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Abstract 

Background: Reinforced by the COVID‑19 pandemic, the capacity of health systems to cope with increasing 
healthcare demands has been an abiding concern of both governments and the public. Health systems are made up 
from non‑identical human and physical components interacting in diverse ways in varying locations. It is challeng‑
ing to represent the function and dysfunction of such systems in a scientific manner. We describe a Network Science 
approach to that dilemma.

General hospitals with large emergency caseloads are the resource intensive components of health systems. We 
propose that the care‑delivery services in such entities are modular, and that their structure and function can be 
usefully analysed by contemporary Network Science. We explore that possibility in a study of Australian hospitals 
during 2019 and 2020.

Methods: We accessed monthly snapshots of whole of hospital administrative patient level data in two general 
hospitals during 2019 and 2020. We represented the organisations inpatient services as network graphs and explored 
their graph structural characteristics using the Louvain algorithm and other methods. We related graph topological 
features to aspects of observable function and dysfunction in the delivery of care.

Results: We constructed a series of whole of institution bipartite hospital graphs with clinical unit and labelled wards 
as nodes, and patients treated by units in particular wards as edges. Examples of the graphs are provided. Algorithmic 
identification of community structures confirmed the modular structure of the graphs. Their functional implications 
were readily identified by domain experts. Topological graph features could be related to functional and dysfunctional 
issues such as COVID‑19 related service changes and levels of hospital congestion.

Discussion and conclusions: Contemporary Network Science is one of the fastest growing areas of current scientific 
and technical advance. Network Science confirms the modular nature of healthcare service structures. It holds con‑
siderable promise for understanding function and dysfunction in healthcare systems, and for reconceptualising issues 
such as hospital capacity in new and interesting ways.
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Background
An abiding concern during the COVID-19 pandemic 
has been the capacity of health systems to cope with 
the demands of people infected with SARS-CoV-2. 
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There has been anxiety that hospitals, overwhelmed 
by demands for care, might break under the strain. 
However, hospitals are not brittle objects. Nor are they 
static fortified positions that can be overwhelmed by 
an encroaching force. They are complicated, evolved, 
human artefacts whose designs include a range of 
mechanisms [1] to balance institutional viability and 
the, at times, competing demands of individual patients 
whose needs are further championed by the staff caring 
for them.

Biomedical research and practice is appropriately con-
cerned with identifying the right biomedical and psycho-
social care for patients and communities. However, right 
care is the product of a system whose elements include 
providing right care, to the right patient, at the right time, 
in the right place, and, whenever possible, right first time. 
In that context, the provision of care is as much a func-
tion of the interactions between the components that 
make up a system of care as it is of the technical com-
petencies required. But the complexity of the demands, 
and the diversity of the necessary responses, mean that it 
is challenging to represent the interactions involved in a 
scientifically robust manner [2] and to develop metrics of 
system level functioning that span periods when the sys-
tem is running smoothly and when it is dysfunctional. For 
example, problems with an Emergency Department were 
leading to failures to meet specific targets for initiation of 
meaningful treatment [3]. There were measurable delays 
in admitting patients to the body of the hospital, and there 
were measurable increases in the number of ambulance 
queuing to offload patients. None of those outcome indi-
cators provided any insight into the organisation of the 
resources for patients within a Department when it was 
running smoothly or under strain. When internal organi-
sational problems that had emerged during a period of 
strain were resolved, the functioning of the Department 
immediately improved [1, 3] without any new resources 
being required. A five year review demonstrated that the 
improvements had been maintained [1]. It is organisation 
within systems of care, and the potential impact of those 
organised systems on patient related outcomes, that this 
paper is concerned with.

The aims of our program of work have therefore been, 
first, to create a quantitative, structured, representation 
of how the human and physical resources involved in 
delivering patient care work together [4] as a function-
ing whole. Then, to explore the relationship between 
that representation and other measures of hospital 
function and dysfunction. Due to the complexity of the 
systems involved, a degree of abstraction is a required. 
Nevertheless, we have tried to remain mindful of our 
cumulative experience redesigning real-world health-
care systems [3, 5, 6].

In the current study, whilst bearing the aims in mind, 
we have chosen to focus on a component part of health 
service provision, rather than a total service. A Public 
hospital is not a single functional entity. For example, 
out-patient clinic-type services work differently to inpa-
tient services. Same-day procedural activities are different 
again. The primary focus of our current analysis has been 
overnight stay services, an important source of public 
concern when there is evidence of dysfunction. We con-
ceptualise overnight care as the product of interactions 
within and between three general functional layers.

A tripartite structure is common in analyses of com-
plicated systems with fixed elements subject to variable 
demands. Examples include traditional telephone, and 
electrical transmission, systems [7]. Tripartite struc-
tures have also been widely adopted in the allied field 
of healthcare operational research [8]. In the tripar-
tite structure proposed here, the primary, or base, layer 
(corresponding to the operational layer in operational 
research) is made up from direct patient-care-provider 
contacts. Then there is a top layer of political, bureau-
cratic, and managerial, policy and control over human 
and physical resources (corresponding to the strategic 
level in operational research), incorporating manage-
rial constructs such as allocating services to Divisions or 
Departments, as seen in organisation charts. Finally, cor-
responding to the tactical layer in operations research, 
we postulate a functional middle layer made up from the 
day-to-day organisation and logistics of the human and 
physical interactions involved in supporting the direct 
delivery of care. It is within this functional middle layer 
that pressures on institutional overnight stay capacity are 
likely to be both transmitted (e.g. COVID-19 is causing 
an increased demand for personal protective equipment 
and ventilators) and buffered (e.g. how can we best re-
organise our resources to meet surges in demand?). As 
such, this middle layer is our layer of interest, and the 
focus of our efforts at quantifiable, and generalisable, 
representations.

The current study is based on the proposition that the 
organisation of healthcare functional structures can be 
best understood using the construct of modularity, and 
analysed using the scientific and technical approaches 
of contemporary Network Science. Using a hypothesis 
testing format, the null hypothesis is that network graphs 
of inpatient healthcare processes have a random graph 
structure. The test hypothesis is that the network graphs 
[7] have a structure that is unlikely to have occurred by 
chance.

Modularity and Network Science
Some years ago, Simon [9] expounded a general theory 
for the organisation of complicated biological and 
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human systems. He argued that many complicated 
systems were made up from subsystems which in turn 
contain their own subsystems, in a hierarchical fashion. 
His key assertion was that interactions within such 
systems would be made up from semi-autonomous 
interacting near-decomposable, or modular, entities. 
Important advantages of modular systems are that the 
impact of breakdowns can be contained within modular 
components and that modular systems can adapt to 
changing circumstances a module at a time, without 
disrupting overall system integrity. Our preceding 
experience redesigning healthcare processes emphasised 
the possibility that Simon’s work would be relevant to 
healthcare [1]. Baldwin and Clark [10] have provided 
a quasi-operational definition of a module based on 
Simon’s concept of near-decomposability. “A module is a 
unit whose structural elements are powerfully connected 
among themselves and relatively weakly connected to 
elements in other units. Clearly there are degrees of 
connection, thus there are gradations of modularity” 
([10] p.63). Hierarchical modularity has now been 
identified as an organising principle in a wide range 
of biological and human created systems [10]. Whilst 
modularity has been explored in healthcare, this has been 
mainly in regards to ‘plug and play’ modular component 
interoperability and narrow focussed improvements 
[11]. By contrast, an example of the focus of the current 
program of work can be seen by analogy with changes in 
the area of interventional cardiology.

The evolution of cardiac stents from bare metal to 
drug-eluting has been an important therapeutic advance. 
The new stents could be incorporated into everyday 
use as a specific change in a restricted area of practice, 
that is, as an intramodular process change. The take-up 
at any scale of another important cardiac technology, 
implantable defibrillators, involves a much larger 
system redesign incorporating a number of modular 
components [12, 13] and their interactions. It is the 
development of quantitative representations of inter-
modular functional structures and their interactions, that 
is of particular interest here. However, whilst modularity 
can be described in both words, and as symbolic matrices 
of various kinds [14, 15] it had been hard to quantify until 
advances in Network Science have enabled modularity to 
be studied as a quantitative system metric [16].

Network Science has been described as relational 
science [17], a science of how the components of systems 
work together [18]. As a scientific discipline, Network 
Science rests on certain basic aspects of the properties of 
network graphs, and it is important to be aware of these 
basic aspects when considering the products of Network 
Science analyses. Networks represent phenomena of 
interest as a series of points, called nodes or vertices, 

linked in pairs by edges, lines that represent whatever 
links the nodes. In the production of a network graph 
[17], the data is formatted, then analysed, as an adjacency 
matrix in which nodes form both row and column 
headers. The matrix cells identify whether a pair of nodes 
do, or do not, interact. When interaction patterns within 
adjacency matrices are mapped as a graph on a plane, the 
resultant figure has topological properties. That is, its 
spatial and geometric relationships are preserved under 
continuous deformations such as stretching, twisting, or 
bending, but not tearing apart. A range of mathematical 
tools can be employed to represent, then analyse, the 
interconnection between the entities that make up the 
topologically described networks [7, 19].

An important feature of network graphs of complicated 
systems is that the structure of the graphs can be tested 
against the null hypothesis that the graphs depicts a 
random [20], or null-state system. As described by Erdős 
and Rény [20], in random graphs the nodes connect at 
random. As a result, the likelihood of having an edge 
between any pair of nodes simply follows the laws of 
probabilities and the pattern of interconnections follow 
a Gaussian, or normal distribution. The probability (or 
rather, the improbability) of the chance emergence of 
members of families of graphs with various kinds of 
specific non-normal features can then be calculated.

Newman [18] has made it clear that modularity as 
described by Simon [9] has a counterpart in topologi-
cal modularity. It has been found that many topologies 
of sparse systems (systems where the number of edges is 
of the same order of magnitude as the number of nodes) 
have an internal structure in which clusters, or com-
munities, of nodes can be identified [16]. As premised 
by Simon [9] the nodes within communities are densely 
interconnected with each other, and sparsely intercon-
nected with nodes in other communities. Newman 
developed a quantitative parameter that specifies the 
overall modularity of a network graph. Modularity val-
ues approaching 1, the maximum, imply a network with 
a very strong modular structure. In practice, values of 0.3 
to 0.7 are common in networks with recognisable com-
munities [18]. A variety of algorithms for community 
detection are available [16]; modularity as a graded phe-
nomenon has been demonstrated in network graphs of a 
wide variety of systems [16].

The depiction of healthcare systems as network graphs 
is not new. A number of healthcare related studies based 
on network graphs have been published. This includes a 
substantial literature of studies using social network anal-
yses [21–23]. Recently, healthcare-related studies [24, 25]
based on the more quantitative contributions of statisti-
cal physicists to Network Science have begun to emerge. 
A number of these have been predominantly concerned 
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with movements of patients across networks [26–28]. As 
yet, there has been limited work using community detec-
tion methods to describe the functional organisation 
of healthcare delivery at the operational level. This defi-
ciency [24] is addressed in the studies described below.

Methods
Constructing healthcare network graphs
Networks may be represented by many different types of 
graphs. We constructed a series of undirected bipartite 
graphs [29, 30] (graphs made up from two types of 
nodes) using named wards and clinical units as nodes. 
The patients linking the units and wards that were related 
to their care formed the edges.

A designated ward not only identifies a set of physical 
resources; it represents the nursing and other ward 
specific groups of staff involved in the delivery of the 
care of the patients managed in that ward. The doctors 
and allied health practitioners who take responsibility for 
specific areas of diagnosis, care planning, and therapy, 
commonly work in named clinical units. Those units may 
provide care in a variety of locations. A clinical unit might 
function in one ward only (e.g. a single geriatric team 
might provide inpatient care in a Geriatric Evaluation 
and Management designated Ward) or in multiple 
wards (a cardiology unit might care for patients in a 
Coronary Care Unit and two cardiac-designated wards).
Contrawise, a designated ward, and its geographically 
based staff, may host patients under the care of one, or 
many, clinical units.

Network graphs may be undirected, or directed if there 
is a dependency that subordinates one node to another. 
However, both types of graphs can be analysed in similar 
ways. In hospitals and health services, patient care is the 
product of teamwork between many different groups of 
staffs: that teamwork is best represented by undirected 
interactions.

All the analyses reported here were undertaken on 
anonymised data sets. The studies were performed 
in conformity to an institutional ethics review by the 
relevant health authority, as described below.

Network graphs are arithmetic products. Their utility 
depends on their interpretability by domain experts. A 
series of meetings were convened with a multi-discipli-
nary range of healthcare domain experts who reviewed 
the bipartite undirected graphs. Their comments led to a 
novel analysis of the graphs’ modular structures.

Data sources
The current studies [25] made use of anonymised hospital 
data derived from mandated patient level data systems 
(patient administrative data sets). In Australia, those 
data systems follow detailed national guidelines [31]. 

The anonymisation process prevents the identification 
of individual patients, but data sets of this kind contain 
patient related data. For privacy reasons, they are not 
readily made available for public use.

Anonymised administrative data sets for two Australian 
public general hospitals, Hospital 1 and 2, were accessed. 
Both hospitals provided a range of secondary and tertiary 
care services to substantial catchment populations. Hos-
pital 2 also provides a range of state-wide super-speciality 
services. It does not provide paediatric, gynaecological or 
obstetrics services. Both hospitals collect mandated inpa-
tient administrative data as described above. Hospital 1 had 
also developed a searchable patient journey data base that 
overlays inpatient data with a computerised time and loca-
tion stamp each time a patient is moved between locations 
within the hospital. This allows a ward and clinical unit to 
be identified at the point that data is extracted. The treat-
ing wards and units in Hospital 2 were as recorded at the 
point of discharge. For both hospitals, the data covered 
the whole of 2019, and up to September in 2020. The data 
collection could not be extended in Hospital 1. After that 
time any data extraction procedures would have had to be 
undertaken by analysts who were required to work exclu-
sively on immediate COVID pandemic issues. For Hospital 
2, the data collection was extended to cover the remaining 
months of 2020.

Adjacency matrices, network graphs and community 
detection :. identifying functional structures and network 
graph characteristics
For Hospital 1 and 2, adjacency matrices were devel-
oped based on each monthly snapshot. The snapshots 
were also merged for calendar year matrices. In the 
adjacency matrices, the complete set of wards and units 
formed both the column and the row headers, and the 
presence or absence of shared patients formed the cell 
content. This was not an accumulative procedure; only 
the link at the moment of overall data extraction was 
recorded. The data extraction was based on the same 
date each month, randomising the data in relation 
to the day of the week. Whilst data was available to 
weight the edges in relation to the numbers of patients 
involved, unless otherwise indicated, as previously 
stated, the studies were conducted on unweighted, 
undirected data.

The matrix data was analysed using specialised open-
source software Gephi [32] (Version 0.9.2). The widely 
used Louvain community detection algorithm [33] for 
detecting modules was applied, and the resultant graphs 
displayed using the ForceAtlas2 algorithm [34]. ForceAt-
las2 is a force directed layout program within Gephi, used 
to spatialize a network. The Gephi program allows for the 
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computation of a variety of graph parameters, including 
the modularity parameter.

Network graphs of the monthly snapshots and of the 
composite calendar year data bases were prepared for 
each Hospital. Graphs were first produced for the whole 
population of nodes and edges. In due course, subtraction 
graphs were produced in which emergency admission 
only, or elective admission only, graphs were created.

Relating graph identified functional structures 
to a measure of hospital dysfunction
The domain experts reviewed the graphs for the whole 
population of nodes. They noted that the graphs, which 
were readily interpretable, pointed to a heterogenous 
nature for the modular structures within the networks. 
A minority of modules appeared to demonstrate a 
greater degree of internal coherence than the remaining 
modules. The possibility was also raised that variations 
in overall graph coherence might relate to periods of 
overcrowding in the Emergency Department. These 
issues were further explored in Hospital 1, whose data 
included a surrogate measure of the outcome of hospital 
congestion episodes.

A network graph is a memoryless figure. To develop 
a longitudinal representation of variations in network 
make-up, links between graphs were required that 
would provide some insight into the behaviour, over 
time, of the differing modules. Pairs of recurring ward 
unit combinations were used to link a range of modules 
across graphs, making it possible to identify the temporal 
variability of the range of modular structures in each 
hospital (full details of the procedure involved are 
available from the corresponding author on request).

The Coefficient of Variation (cv) for identified modular 
structures in each hospital was computed, and presented 
in Table  1. The cv is the ratio of the standard deviation 
of a set of values in a data set to their mean value. 
Empirically, we took a cv value of 0.2 as a threshold 
separating what we then termed high coherence modules 
(cv < 0.2), from the remaining modules. There were three 
such high coherence modules in each hospital.

The data base for the snapshots for Hospital 1 con-
tained a surrogate measure of congestion, the number of 
patients at midnight who had earlier been accepted for 
admission, but who had still not been allocated an inpa-
tient bed (delayed placement patients). The relationship 
between the number of delayed placement patients and 
modularity was examined by computing the correlation 
between their number, and monthly modularity values 
in the Hospital 1 snapshots. The correlations were exam-
ined for networks with, and without, the high coherence 
modules.

Results
The identification of functional structures and network 
graph characteristics
Figure  1 shows two pairs of graphs for each hospital. 
One of the pairs is the composite graph for 2019, the 
other is a graph of a monthly snapshot for March 2020. 
The graphs as shown are taken from a series of graphs 
that include both individual monthly and composite 
snapshots for 2019 and 2020. All the graphs are bipartite 
in form. The nodes are labelled with abbreviations rep-
resenting either wards or clinical units. The labels iden-
tify the usual clinical functions of the modular elements. 
The size of the nodes represents variations in the num-
bers of adjacent edges: that is, the degree of the nodes, 
not their edge weights. Network graphs are topologies. 
The presentation and format of the graphs can be var-
ied without changing the underlying interactions. The 
nodes can be rectangles and ovals, or all circles. The col-
ours are applied by the computer program, and the col-
ouring is unique to each generated graph.

The network graphs confirmed the modular nature 
of the ward-unit structures through which inpatient 
care was delivered in both hospitals. The modularity 
value for the composite graph of Hospital 1 in Fig. 1 (a, 
2019) was 0.714 and for Hospital 2 (b, 2019), 0.734. The 
modularity value of the March 2020 (c, 2020) graph for 
Hospital 1 was 0.71, and for Hospital 2 (d, 2020) was 
0.77. Modular structures were identifiable throughout 
the whole period of study. Figure 2 shows the monthly 
modularity scores of the two hospitals up until Septem-
ber 2020.

The 2020 snapshots cover the initial period of the 
COVID 19 pandemic. Whilst Hospital 1 was involved as 
a community hospital in the response to the pandemic, 
Hospital 2 was a designated SARS-CoV-2 response hos-
pital where elective admissions were restricted in antici-
pation of pandemic demands. At that stage, whilst the 
morbidity of the SARS-Cov19, a respiratory virus, was 
not yet clear, it was deemed important to ensure adequate 
resources were available, both in terms of intensive treat-
ment facilities including ventilators in negative pressure 
environments, and the staff to support them.

The network graphs appeared to be responsive to the 
changes in function. In Fig. 2, Hospital 1 showed a brief 
increase in modularity over the initial COVID-19 pan-
demic period, whilst Hospital 2 showed a more marked, 
and more sustained, increase in the same period. ‘Sub-
traction’ graphs were constructed for both hospitals, in 
that the adjacency matrices were repopulated entirely 
with patients admitted only with an emergency desig-
nation, or only with an elective designation. It appeared 
that for Hospital 2 (Fig. 1, d 2020), there was a marked, 
and fairly brief, overall reduction in admissions, and the 
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Fig. 1 Sample graphs showing modular structures for hospitals 1 and 2 with modules distinguished by colours. Acronyms as used on each 
node correspond to their original names in the Hospitals. Graphs (a) and (b) are produced using composite data over the whole of 2019. Nodes 
corresponding to wards are indicated by squares while clinical units by ovals. Graphs (c) and (d) are from a single monthly snapshot in March 2020, 
where both wards and clinical units are indicated by circles. The complete series of graphs, plus the membership of the identified communities, are 
available on request from the authors
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residual elective work that was not cancelled was concen-
trated in a limited number of modules.

Network graphs characterised by the presence of mod-
ular interactions between groups of nodes share a num-
ber of mathematical properties that reflect important 
functional characteristics of the systems represented. 
The degree of a node is the number of other nodes that 
connect directly to the node in question. As previously 
described, in graphs where inter-connections between 
nodes are random, the overall distribution of degrees will 
be normal, or Gaussian in nature. There will be a mean, 
or average number of connections, and a low likelihood 
of extreme numbers of connections. Network graphs 
with modular structures are complicated systems, and 
as such, they commonly have a non-linear node degree 
distribution that is unlikely to have occurred by chance 
[35]. There is some controversy in the Network Science 
community over the extent to which complicated graphs 
share a characteristic node degree distribution in which 
there are a large number of nodes with a small degree, 
and a small number of nodes with a much larger degree, 
the latter nodes forming a fat-tail in a probability distri-
bution [36, 37]. Such distributions may follow a power-
law distribution, or some other non-linear fat-tailed 
distribution [35, 36]. Extensive discussions of the impli-
cations of power-law and other distributions are available 
in [7].

Figure 3 shows the histogram of node degree distribu-
tion from Hospital (1) The raw and straight line log-log 
distributions are clearly non-Gaussian. Analytical calcu-
lations using MATLAB [38] confirm that the exponential 
function is a preferable fit for the distribution. Specifi-
cally, the MSE (mean square error) for an exponential 
type of distribution (Weibull type) was 0.00006, while the 
error for fitting a normal distribution was 0.0001. Similar 

findings were identified for Hospital (2) A Weibull distri-
bution is one of the exponential distributions that pro-
duces a fat-tail of probabilities.

The relationship between network graph identified 
structures and delayed admissions of emergency patients
In relation to the study of modular structures following 
the domain expert review, the sub-threshold modules 
in Hospital 1 included a mental health related module, 
a women’s health services module and a geriatric 
assessment unit. In Hospital 2 there was also a mental 
health unit, an acute medical assessment unit, and a 
haematology oncology cancer service. In both hospitals, 
the super-threshold cv modules were the more general 
acute medical and surgical services.

The relationship between the number of delayed 
placement patients and modularity was examined by 
computing the correlation between their number, and 
modularity in the Hospital 1 snapshots. The number 
of delayed placement patients varied from a low of 9 to 
a high of 24. Detailed specification of the numbers of 
delayed patients per snapshot has not been provided 
so as to avoid any possibility of a breach of privacy. The 
month-by-month variations in modularity for Hospital I 
are shown in Fig. 1. The correlation between the delayed 
placement numbers and the overall snapshot modularity 
parameters was not statistically significant (r = 0.33).

We re-examined modularity, excluding the three low 
cv modules, based on the assumption that these services 
were not intensively involved in the high volume medi-
cal and surgical cases that made up the majority of the 
delayed placement patients [39]. The average modularity 
score for the remaining snapshots fell from 0.73 to 0.66, 
with a distribution that ranged from 0.613 to 0.706. The 
correlation increased to r = 0.48 (p < 0.05) with lower 

Fig. 2 Comparison of modularity scores between two hospitals (the upper one is Hospital 2 while the lower is Hospital 1)
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modularity being linked to increases in numbers of 
delayed placement patients. We repeated that analysis 
excluding patients admitted as elective patients in the 
data set, and the correlation increased slightly to r = 0.53 
(p < 0.05).

Discussion
A modern general hospital hosts, on a daily basis, a 
large number of encounters between patients and care 
providers. Whilst the majority of those encounters have 
a satisfactory outcome, substantial numbers are adversely 
affected by a variety of issues [40]. We argued in the 
introduction that the analysis of healthcare dysfunction 
has to be linked to an understanding of function, and that 
a quantitative measure of function may be a structured 
measure.

In this set of studies, we represented important aspects 
of the functioning of two general hospitals’ inpatient ser-
vices as bipartite network graphs. When named wards 

(and by extension the ward based clinical staff within 
them) and specified clinical units form the network 
nodes, and the patients connecting them, the edges, the 
bipartite graphs represent the clinical structures through 
which clinical care is delivered in inpatient facilities. The 
graphs presented here represented the inpatient services 
of two large Australian public hospitals whose everyday 
work includes managing large numbers of emergency 
patients. The graphs covered both a period of usual 
demand, and the first wave of responses to SARS-CoV-2.

By comparing the modular structures that emerged 
against random graphs of the interactions between simi-
lar numbers of elements we were able to reject the null 
hypothesis that the processes are represented by ran-
dom graphs. The identified structures were not the con-
sequence of chance interactions. However, the network 
modules were the product of a purely ‘arithmetic’ com-
binatoric procedure. To what extent did the modular 
systems as represented make sense as representations 

Fig. 3 Histogram degree distribution, Hospital 1, 2019 (bin width = 0.99)

Table 1 Coefficients of variations (CV) of numbers of nodes in modules associated with marker ward‑unit node combinations in 
network graphs of monthly snapshots of Hospital 1 and Hospital 2 patient data

Module M1 M2 M3 M4 M5 M6 M7 M8

Hospital 1 0.17 0.13 0.14 0.75 0.41 0.41 0.36 0.68

Hospital 2 0.18 0.15 0.18 0.35 0.0.57 0.59 0.47
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of the real world systems from which they were derived? 
That is, whilst the combinatorics might create reli-
able mathematical structures, were they valid real world 
representations?

The graphs had face and content validity. All wards, 
clinical units, and patients were represented. There was 
a clear pattern to the links between wards and clini-
cal units that was readily interpreted as representing 
the patterns of care within the hospitals concerned. 
The patterns did not represent functional structures as 
multiple isolated ward-unit ‘silos’ [41, 42] or other rigid 
structures that would shatter when put under strain. 
Rather, the wards and units fell into a number of dis-
tinct but interlinked communities, or modules. The 
constituent members of the modules were closely inter-
linked in a variety of ways, but were also linked to other 
communities or modules, although to a lesser extent, a 
pattern that conforms to a more general description of 
a modular system [9]. The modules were heterogene-
ous, containing a small number of high coherence mod-
ules that represented highly specialized services with 
distinct accession profiles, and a larger number of more 
general services.

Graphs were generated for each monthly snapshot, 
and for the accumulated data. The monthly graphs were 
sparser than the cumulative graphs, which is appropriate 
for the smaller number of edges in the monthly snapshot 
graphs. But the underlying modular structures were 
similar between the monthly and cumulative graphs, 
and made sense to domain experts. The modularity 
parameter, a graded, if not parametric, objective measure 
of the difference between a modular, and matching 
random graph [18], confirmed the modular nature of the 
functional structures involved. The modular parameter 
varied to a limited degree from month to month (Fig. 2), 
but showed a change in value during periods of changed 
hospital functioning during COVID based restrictions. 
Network graphs of healthcare systems that are responsive 
to changes in the underlying systems of care have a 
measure of construct validity. The degree distribution 
of nodes in network graph is an active topic in Network 
Science [43], and warrants further study in the healthcare 
context.

Network graphs are state measures. They represent 
networks at particular points in time. They are 
descriptive rather than predictive. Nevertheless, we 
found a relationship between the modularity metric of a 
graph subsystem focused on the management of medical 
and surgical emergencies, and the number of emergency 
patients waiting at midnight for an inpatient bed within 
the body of the hospital. Substantial number of patients 
so identified is generally regarded as an index of hospital 
dysfunction. The Modularity metric represents the 

movement between organization and randomness, and 
in Hospital 1, the more random the modular subsystem, 
the greater the number of patients whose admission was 
delayed. A causal relationship has not been established, 
but the possibility that increasing randomness in the 
organization of relevant functional structures may be 
predictive of congestion and dysfunction in the relevant 
system is of considerable interest and requires further 
study. It may be that system modularity is a candidate 
metric for a quantitative measure of system functional 
status.

The graphs confirmed that whilst the modules in the 
network graphs each had a distinct functional identity, 
there were a limited number of ‘shortcut’ direct links 
to other modules within the system. This system 
characteristic is commonly referred to in Network 
Science as ‘small-worldness’ [44, 45]. General hospitals 
with substantial emergency loads need to be able to 
respond to patients with less common combinations 
of primary and secondary diagnoses. The ‘small-world’ 
flexibility of communication in a modular system helps 
to maintain information and expertise exchange between 
clinical services without disrupting frequently used 
functional and clinical pathways.

There are many limitations to these studies. Only two 
hospitals were involved, and both are part of the same 
health economy. Only a restricted amount of the very 
large volumes of data generated by hospitals was used 
in the studies. Despite having good access to data from 
diagnostic services, we did not include them in the 
studies reported here, mainly because their pervasive 
use means that they shed little light on the kind of 
structural concerns studied here. Further investigation 
is warranted. Also, we did not include the totality of 
emergency services in our analyses. We only included 
those Emergency Department patients in Hospital who 
had been designated as inpatients waiting for placement 
in the body of the hospital. More work is required 
before this and other healthcare studies can be merged 
into a whole of hospital connectome [46] of functional 
interactions.

We restricted our analyses to one combinatoric 
algorithm. Other forms of analyses are possible, but the 
Louvain algorithm is widely used [47], and restricting our 
analysis to one algorithm greatly simplified comparisons 
between different graphs. We did not extend our studies 
to the organization of non-clinical [39] services, though 
we suspect the latter are also likely to be modular in 
structure.

Whilst managerial oversight in day-to-day processes 
was not itself readily identifiable in the data we had 
access to, experience indicates it has an important role 
in modular structures. When inter-modular incursions 
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appear to be likely to be more extensive than are readily 
accommodated by existing shortcut paths, senior man-
agement intervention may be required to manage friction 
at the borders [6]. This is not an unfamiliar problem in 
institutions that run close to capacity, but hard-to- man-
age inter-modular tensions can be accentuated by exter-
nal pressures of various kinds. Nevertheless, it may also 
be the case that the underlying robustness of modular 
systems allows institutions to rebalance after periods of 
strain.

Implications
There is an emerging interest in the application of 
Network Science to a range of healthcare related 
issues [48–52]. The current work has a number of 
implications for health services research and practice. 
It applies Network Science to a detailed analysis of 
systems of care within institutions, supplementing 
existing Network Science studies on movements across 
healthcare institutions [24, 28].

Network graphs are topologies. They represent 
interactions irrespective of where they take place. This 
makes Network Science highly relevant to evaluating and 
improving the integration of virtual healthcare services 
with existing (and continuing) intra-mural services, 
an issue highlighted by responses to the COVID-19 
pandemic [53]. Furthermore, with quantitative measures 
of functional systems in place, attempts to improve access 
to existing hospital and healthcare services in the face of 
spikes of externally generated demand can become more 
nuanced. We have previously described a simulation 
based strategy for evaluating the impact of variations 
in demand and access to hospital resources, on hospital 
congestion episodes [39]. That strategy made a purely 
empirical distinction between those hospital resources 
that should be included or excluded from the analysis. 
Network based studies can put such decisions on a more 
generalizable footing, enabling institutions to identify 
the component resources relevant to specific outcomes 
and plan targeted interventions in areas such as such 
congestion-related delays. The use of administrative data 
in both studies means that replications in other settings 
will be straightforward. Many other opportunities for 
health service research programs of work will no doubt 
emerge as researchers and clinicians become familiar 
with Network Science techniques.

Conclusion
Bipartite Network Graphs of the organizational and 
logistic layer of inpatient care systems in two general 
hospitals were developed using existing healthcare data 
sources. The graphs consistently represented the hospital 

structures as modular. The topological characteristics of 
the network graphs were consistent with those of a range 
of other complicated technical and social systems [54, 
55], implying that the organizational characteristics of 
hospitals may bear a resemblance to those of other com-
plex systems, an issue that nevertheless requires further 
research.

Network Graphs are a purely arithmetic product. Their 
utility rests on their capacity to be meaningfully inter-
preted in relation to the system from which they are 
derived. The healthcare graphs were reviewed by inde-
pendent domain experts with a detailed knowledge of 
healthcare systems. For each hospital, they found the 
graphs to be readily interpretable and that they rep-
resented systems that contained recognizable special-
ized modular components, together with a more loosely 
organized set of general medical and surgical modules. 
We had hypothesized that the pressure on hospitals’ sys-
tems, exerted by variations in demands for care, and by 
planned reorganizations, would be identifiable within the 
organizational and logistical middle layer. We were able 
to confirm this in two ways. First, by demonstrating a 
relationship between modularity values of subgraphs of 
the more general medical and surgical services and a hos-
pital-wide congestion indicator. Then, by demonstrating 
that graph structures were responsive to the changes that 
occurred during the initial period of the COVID-19 pan-
demic. The hypothesis testing capacity of the Network 
graphs in a healthcare context is substantially enhanced 
by the fact that the values of the modularity metric are 
derived from tests against random or null state graphs.

Finally, one of the challenges of a Network Graph 
approach is that the graphs are measures of a hospital 
state at a point in time. Finding ways for Network 
Graphs to represent the way networks change [56] is a 
rapidly developing area of Network Science theory and 
practice. In this study, we developed a straightforward 
link between network graphs in a temporal sequence as 
a prelude to further research on the dynamic aspects of 
healthcare network graphs.
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