals treating higher-risk patients would be 
expected to also have higher proportions of in-hospital 
deaths (raw mortality). Adjusting for the predicted risk of 
in-hospital death for each patient can account for some 
of these differences and help to understand differences in 
outcomes that are due to quality of care provided. Risk-
adjustment is often applied by obtaining the predicted 

risk for individual patients using a risk model. For exam-
ple, the predicted risk of in-hospital mortality following 
cardiac surgery can be obtained using the EuroSCORE 
risk model [3, 4].

Detecting outliers is an important process with poten-
tially significant implications. Therefore, the ability to 
detect outliers reliably using appropriate methodology is 
vital. The principle underpinning all approaches to out-
lier detection is that a distribution is assumed for the 
unit-level performance to establish allowable variation in 
unit performance. Deviations from this distribution indi-
cate outliers. Firstly, the most commonly used approach, 
the ‘Common-mean model’ [1], uses aggregated unit-
level data and is visualised using a funnel plot. It assumes 
a common true performance for all units, subject to sam-
pling variation. Levels of acceptable variation, the con-
trol limits, are constructed around the overall average or 
an externally set target. However, as explained later, the 
variability in the data is often higher than that expected 
under the assumed model, e.g., because of imperfect risk-
adjustment or problems with data quality. This is called 
overdispersion and it may be accounted for by applying 
a post-hoc correction [5] to the levels of acceptable vari-
ation. More recently, the use of random effects models 
has been proposed to account for the clustered nature 
of the data within units and overdispersion. A random 
effects model can be applied to either unit- or individ-
ual-level data [2, 6]. The second approach we consider, 
the ‘Normal-Poisson model’, uses random effects for the 
units and is applied to unit-level aggregate data. The third 
approach, the ‘Logistic random effects model’ also uses 
random effects for the units but is applied to individual-
level data (or procedure-level data).

In this paper we provide an overview of these 
approaches for outlier detection. We examine their corre-
sponding assumptions, discuss their strengths and weak-
nesses, and review methods for visual representation of 
the results. For the logistic random effects model, we 
propose a graphical way to present the results. We illus-
trate the application of the methods using cardiac data, 
and include software to implement these approaches in 
R.

Methods
The common‑mean model for unit‑level data
We consider the case where the individual-level outcome 
is binary (e.g., death = 1/alive = 0). For unit-level aggre-
gated data, the performance indicator is often taken to be 
either the proportion, pi (i = 1, …, K where K denotes the 
number of units) or the risk-adjusted proportion prai  of 
events.

The observed proportion of events ( p̂i) in unit i, is the 
observed number of events (e.g., deaths), Oi, divided by 
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the total number of observations in that unit, ni. When a 
risk model for risk-adjustment is available, each patient 
within a unit is assigned a predicted risk of having the 
event. The expected number of events in unit i, Ei, is cal-
culated by summing the predicted risks for all observa-
tions in that unit. The observed risk-adjusted proportion 
of events 

(

p̂rai
)

 is equal to the ratio of the observed to the 
expected number of events, multiplied by the overall pro-
portion of events, p =

∑

Oi
∑

ni
 . If no risk-adjustment is 

used, then Ei = nip for all units.
Without loss of generality, we let pi denote the perfor-

mance indicator in what follows, where this is either the 
proportion or risk-adjusted proportion of events. The 
common population proportion, p, is often the overall 
proportion of events in the sample of all units, p , and the 
variance of pi is σ 2

i = pi
(1−pi)

ni
 , the binomial variance.

The common-mean model assumes that there exists a 
single underlying true performance, p, which is common 
for all units, and that the observed value occurs with vari-
ance σ 2

i = p(1−p )
ni

 . Using a Normal approximation

Any difference between the observed performance 
in each unit, p̂i , and p is assumed to be due to random 
sampling variation. To detect outliers, we test the null 
hypothesis that the underlying true performance of unit 
i, pi, is equal to the population proportion, p:

This can be tested using the following test-statistic:

If the null hypothesis is true, Z(1)
i ∼ N (0, 1) . The asso-

ciated p-value for each unit is

Often, the assumption of a common-mean will be 
untenable, e.g., due to imperfect risk adjustment. So, in 
fact, the underlying true proportion of events for each 
unit is bound to deviate to some extent from the popula-
tion proportion of events, and consequently the variabil-
ity in the outcome will be higher than just the random 
variation in (1). This excess variability is called ‘overdis-
persion’. Failing to account for overdispersion will mean 
that the assumed variability is smaller than the variability 
actually present in the data. This will result in identifying 

(1)pi ∼ N

(

p,
p(1− p)

ni

)

, i = 1, . . . ,K .

H0 : pi = p, against the alternative

(2)H1 : pi > p or H1 : pi < p

(3)Z
(1)
i = p̂i − p

σi
= p̂i − p

√

p(1−p)
ni

.

(4)pval
(1)
i = 1− P

(

Z
(1)
i ≤ zi

)

= 1−�

(

Z
(1)
i

)

.

too many units as outliers. Overdispersion in the com-
mon-mean model can be accounted for by multiplying 
the variance with - or adding to it - a corrective overdis-
persion parameter which may be estimated from the data 
[1, 5]. For example, if using a multiplicative correction, a 
value >1 for the overdispersion parameter φ indicates 
that there is unaccounted variability in the performance 
indicator, i.e. overdispersion is present. Then, the test sta-
tistic in (3) is corrected by multiplying the variance under 
the null hypothesis (denominator term of (3)) by the fac-
tor φ: 

√

ϕ p(1−p)
ni

.

Visualisation using a funnel plot
The result from applying the common-mean model to a 
dataset is a p-value for each of the units obtained using 
(4). The p-value for a given unit reflects the probability 
of obtaining the unit’s observed performance if it was 
actually consistent with the population proportion. A sta-
tistically significant p-value at a given significance level 
suggests that unit is an outlier. In the literature [1], units 
have been usually categorised as: outliers at the α = 5% 
significance level (“Alerts/Better than Expected”), outliers 
at the α = 0.2% level (“Alarms/Substantially better than 
expected”) and as “Normal” if they are neither Alerts/
Better than Expected nor Alarms/Substantially better 
than expected.

A common way of visualising the results of the outlier 
process from the common-mean model is a ‘funnel plot’ 
where the observed value of the performance indicator 
for a given unit is plotted against a measure of its preci-
sion, e.g., the sample size.

For the common-mean model (1), the assumed true 
proportion of events (known as the target) needs to be 
set first. The target value could be the overall proportion 
(or risk-adjusted proportion) of events or an externally 
set value, p. On the vertical axis is the observed propor-
tion (or risk-adjusted proportion) of events and on the 
horizontal axis the sample size. The target value p, is first 
drawn as a horizontal line. Then, under the assumption 
that the null hypothesis is true, control limits are drawn 
around this value for a range of sample sizes, n. For a 
given sample size, n, the control limits (potentially with 
adjustment of overdispersion with the parameter φ) 
around the target are p± z1−α/2 × φ p(1−p)√

n
, n = 1, 2 . . . . 

These reflect the range of acceptable variation around the 
common-mean value at the significance level a for a unit 
of size n, assuming the null hypothesis is true. For pro-
portions, the width of the 95 and 99.8% control limits 
decreases with increasing sample size (with rate 1/

√
n) 

giving rise to the funnel shape of the graph. The observed 
values of the performance indicators are then plotted 
against their size for all units. Units whose observed 
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performance lies beyond the control limits are deemed to 
be inconsistent with the null hypothesis and hence are 
denoted as outliers.

The Normal‑Poisson random effects model for unit‑level 
data
The random effects approach relaxes the assumption of 
model (1) that there is a common underlying true perfor-
mance for all units and that the variation in the observed 
performance across units is just by chance. Instead, it 
assumes that because of imperfect case-mix adjustment 
or other reasons, the underlying true performance Yi will 
differ between units:

where σ 2
i  denotes random variation around population 

mean μ. So, the observed performance of each unit is 
subject to two sources of variation: the random variation 
σ 2
i  as for the common-mean model, and additionally an 

acceptable between-unit variance τ2.
To detect outliers, we test the null hypothesis that the 

underlying true performance of unit i, Yi, is equal to μ:

When the individual-level outcome is binary, a simple 
Normal random effects [2] model has been used where 
the performance indicator of interest is the log-relative 
standardised event ratio (or standardised mortality ratio 
(SMR) if the event is death), Yi = log

(

Oi
Ei

)

 ; as before, Oi 
and Ei denote the observed and expected number of 
events, respectively. As the distribution of the standard-
ised event ratio O/E tends to be skewed, the log transfor-
mation is used to produce a more symmetric distribution; 
other transformations are also possible including the 
square-root of O/E [7]. Assuming that Oi ∼ Poisson(Ei), 
the random variation component of log

(

Oi
Ei

)

 can be 
approximated by σ 2

i = 1
Ei
. The acceptable between-unit 

variance, τ2, can be estimated from the data; estimation 
details are provided in Appendix 1. The population mean, 
µ, is usually log

(

O

E

)

 , where O and E denote the sum of 
the observed and expected values across units, respec-
tively. Because of the assumed distributions, this model is 
called the Normal-Poisson random effects model for unit-
level data. The Normal-Poisson model is appropriate as 
long as the implied Normal approximation holds. This 
may not hold when the number of events (and unit size) 
is small; in these situations, further approximations may 
be necessary [8] or the unit may be excluded from the 
outlier process.

(5)Yi ∼ N
(

µ, σ 2
i + τ 2

)

, i = 1, . . . ,K ,

H0 : Yi = µ, against the alternative

(6)H1 : Yi > µ or H1 : Yi < µ

Under the null hypothesis, model (5) is written as

The test-statistic for testing the null hypothesis is given 
by:

leading to the p-value pval
(2)
i = 1−�

(

Z
(2)
i

)

.

Visualisation using a funnel plot
A funnel-type plot can also be drawn for the Normal-
Poisson random-effects model, similar to that used for 
the common-mean model. However, the quantities on 
the axes are different because the assumed null model in 
(7) is different. For a binary outcome such as in-hospital 
mortality, the performance indicator on the vertical axis 
is Yi = log

(

Oi
Ei

)

 . This is plotted against a measure of its 
precision, the expected number of events 

(

σ 2
i = 1

Ei

)

 . The 
target value is usually μ= log 

(

O
E

)

 , which is drawn as a 
horizontal line on the graph. This value will be close to 
zero as the expected number of events will be usually 
close to the observed number of events (if the risk model 
is correctly calibrated in an overall sense). The variance of 
Yi under the null hypothesis incorporates two sources of 
variation: τ 2 + σ 2

i  . These can be estimated from the data 
as τ̂ 2 + 1

Ei
 , where τ̂ 2 is an estimate of τ2. By varying the 

expected number of events, the control limits around this 
target are µ± z1− α

2
×

√

τ̂ 2 + 1
E ,E = 1, 2 . . . , reflecting 

the acceptable variation around the target value, μ under 
the null hypothesis. Units whose observed performance 
log

(

Oi
Ei

)

 lies beyond the control limits are outliers.
Most often the quantities presented on the vertical axis 

are the original OE  ratios, instead of the log
(

O
E

)

 . The con-

trol limits are then:exp
(

µ± z1− α
2
×

√

τ̂ 2 + 1
E

)

.

The logistic random effects model for individual‑level data
When the outcome is binary, individuals with Y = 1 are 
said to have experienced the event of interest and indi-
viduals with Y = 0 to have not. All units will contain 
multiple observations and these observations are said to 
be clustered within units; for example, patients might 
be clustered within hospitals. For clustered data, the 
binary outcome can be modelled using the logistic ran-
dom effects model, an extension of the well-known logis-
tic regression model. The simplest form of the logistic 

(7)Yi ∼ N

(

µ,
1

Ei
+ τ 2

)

, i = 1, . . . ,K .

(8)Z
(2)
i =

log
(

Oi
Ei

)

− µ

1
Ei

+ τ̂ 2
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random effects model for πij = P(Yij = 1), with random 
intercept terms is

where β0 is a fixed effect, ui is the random intercept for 
unit i, and j is the indicator for the jth member of unit i. 
In this model, β0 can be viewed as the average log-odds 
and the  ui

′s correspond to unit-specific deviations from 
β0. Usually, it is assumed that ui ∼ N

(

0, σ 2
u

)

 , where σ 2
u is 

the variance of the random intercepts. When the data are 
clustered, observations within the same unit tend to be 
more similar than those from different units. The intra-
cluster correlation coefficient (ICC) is often used to 
quantify the degree of similarity; this is also known as the 
degree of clustering. ICC takes values between 0 and 1, 
and quantifies the proportion of total variation due to the 
clustering of patients within units. For binary outcomes, 
ICC can be estimated by ICC = σ 2

u
π2

3 +σ 2
u

 [9].

When a risk model is available, risk-adjustment can be 
readily incorporated by adding the log-odds of the pre-
dicted risk, p̂ij , for each observation, η̂ij = log

(

p̂ij
1−p̂ij

)

, as a 
covariate:

Estimates of the random effects are often obtained using 
Empirical Bayes prediction, where the estimation of the 
unit-specific effects is effectively a weighted average of the 
population proportion and the unit proportion (on the log-
odds scale); this is the approach we follow in this paper. 
The implication of using Empirical Bayes prediction for the 
random effects is that the effects for smaller units tend to 
be ‘shrunk’ towards the overall average [10, 11]. Model (10) 
can be fitted in standard software (e.g., R using the function 
glmer in package lme4 or Stata using the function melogit) 
to estimate the fixed and random effects.

Under the null hypothesis, all units have random effects 
from the assumed distribution:

Rejecting the null hypothesis at a given significance 
level suggests that the random effect for unit i is unlikely 
to be consistent with the random effects distribution 
under the null hypothesis, i.e., the unit is an outlier.

The test-statistic used for testing H0 is

(9)log

(

πij

1− πij

)

= β0 + ui,

(10)log

(

πij

1− πij

)

= β0 + ui + β1 η̂ij

(11)H0 : ui ∼ N
(

0, σ 2
u

)

(12)Z
(3)
i = ûi

SED
(

ûi
) ,

where ûi denotes the estimated random effect of unit i 
and SED

(

ûi
)

 the diagnostic standard error [6]. This leads 
to a one-sided p-value pval

(3)
i = 1−�

(

Z
(3)
i

)

 . It is impor-
tant to highlight that the hypothesis being tested is 
whether ui is consistent with the assumed distribution in 
(11). Crucially, the diagnostic standard error does not 
represent the precision with which ûi is estimated.

Visualisation using a two‑panel plot
We now describe an approach to present the results from 
the outlier process based on an individual-level logistic 
random effects model.

A two-panel plot is used to present key information 
about the observed and predicted risks in each unit (left 
panel) and the results of the outlier process based on the 
logistic random effects model (right panel). An example 
of a two panel-plot is given in Fig. 5.

Left panel
For the left panel, the units and their sizes are presented 
on the vertical axis. The observed and predicted risks are 
on the horizontal axis denoted with the following signs:

•	 Dashed vertical line: the overall proportion of events 
across all units.

•	 Square: the proportion of events in each unit (e.g., in-
hospital death after cardiac surgery).

•	 Cross: the average predicted risk per unit. A low pre-
dicted mortality relative to overall mortality across all 
units, i.e., a ‘cross’ positioned to the left of the popu-
lation average mortality line indicates that the unit 
deals with lower risk patients compared to the aver-
age.

Right panel
For the right panel, the units are also on the vertical axis, 
and the estimated random effects with intervals for out-
lier detection are on the horizontal axis, giving rise to a 
forest plot. This plot includes a vertical line at zero, the 
‘target value’ for the random effects. The estimated ran-
dom effect, ûi , for each unit, and its 100 ×(1 − a)% ‘inter-
val for outlier detection’, ûi ± z1− α

2
× SED

(

ûi
)

 , is added as 
a point and a horizontal bar, respectively. Intervals that 
do not include the target value of 0, suggest that the cor-
responding units are outliers at the significance level a.

It is important to note that the intervals for outlier 
detection based on diagnostic standard errors do not rep-
resent the precision with which the random effect is esti-
mated, but the evidence that the given unit is an outlier. 
Hence, their width does not necessarily tend to decrease 
with increasing hospital size. For each unit, the usual 95 
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and 99.8% intervals for outlier detection are shown with 
black and grey solid horizontal bars, respectively. These 
specify whether a hospital is an outlier at the given sig-
nificance level.

Results
Data
We illustrate the application of the methods described ear-
lier and discuss their results using data from two cardiac 
audit datasets from England and Wales. The first data-
set includes adult patients from 41 hospitals who under-
went Cardiac Surgery (ACS). The second dataset includes 
patients who underwent Percutaneous Coronary Interven-
tion (PCI) at 88 hospitals. Both datasets were obtained for 
procedures performed during the three-year period April 
2015–March 2018 (97,173 procedures in total for the ACS 
data and 262,035 for the PCI data). The outcome of inter-
est for both datasets was early mortality (in-hospital mor-
tality for ACS, and 30-day mortality for PCI). The average 
mortality was 1.8% for ACS and 2.7% for PCI. The median 
number of procedures per hospital (interquartile range) 
for the ACS data was 2361(1064) and for the PCI data was 
2535(2887). For each dataset, the aim is to compare hospi-
tals with respect to mortality to identify outlying hospitals.

Risk‑adjustment models
For both datasets, suitable risk-models were available for 
risk-adjustment. For the ACS data, a re-calibrated Euro-
SCORE logistic risk model [3, 4] to predict the probabil-
ity of in-hospital death has been used (details about the 
risk factors and the model re-calibration are provided in 
Appendix 1). For the PCI data, the British Cardiovascular 
Intervention Society (BCIS) logistic regression model [12] 
was used to obtain the predicted risk of 30-day mortality 
(details about the risk factors are provided in Appendix 1).

We assessed the quality of the models used for risk-
adjustment using measures of calibration (calibration 
slope and calibration in-the-large) and discrimination 
(C-statistic). A value of 0 for the calibration in-the-large 
suggests that the average predicted probability is equal 
to the observed proportion of events. A value of 1 for the 
calibration slope suggests a perfectly calibrated model. The 
C-statistic takes values between 0.5 to 1, with higher val-
ues meaning higher ability to discriminate between high- 
and low-risk patients. The estimated model performance 
measures with 95% confidence intervals are provided in 

Table 1. The models were well calibrated. This is also con-
firmed by the calibration plots which show the agreement 
between the observed proportion of deaths and the average 
predicted risk in groups defined by deciles of the predicted 
risks (Fig. 1 and Fig. S1 in Appendix 1 for the ACS and the 
PCI data, respectively). The model used for the PCI data 
had a greater discrimination than that used for the ACS 
data.

Results: common‑mean model
In the plots to follow, unless otherwise stated, it should 
be assumed that the common-mean model was corrected 
for overdispersion. Hospitals which are not outliers at 
either the 5% or 0.02% level are said to be ‘Normal’ (black 
colour). Outliers at the 5% level are said to be ‘Better than 
Expected’ (blue) if they perform better than normal and 
‘Alerts’(purple) if they perform worse than normal. Outliers 
at the 0.02% level are said to be ‘Substantially Better than 
Expected’ (green) if they perform better than normal and 
‘Alarms’ (red) if they perform worse than normal.

Funnel plots based on the common-mean model with-
out and with correction for overdispersion for the ACS 
data are shown in Fig. 2 and Fig. 3, respectively, where the 
risk-adjusted proportion of events is on the vertical axis. 
Figure 2 shows that without correction for overdispersion 
several units are identified as outliers. Figure 3 shows that 
after correction for overdispersion there was just one ‘Alert’ 
(hospital 2) and one hospital ‘Better than expected’ (hospi-
tal 6). The overdispersion parameter was estimated to be 
4.39 indicating that overdispersion was indeed present. An 
analogous funnel plot for the PCI data (the overdispersion 
parameter was 4.45) is presented in Appendix 1 (Fig. S2).

Results: Normal‑Poisson random effects model
A funnel plot based on the Normal-Poisson random effects 
model for unit level data for the ACS data is shown in 
Fig.  4. The estimated between-hospital variance after risk 
adjustment was τ̂ = 0.38 ( ̂τ = 0.18 for the PCI data). Fig-
ure 4 shows there was one hospital ‘Better than expected’ 
(hospital 16) and one ‘Substantially better than expected’ 
(hospital 6). An analogous plot for the PCI data is pre-
sented in Appendix 1 (Fig. S3).

Results: logistic random effects model
The between-hospital variability in the outcome after risk-
adjustment was σ̂u = 0.28 and ICC = 0.024 for the ACS 

Table 1  Validation measures for the models used for risk-adjustment.

Risk Model (Dataset) Calibration Slope (95% CI) Calibration-in the large (95% CI) C-statistic (95% CI)

Re-calibrated EuroSCORE (ACS data) 1.00 (0.95, 1.05) 0.00 (− 0.05, 0.05) 0.77 (0.762, 0.784)

BCIS model (PCI data) 1.08 (1.06, 1.09) 0.25 (0.23, 0.28) 0.87 (0.865, 0.874)
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data ( ̂σu = 0.20, ICC = 0.012 for the PCI data). These fig-
ures suggest that the degree of clustering was small in 
both of the datasets, partially due to the high quality of 
risk-adjustment.

The two-panel plot for the ACS data is shown in 
Fig.  5. It shows that there was just one hospital with 
a mortality rate ‘Substantially better than expected’ 
(hospital 6). For this hospital, the observed mortality 
was markedly lower than the predicted mortality (left 
panel). An analogous plot for the PCI data is presented 

in Appendix  1 (Fig.  S4) and shows more outlying 
hospitals.

Comparison of the results from the three approaches
In the analysis of the two cardiac datasets, the results 
were similar between the two random effects approaches 
and the common-mean model (Table  2). Figure  6 
shows the value of the Z test-statistic for each hospi-
tal for each of the pairwise combination of the meth-
ods above, showing very high correlation between the 

Fig. 1  Calibration plot for the ACS data. Observed proportion of deaths against average predicted risk in groups defined by deciles of the predicted 
risk
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Z test-statistic values. This similarity was perhaps to be 
expected because the between-hospital variance was rela-
tively small in both datasets (ICC < 0.03), resulting in only 
a mild violation of the common-mean model assumption 
that the hospitals share a single underlying true perfor-
mance; consequently, the overdispersion correction for 
the common-mean model appears to have worked well.

As the variance of the random effects, σ 2
u (and the 

between-hospital variance in the Normal-Poisson model, 
τ2) increases, one would expect the correlation between 

the Z test-statistic values from the two random effects 
approaches to remain very high, and the correlation 
between the Z test-statistic values from either of the 
random effects models and the common-mean model 
to gradually decrease. This hypothesis was confirmed 
by artificially inducing higher between-hospital variance 
(σu = 0.76, ICC = 0.15) and generating new outcomes 
for the ACS data. The Z test-statistic values from the 
two random effect models were very highly correlated 
between them, and slightly less correlated with the Z 
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test-statistics from the common-mean model (Fig. S5 in 
Appendix 1).

Discussion
When comparing the performance of different units with 
respect to a performance indicator, e.g., risk-adjusted 
proportion of in-hospital deaths following cardiac sur-
gery, it is often of interest to identify units whose per-
formance deviates from the overall performance across 
units (outliers). The methods for identifying outliers 

rely on specifying an underlying assumed model that 
describes the performance of all units. Any units whose 
observed performance is found to be inconsistent with 
the underlying model are denoted outliers.

In this paper we have provided an overview of three 
of the main methods to identify outliers for binary 
outcomes: the common-mean model and the Normal-
Poisson random effects model for unit-level data and 
the logistic random effects model for individual-level 
data. The common-mean model is straightforward 
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to apply, and its results are conveniently visualised 
via a funnel plot. It also seems to be commonly used 
in practice. However, it assumes that all units share 
the same underlying true performance, which may be 
incorrect, e.g., due to imperfect risk-adjustment. As 
a result, a correction for overdispersion is important, 
otherwise it will tend to identify too many outliers. 
In the two random effects models the common-mean 
assumption is relaxed, and the units’ underlying true 
performance is allowed to vary around the common 

mean. Therefore, the random effects approaches may 
be more appropriate in most scenarios.

Of the two random effects approaches, the Normal-
Poisson random effects model uses aggregated unit-
level data, effectively simplifying the data structure. 
The results can be visualised using a funnel plot. In 
contrast, the logistic random effects model is applied 
directly to individual-level data. This will avoid a loss of 
information if one plans on applying risk-adjustment at 
the individual level. Therefore, in principle, the logistic 

Table 2  Results from the outlier process in the PCI and ACS domains using analysis based on hospital or procedure-level data. Each 
number refers to the ID assigned to an individual hospital.

Data Outlier Type Method

Hospital-level Common-
mean

Hospital-level Normal-
Poisson RE

Procedure-
level Logistic 
RE

ACS (41 units) Alarm – – –

Alert 2 – –

Substantially better than expected – 6 6

Better than expected 6 16 –

PCI (88 units) Alarm – – –

Alert 12, 44 44 12, 44

Substantially better than expected 13, 46 46

Better than expected 10, 13 36, 58 10, 13, 36, 58
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random effects model may be considered more appro-
priate. It is straightforward to implement in standard 
software and it can readily accommodate risk-adjust-
ment via a risk prediction model, as well as additional 
individual and unit-level risk factors (e.g., whether a 
hospital is located in an urban or a rural area) by just 
including them in the model as explanatory variables.

To identify outliers using the logistic random effects 
model we followed the approach of Skrondal et  al. 
(2009) [6] for testing based on the diagnostic stand-
ard errors. This outlier process may be visualised using 
the two-panel plot proposed in this paper. Alternative 
ways of presenting the results from the logistic random 
effects model also exist. Possibilities include the use 
of odds ratios or different types of SMRs derived from 
the logistic random effects model [13]. For example, 
exponentiating the estimated random effect for a given 
unit provides the odds of the event for a given patient 
in that unit over the odds of the event had the patient 
belonged to the average unit [14].

One issue in the implementation of the random 
effects approaches is obtaining a value of the variance of 
the random effects. The variance is often, as it is in this 
paper, estimated from the data. This, however, may be 
unduly influenced by a few units with extreme perfor-
mances, which would ultimately mask their detection 
as outliers. An alternative approach would be to esti-
mate the variance using a robust estimation procedure 
that down-weights extreme units, such as Winsorisa-
tion or cross-validation [15]. These approaches come 
with their own challenges, e.g., choosing a suitable pro-
portion for Winsorisation. Another approach would be 
to set a fixed value for the random effects variance, rep-
resenting a degree of tolerable variation between units. 
As an external judgment, it may be specified based on 
historical data and published before the analysis. Alter-
natively, expert knowledge may be incorporated into 
the model via the use of a suitable prior distribution 
for the between-unit variance (as well as other model 
parameters) leading to a fully Bayesian approach [16, 
17].

In practice, when applying outlier detection methods, 
there is a chance of a false-positive result or type-1 error. 
Setting the significance level at a very low value decreases 
the risk of a type-1 error but also decreases the power 
to detect a true outlying unit (true positive result). The 
choice of the significance levels depends on the implica-
tions of a false positive result and the importance of iden-
tifying true outliers as such.

In our data illustration (cardiac clinical audits) we used 
two commonly used significance levels for the detection 
of outliers, 5% (alert) and 0.2% (alarm), which correspond 

to two different levels for the chance of a false positive 
result when testing for the outlier status for each unit. 
The purpose of an alert is to advise that perhaps the 
standards of care are drifting in the wrong direction. It is 
not a declaration of an immediate cause for concern, but 
more a process of flagging up the alert with the hospital/
individual concerned. On the other hand, an alarm level 
means that the result is concerning, and a review process 
might be activated.

Often the number of units being compared is large. For 
example, when comparing the performance of cardiac 
surgeons, the number of units tends to be very large, i.e., 
several hundred. In this scenario, a large number of sur-
geons might be identified as outliers due to chance alone. 
Therefore, it is advisable that a post-processing of the 
p-values be applied to reduce this number. The Bonfer-
roni correction, often used to correct for multiple test-
ing, might be too conservative [18] because reducing the 
probability of a single false positive test result when the 
number of units is large, will be at the cost of reducing 
the power to identify outliers. An alternative strategy is 
to instead control the False Discovery Rate [19] (FDR) to 
ensure that the majority of the rejected null hypotheses 
are correctly rejected.

Conclusion
Random effect approaches should be the preferred 
approach when the assumption of the simple common-
mean model is unlikely to hold. The logistic random 
effects model can flexibly accommodate risk-adjustment 
based on a suitable existing risk model and/or additional 
risk factors by simply including these factors in the model 
as explanatory variables. The two-panel plot presented in 
this paper can be used to visualise the results of the out-
lier process using the logistic random effects model.
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