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Abstract 

Background:  High bed-occupancy (capacity utilization) rates are commonly thought to increase in-hospital mortal-
ity; however, little evidence supports a causal relationship between the two. This observational study aimed to assess 
three time-varying covariates—capacity utilization, patient turnover and clinical complexity level— and to estimate 
causal effect of time-varying high capacity utilization on 14 day in-hospital mortality.

Methods:  This retrospective population-based analysis was based on routine administrative data (n = 1,152,506 inpa-
tient cases) of 102 Swiss general hospitals. Considering the longitudinal nature of the problem from available litera-
ture and expert knowledge, we represented the underlying data generating mechanism as a directed acyclic graph. 
To adjust for patient turnover and patient clinical complexity levels as time-varying confounders, we fitted a marginal 
structure model (MSM) that used inverse probability of treatment weights (IPTWs) for high and low capacity utiliza-
tion. We also adjusted for patient age and sex, weekdays-vs-weekend, comorbidity weight, and hospital type.

Results:  For each participating hospital, our analyses evaluated the ≥85th percentile as a threshold for high 
capacity utilization for the higher risk of mortality. The mean bed-occupancy threshold was 83.1% (SD 8.6) across 
hospitals and ranged from 42.1 to 95.9% between hospitals. For each additional day of exposure to high capacity 
utilization, our MSM incorporating IPTWs showed a 2% increase in the odds of 14-day in-hospital mortality (OR 
1.02, 95% CI: 1.01 to 1.03).

Conclusions:  Exposure to high capacity utilization increases the mortality risk of inpatients. Accurate monitoring 
of capacity utilization and flexible human resource planning are key strategies for hospitals to lower the exposure to 
high capacity utilization.

Keywords:  Causal effect, Time-varying covariates, Capacity utilization, In-hospital mortality

Background
Several observational studies have linked hospital bed-
occupancy (capacity utilization) with in-hospital mor-
tality [1–3]. While those studies account for numerous 
factors, they also acknowledge that the associations they 
show do not indicate causality [1, 2]. Logically, though, 
an unexpected rise in care demand (high patient volume, 
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turnover, and case severity) could exceed a hospital’s 
human resource capacities on certain days (e.g., on week-
ends). Such situations would delay treatment for some 
patients and limit early recognition of clinical deteriora-
tion in others. Both cases contribute to adverse patient 
outcomes [3]. The link between capacity utilization and 
in-hospital mortality warrants further research due to the 
time-varying exposure of care demand [4]. Thus, the pos-
sible causal link between time-varying predictors and the 
outcome (e.g., in-hospital mortality) might require flex-
ible care supply for safer hospitals in general.

The effect of a time-varying exposure is often con-
founded by time-varying variables [5]. One example of 
a confounder is daily patient flow, i.e., daily admission 
and discharge of patients. The confounder could affect 
outcomes such as mortality directly and also by influ-
encing patient exposure to health care services (e.g., 
capacity utilization) at each measurement point. Over 
time, if the analysis does not account for this influence, 
it will distort the association between exposure and out-
come. That is, the day-one exposure affects the value of 
day-two confounders and so on. In the language of cau-
sality, this is called exposure- or treatment-confounder 
feedback (TCF) [6]. In a hospital setting, the extent of 
daily capacity utilization may be influenced both by daily 
patient flow and disease severity; further, today’s capac-
ity utilization might influence tomorrow’s patient flow. 
TCF induces a bias in traditional regression methods; as 
a result, they cannot control for time-varying factors that 
arise along the causal pathway between earlier exposure 
and later outcomes [5]. Neither the logistic regression 
used by Kuntz et al. nor the Poisson regression used by 
Madsen et al. attempted to identify and correct for TCF 
before assessing the association between bed-occupancy 
and in-hospital mortality [2, 3]. Estimating causal effects 
with time-varying variables requires Robins’ generalized 
methods [7, 8]. The most popular of these is the inverse 
probability of treatment weighting (IPTW) for marginal 
structural models (MSMs) [9].

To our knowledge, the effects of capacity utilization 
on in-hospital mortality have seldom been investigated 
using the causal inference framework and causal lan-
guage. Previous studies aggregated bed-occupancy rates 
into monthly or annual estimates at the hospital level to 
define each institution’s threshold (i.e., the critical point 
at which there is a high risk of in-hospital mortality). 
For instance, the Kuntz et  al., study in 83 German hos-
pitals showed a threshold/safety tipping point at 92.5% 
of capacity utilization, after which the risk of in-hospital 
mortality increased significantly [3]. Yet, using a single 
threshold of capacity utilization for high risk of patients 
death may not be appropriate for a heterogeneous group 
of hospitals in the Swiss context [10]. Moreover, there is 

a substantial variation in patient care demand and sup-
ply (e.g., staffing) in Swiss hospitals due to the choice of 
complementary plans over basic healthcare plans, the 
Swiss Diagnosis-related groups (DRG), regulations in the 
26 Swiss cantons and the size of the hospitals [11, 12]. 
Additionally, these findings do not support a causal inter-
pretation, since no potential TCF was considered. To 
address these limitations, this study aimed to evaluate the 
causal effect of capacity utilization on 14-day in-hospital 
mortality consistent with directed acyclic graphs (DAGs) 
description of the data generating mechanism and the 
corresponding MSM/IPTW-based estimates.

Methods
Design, settings and participants
This is a retrospective longitudinal observational study 
using patient data routinely submitted to the Swiss Fed-
eral Statistics Office. As stipulated by article 22 of the 
Swiss Federal Act on Data Protection, the statistics office 
provided anonymized data on all Swiss hospital inpa-
tients from 2012 to 2017. The statistics office classifies 
general hospitals into five types: university hospitals, ter-
tiary care hospitals, large basic hospitals, medium basic 
hospitals and small basic hospitals. Each institution’s 
classification is based on the number of cases treated per 
year and/or a special hospital score assigned by the Swiss 
Medical Association [12, 13].

To comply with Swiss data protection regulations, we 
took only one-year annual patient population dataset; 
to reduce between-hospital heterogeneity, we included 
only general (acute care) hospitals. For the final models, 
we excluded patients admitted before the study year and 
over the last 2 weeks of the year, as it was impossible to 
link observations across the calendar year and to main-
tain consistency of maximum of 14 days of exposures and 
outcomes for each patient. Additional  file  1 provides a 
flow diagram depicting our inpatient case selection pro-
cess for analysis.

Dataset and variables
The dataset included variables, like age in five-year cat-
egories, sex, hospitals/types, admission and discharge 
dates, diagnosis codes, in-hospital mortality. Addition-
ally, individual-level variables Elixhauser index/Swiss 
comorbidity weights [14] and the dummy variable for 
weekends were computed from diagnosis codes and date 
of admission and discharge respectively.

Given the longitudinal nature of the problem, variables 
that change over time (e.g., daily capacity utilization, 
daily patient turnover and daily patient clinical complex-
ity level (PCCL) were derived from all patients, on each 
of the days for the study year as time-varying exposures 
and confounders at the hospital level (Additional  file  1, 
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table S1). For a fair real-world comparison, daily patient 
turnover and capacity utilization were computed as per-
centages from the day of the study year with the most 
admitted patients for each hospital. Daily disease sever-
ity was computed as PCCL value per hospital per day 
[10]. PCCL is a measure of the cumulative effect of a 
patient’s comorbidities and/or complications for each 
episode of care. Values range from 0 (no complexity) to 
4 (very severe complexity) [15]. The outcome of interest 
was 14-day in-hospital mortality, i.e., all deaths occurring 
during inpatients’ first 14 days in the hospital. We took 
14 days of exposures and outcomes as more than 94% 
of all annual inpatients were discharged within the time 
frame. We considered staffing as an unmeasured variable 
as it was not available in our dataset.

Treatment‑exposure strategy
Our main exposure is represented by a binary variable 
indicating the level of capacity utilization as above or 
below a critical threshold of mortality risk. We derived 
the threshold from the annual distribution of capacity 
utilization for each hospital. Identifying a critical cut-off 
relevant to a particular outcome (mortality) is challeng-
ing. Some studies have found that a capacity utilization 
above 80–90% will lead to increases in infection risk, 
serious medical errors and mortality [2, 16, 17]. The study 
from Kuntz et al. [3] considered a safety tipping point at 
92.5% of bed occupancy.

Our study included a heterogeneous group of 102 gen-
eral hospitals whose capacity utilization varies through-
out the year [10]. To explore the distribution of capacity 
utilization we used violin plots, with the 85th percentile 
as a breakpoint for each hospital. To evaluate the robust-
ness of this approach we implemented sensitivity analy-
ses using cut-offs bracketing the 85th percentile and 
computed the effect for each model. This shows that each 
hospital has a specific threshold of high risk to mortal-
ity at the 85th percentile (Additional file 1, table S2 and 
S3) and each hospital is unique in its capacity utilization 
distribution reflecting the heterogeneity of Swiss hospi-
tals. From the daily binary indicator of exposure above 
the high-risk threshold of capacity utilization, we derived 
cumulative counts of days with above the threshold 
exposure, over 14 days, and used this in the models, as it 
accounts for high exposure and counts of past high expo-
sures [18, 19].

Exploring relationships between time‑varying variables 
through DAGs
Causal DAGs are mathematically grounded [20] graphi-
cal representations of data-generating mechanisms. 
Additionally, thanks to graphical criteria based on the 
rules of d-separation, the structure of a DAG helps 

researchers identify and evaluate each variable’s role, i.e., 
as a mediator, collider or confounder [6]. Thus, when we 
wish to assess an exposure’s causal effect (if any) on an 
outcome, we can depict the available evidence as a DAG 
[6], which explicitly describes both the model and its 
underlying assumptions [21, 22].

We started the development of a causal DAG after this 
study’s conception. Mainly, we were interested in the 
relationship between capacity utilization and in-hospital 
mortality, while accounting for hospital and individual-
level factors that may influence those relationships. We 
used two levels of capacity utilization as exposure, 14-day 
in-hospital mortality as the outcome and patient turno-
ver and PCCL as the main time-varying confounders. To 
simplify the relationships shown in the DAG and to focus 
on the main concept we assumed no measurement error 
and no other confounding factors.

Blocking all back-door (i.e., non-causal) paths [23] 
between exposures and outcomes, allows adjusting 
for confounding and estimating the causal effect of an 
exposure on the targeted outcome. To construct a DAG 
that adequately captures the current knowledge about 
the process we used DAGitty [24], with several itera-
tive steps to synthesize evidence by adding time-varying 
covariates, individual covariates and unmeasured vari-
ables. Additional file 1 provides the process of building 
causal DAGs for time-varying variables.

One underlying assumption is that the same graphical 
structure will repeat across various time points. There-
fore, to simplify the visual representation, the final DAG 
in Fig.  1 shows only the connection between variables 
for the first 2 days in the two-week observation period. 
Including any unmeasured variables not captured in 
our dataset—e.g. staffing—in the DAG shows how that 
variable might affect both exposure and outcomes, e.g., 
staffing could be linked with patient turnover [25] and 
in-hospital mortality [26]. Day-one exposure (to capacity 
utilization) affects the time-varying confounder (patient 
turnover) on day two. We also need to acknowledge an 
unmeasured variable that affects both patient turnover 
and 14-day mortality forming TCF (Fig.  1). Therefore, 
traditional methods (e.g., stratification, outcome regres-
sion) are bound to produce biased estimates of the effect 
of capacity utilization on mortality [6, 27, 28].

Statistical analysis
We reported the study population’s descriptive statistics 
overall and separately for all patients with 14-day mortal-
ity. Additionally, we described the daily distribution of 
each time-varying variable (capacity utilization, patient 
turnover and PCCL) via medians, interquartile ranges 
(IQRs), and minimum-maximum (Min-Max) per hospi-
tal and by hospital type.
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In preparation for the statistical evaluation, we used 
the raw data to derive the time-varying and outcome 
variables in a format suitable for the intended longitu-
dinal analysis. Each case was followed up for a maxi-
mum of 14 days. Where patients left or died within 
14 days, their time-varying data were included respec-
tively until discharge or death. Distributions of total 
exposure days for all study samples were explored for 
each hospital type [29].

We evaluated the suspected causative role of capac-
ity utilization on in-hospital mortality based on a DAG 
describing the hypothesized mechanism over time 
(Fig. 1). To estimate the higher risk of death, we evaluated 
the daily capacity utilization equal to or above the 85th 
percentile for each hospital in the study year. Addition-
ally, we adjusted for time-fixed covariates (age, sex, hos-
pital type, Elixhauser index/Swiss comorbidity weight, 
and weekend) that affected both exposure and outcomes. 
Finally, the models also accounted for any clustering of 
the observations at the hospital and patient levels.

To estimate a causal effect of exposure to high capac-
ity utilization on in-hospital mortality we fit MSMs using 
IPTW [9]. MSMs capture the relationship between the 
exposure and the potential outcomes, involving parame-
ters directly describing causal effects [6]. IPTW is a strat-
egy that allows us to estimate them from observational 

data, by eliminating any treatment confounding feed-
back and making exposure groups comparable [6, 30]. 
For longitudinal analysis, IPTW can be derived for each 
observation by multiplying the weights evaluated at each 
time point; the resulting weighting is usually stabilized to 
improve the precision of the MSM [31]. Basically, IPTW 
has the effect of creating an unconfounded population 
for low-capacity utilization versus high-capacity utiliza-
tion. Further, it eliminates treatment-confounder feed-
back, which sets it apart from other regression methods 
[32, 33]. All time-fixed covariates (comorbidity weights, 
hospital types, weekdays, age and sex) were adjusted in 
the exposure model to calculate the IPTW using R soft-
ware’s “ipw” package [34].

Marginal structural modelling is flexible enough to 
handle diverse types of data. In our case, we used multi-
variable logistic regression, with mortality as the binary 
outcome. To estimate the effect of increased exposure by 
one or more days before the endpoint, our model used 
cumulative days of exposure to high capacity utiliza-
tion. Models were fitted using the generalized estimat-
ing equation (GEE) approach in R’s “geepack” package 
[3, 35–37]. For completeness, we conducted the analysis 
with and without IPTW [38]. Finally, we derived odds 
ratios (with 95% CIs) for fourteen-day in-hospital mortal-
ity with cumulative exposure to high capacity utilization.

Fig. 1  Causal DAG for time-varying exposure, time-varying confounders and outcomes at day one and day two. Time-varying exposures are 
capacity utilization (CU1, CU2), time-varying confounders are patient turnover (PT1, PT2), patient clinical complexity level (PCCL1, PCCL2) and 
outcome mortality (M1, M2) at day one and day two with other fixed covariates (C) (e.g., age, sex, comorbidity weights) and unmeasured variables 
(U) (e.g., staffing). The arrows are limited to prevent overcrowding, main issue remained same if we add more arrows and to avoid complexity in 
DAG, we consider single unmeasured variable. The green path represents a causal path (open), the black path an adjusted (blocked confounder) 
path and the red path the biasing path as per DAGitty
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To complement our primary analysis, we conducted an 
alternative analysis of the total/short-term effect where 
we used the daily binary indicator of high capacity utili-
zation as exposure instead of a cumulative measure [39]. 
Finally, to assess the extent of potential model misspeci-
fications while using IPTW, we also considered an analy-
sis with stabilized weights truncated at their 1st and 99th 
percentiles.

Results
We analysed annual data collected over one calendar year 
on 1,152,506 inpatient cases in 102 Swiss general hos-
pitals, excluding admissions from the study year’s final 
14 days. Of these, 53.4% were female. One-fifth of admis-
sions were to university hospitals; 36.6% of patients had 
positive Elixhauser comorbidity weighting scores. Ten 
percent were very clinically complex. The overall four-
teen-day in-hospital mortality rate was 1.5% (16,998); 
the death rate was highest (2.3%) in small basic hospitals. 
Detailed characteristics of the study population, includ-
ing totals and fourteen-day mortality rates, are shown in 
Table 1.

Each of the time-varying covariates varied daily across 
all general hospitals. In University hospitals, while daily 
capacity utilization and PCCL value were highest, daily 
patient turnover was lowest. The daily distributions of 
time-varying variables—capacity utilization, patient 
turnover and patient clinical complexity level—are shown 
in Additional file 1, table S4.

Treatment‑exposure strategy and distribution
Across general hospitals, the range of capacity utilization 
was distinct but broad—and much broader in small hos-
pitals. On the hospital level, then, 85th percentile capac-
ity utilization, which we considered a threshold for the 
high and low exposures [3], was unique for each institu-
tion (Additional  file  1, table  S2). Details of exposure to 
high capacity utilization—reaching the cut-offs evalu-
ated per hospital type—are explored in Fig. 2 (85th Per-
centile and above). The mean threshold was 83.1% (SD 
8.6) across hospitals. For university hospitals threshold 
ranged from 92.8 to 95.9%; for tertiary care hospitals they 
ranged from 81.4 to 93.5%; for large basic hospitals from 
77.4 to 90.9%; for medium basic hospitals from 64.9 to 
86.8%; and for small basic hospitals from 42.1 to 91.1%. 
The total study population was exposed to 6,867,658 
hospital days, of which 1,279,021 (18.6%) included high 
capacity utilization. The robustness of the safety tipping 
point analysis, using different cut-offs of capacity utiliza-
tion, is demonstrated in the (Additional file 1, table S3), 
showing the most fit at 85th percentile. The distribution 
of patient’s days for counterfactuals by hospital type is 
shown in the Additional file 1, table S5.

Causal effect of time‑varying capacity utilization 
on in‑hospital mortality
The MSMs provide estimates of the causal effect of expo-
sure to high capacity utilization on mortality (Table  2). 
The distribution of the computed stabilized weights was 
characterized by a median (IQR) of 0.99 (0.93 to 1.05), 
Min-Max equal to 0.17–18.8 and a mean of 1.00. The 
density distribution of the stabilized IPTW is shown in 
the (Additional file 1). One additional day of exposure to 
high capacity utilization increases the odds of 14-day in-
hospital mortality by 2% (OR 1.02, 95% CI: 1.01 to 1.03).

For comparison, we also report odds ratios from the 
same multivariable logistic model as for the MSM—still 
using GEEs but without IPTW; therefore, this model is 
not adjusted for time-varying confounders. Using this 
model, an additional day of exposure to high capacity 
utilization was associated with only a 1% increase in the 
odds of 14-day in-hospital mortality (OR 1.01, 95% CI: 
1.00 to 1.02).

Our analysis also highlights the odds of dying are 9% 
higher during weekends than on weekdays, and the odds 
of dying are higher for higher comorbidity scores. To 
document the heterogeneity among hospital types, the 
results indicate that the odds of dying are considerably 
higher in small basic hospitals and lower in medium and 
large basic hospitals than in university hospitals. And, the 
alternative analysis of the total/short term effect of high 
capacity utilization yielded 10% higher odds of 14-day 
mortality (Additional  file  1, table  S6). As expected, 
truncating at 1% of the IPTW data resulted in a slightly 
reduced effect but greater precision (Additional  file  1, 
table S7).

Discussion
This observational study examined the causal effect of 
time-varying capacity utilization on 14-day in-hospital 
mortality using data from 102 Swiss general hospitals. 
With an increase of 1 day in the cumulative number of 
days for which capacity utilization was high, there was 
a 2% increase in the odds of 14-day mortality. The effect 
size we found is a slightly increased effect with respect 
to that obtained via GEE without IPTW. Using IPTW 
to fit a MSM is expected to produce estimates which are 
adjusted for all time-varying and time-fixed confounders 
we identified in our DAG, therefore quite possibly closer 
to the real causal effect.

Exploring the distribution of the study hospitals’ capac-
ity utilization revealed that each hospital had a differ-
ent threshold for increased risk of patient death, i.e., 
confirming the heterogeneity of Swiss hospitals. Thus, 
capacity utilization might depend on each hospital’s size, 
available services and resources and particularly on hos-
pitals’ management and planning. Madsen et  al.’s 2014 
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study in 72 Danish hospitals used 80–85% for high bed 
occupancy, correlating this with a 9% increase in mortal-
ity [2]. Another study in 83 German hospitals placed the 

tipping point at 92.5% [3], showing one in seven deaths 
was possibly related to high occupancy. As these studies 
took bed occupancy at the time of admission and did not 

Table 1  General characteristics of the study population in Swiss hospitals

Individual Patient Clinical Complexity Level (PCCL) ranges from 0 to 4, No clinical complexity, Mild clinical complexity, Moderate clinical complexity, Severe clinical 
complexity, Very severe clinical complexity

Total study population 14-days mortality (%)
Total population 1,152,506 16,998 (1.5)

Male 536,763 9662 (1.8)

Female 615,743 7567 (1.2)

Age groups

  0–19 years 152,887 558 (0.4)

  20–29 years 85,498 79 (0.1)

  30–39 years 125,141 156 (0.1)

  40–49 years 99,401 373 (0.4)

  50–59 years 139,695 1159 (0.8)

  60–69 years 163,193 2270 (1.4)

  70–79 years 192,614 4121 (2.1)

  80–89 years 156,026 5803 (3.7)

  90+ years 38,051 2479 (6.5)

Hospital types

  University (level 1) 222,552 3638 (1.6)

  Tertiary care (level 2) 688,637 10,591 (1.5)

  Large basic (level 3) 105,809 1194 (1.1)

  Medium basic (level 4) 118,705 1191 (1.0)

  Small basic (level 5) 16,803 384 (2.3)

Length of hospital stay (mean (SD)), days 6.2 (8.5) –

Elixhauser index (mean (SD)) 1.41 (1.81) 3.14 (2.06)

Elixhauser index (Swiss comorbidity weighting score)

   < 0 197,262 630 (0.3)

   = 0 532,629 1694 (0.3)

   > 0 to < 5 76,495 754 (1.0)

   ≥ 5 345,501 13,641 (3.9)

Individual (PCCL)

  No clinical complexity (0) 705,437 3759 (0.5)

  Mild clinical complexity (1) 16,933 65 (0.4)

  Moderate clinical complexity (2) 130,866 1346 (1.0)

  Severe clinical complexity (3) 174,576 3915 (2.2)

  Very severe clinical complexity (4) 124,694 7913 (6.3)

Days of admission

  Mondays 216,990 2890 (1.3)

  Tuesdays 204,425 2700 (1.3)

  Wednesdays 199,349 2561 (1.3)

  Thursdays 184,595 2538 (1.4)

  Fridays 161,107 2591 (1.6)

  Saturdays 86,680 1844 (2.1)

  Sundays 99,360 1874 (1.9)

Admission during weekdays

  Weekdays 966,466 13,530 (1.4)

  Weekends 186,040 3718 (2.0)
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trace cumulative exposure over each hospital stay, their 
effects appear larger than they are. Moreover, they con-
sidered only one specific cut-off value for all studied hos-
pitals. Therefore, they may not have adequately captured 
the threshold of inter-hospital variations of capacity uti-
lization exposure, which might be of great interest for 
managers and policymakers.

This is a large-scale study, adjusting for multiple fac-
tors and accounting for clustering of observations by 
hospital and patients, directed at estimating the causal 
effect of capacity utilization on mortality. For instance, 
we also observed a weekend effect in Swiss hospitals 
and this may also have been influenced by staffing pat-
terns [40]. Furthermore, the odds of dying were also 

Fig. 2  Violin plots showing the annual density distribution of daily capacity utilization (exposure) across 102 Swiss general hospitals. Violin plots 
across 102 Swiss general hospitals for a study year with 85th percentile and above showing higher risk of mortality and mean capacity utilization 
per hospital



Page 8 of 11Sharma et al. BMC Health Services Research         (2022) 22:1551 

higher for patients with higher comorbidity weight-
ing scores [14]. These scores showed results similar to 
those of earlier studies in Canada and the US [41, 42].

As noted, to eliminate the effect of TCF, we computed 
IPTW for each case. This required including and evaluat-
ing time-varying confounders, e.g., daily patient turnover, 
daily PCCL value, alongside time-fixed variables. To our 
knowledge, this is the first use of a G-method [6] (e.g., fit-
ting MSMs with IPTW [32]) to assess the causal effect of 
capacity utilization on in-hospital mortality.

Methodologically, then, this study differs in one major 
way from others that have used traditional methods of 
risk adjustment [17], it is the first to adjust for the bias 
of TCF [2, 43]. Further, DAGs allowed us to explore the 
qualitative relationships that link unmeasured variables 
such as staffing levels [26, 44] with both confounders 
and outcomes. A study in English general hospitals [26] 
showed a 3% increase in in-hospital mortality among 
patients cared for by fewer nursing staff (RNs and nurs-
ing assistants). To visualize the role of TCF, we assumed 
staffing as an unmeasured variable in our DAG. Even 
though the staffing variable was not included in our data-
set, we believe IPTW-informed MSMs have corrected 
our estimates (e.g., staffing will impact patient turnover).

From a hospital-managerial perspective, uncover-
ing substantial changes in capacity utilization over time 
calls for accurate monitoring of capacity utilization and 
its distribution. As variation in daily capacity utilization 

also changes the required resources/staff, e.g., the differ-
ences between workday and weekend workloads. Vola-
tile capacity utilization lowers the critical point in small 
hospitals. For instance, in small basic hospitals, dynamic 
capacity utilization might even partly explain why their 
odds of inpatient mortality are higher than in university 
hospitals, even though they have lower average capacity 
utilization. A possible reason of low capacity utilization 
threshold in small hospitals might be due to the shortage 
of staffing [2], as induced by Swiss DRG for reducing cost 
[45], however, there might be negative consequences, 
when patients load doubles on some days of the year. 
The causal effect is likely driven by the variation of care 
demand and supply including factors like patient turno-
ver and patient complexity in each hospital and their 
daily staffing patterns. Another consideration for future 
research could be to investigate exposure patterns of high 
capacity utilization during the early (e.g. < 5 days) or late 
hospitalization period.

This study had certain limitations. Firstly, Swiss 
data protection regulations prevented us from link-
ing patient data from 1 year to another and unit-level 
analysis was not possible because of the lack of data 
about patients transferred between units. Therefore, we 
were also unable to construct full datasets for patients 
admitted over the entire study year and this might have 
somehow influenced our causal estimation. Moreover, 
we couldn’t trace variation of PCCL and Elixhauser 

Table 2  The adjusted effects of cumulative daily exposure to high capacity utilization on 14-day in-hospital mortality without and 
with IPTW (MSM)

Inverse Probability of Treatment/exposure Weight (IPTW) of capacity utilization ≥85th percentile for daily-varying confounders, patient turnover and PCCL (Patient 
Clinical Complexity Level). The reference categories are (hospital types: university hospitals, Swiss comorbidity weights: < 0). The age groups (five-year) are converted 
into numeric. Clustering of observations by hospital and patient is accounted for both models

Without IPTW With IPTW (MSM)

Estimate p-value Odds Ratio (95% CI) Estimate p-value Causal Odds Ratio (95% CI)

Daily exposure to capacity utilization

   ≥ 85th percentile per day 0.011 < 0.05 1.01 (1.00 to 1.02) 0.016 < 0.001 1.02 (1.01 to 1.03)

Other adjusted variables

  Weekend 0.091 < 0.001 1.10 (1.06 to 1.13) 0.088 < 0.001 1.09 (1.05 to 1.13)

Hospital types

  Tertiary care (level 2) 0.007 0.708 1.01 (0.97 to 1.05) 0.009 0.64 1.01 (0.97 to 1.05)

  Large basic (level 3) −0.149 < 0.001 0.86 (0.80 to 0.92) − 0.141 < 0.001 0.87 (0.81 to 0.93)

  Medium basic (level 4) −0.114 < 0.001 0.89 (0.83 to 0.95) −0.118 < 0.001 0.89 (0.83 to 0.95)

  Small basic (level 5) 0.231 < 0.001 1.26 (1.13 to 1.40) 0.523 < 0.001 1.69 (1.48 to 1.92)

Elixhauser index (Swiss Comorbidity weights)

   = 0 1.090 < 0.001 2.97 (2.71 to 3.25) 1.090 < 0.001 2.97 (2.71 to 3.26)

   > 0 to < 5 0.847 < 0.001 2.33 (2.10 to 2.60) 0.865 < 0.001 2.38 (2.13 to 2.65)

   ≥ 5 2.060 < 0.001 7.83 (7.22 to 8.49) 2.080 < 0.001 8.02 (7.39 to 8.71)

Age in 5 years 0.028 < 0.001 1.03 (1.03 to 1.03) 0.028 < 0.001 1.03 (1.03 to 1.03)

Female −0.267 < 0.001 0.76 (0.74 to 0.79) −0.270 < 0.001 0.76 (0.74 to 0.79)
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comorbidities during the stay as ICD10 codes were 
reported for the total hospital stay. However, daily 
PCCL values per hospital were used as a time-varying 
confounder. Secondly, certain assumptions [31, 32] of 
causal inferences applied to our study. For example, 
although we considered including unmeasured vari-
ables (e.g., staffing level data or a proxy variable which 
was not available on a daily basis for all general hos-
pitals) in our DAG our results remain hostage to the 
ignorability assumption [31, 46]. For instance, patients’ 
previous experiences with hospital services or that dis-
charge may constitute a competing risk due to patient 
selection might challenge the study’s causal claims [3]. 
Another critical assumption was the positivity [31, 46], 
which we tried to address by using the 85th percentile 
(of each hospital’s highest occupancy) as a threshold 
of high exposure across all hospitals, rather than 85% 
of full capacity utilization. However, in some cases, a 
very short length of stay could either have only high 
exposure or only low exposure. The third important 
assumption was that our chosen IPTW model is cor-
rectly specified. As widespread weights may be an indi-
cation of misspecifications [46] we verified that the 
average IPTW was 1.0 and observed that min-max val-
ues were not particularly extreme.

Conclusion
This observational study aimed to evaluate the causal 
effect of capacity utilization on 14-day in-hospital mor-
tality in Swiss general hospitals. Using literature and 
expert knowledge, DAGs allowed us to determine time-
varying exposure, confounders and fixed covariates. Our 
analyses using MSM with IPTW indicated that a one-day 
increase in cumulative exposure to high capacity utiliza-
tion caused a 2% increase in the odds of 14-day in-hos-
pital mortality in Swiss general hospitals. The mortality 
risk threshold varied across hospitals, depending on each 
institution’s distribution of capacity utilization through-
out the year. Some hospitals’ widely distributed capac-
ity utilization might have impaired their responsiveness 
to changing demands, possibly resulting in adverse out-
comes including mortality. Finally, hospital managers 
need both to understand the risk of high capacity utili-
zation and to know when they reach their thresholds to 
reduce the volatility of capacity utilization and ensure 
that resources safely meet daily care demands.
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