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Abstract
Background: Hospital readmissions are one of the costliest challenges facing healthcare systems, but conventional 
models fail to predict readmissions well. Many existing models use exclusively manually-engineered features, which 
are labor intensive and dataset-specific. Our objective was to develop and evaluate models to predict hospital 
readmissions using derived features that are automatically generated from longitudinal data using machine learning 
techniques.

Methods: We studied patients discharged from acute care facilities in 2015 and 2016 in Alberta, Canada, 
excluding those who were hospitalized to give birth or for a psychiatric condition. We used population-level linked 
administrative hospital data from 2011 to 2017 to train prediction models using both manually derived features and 
features generated automatically from observational data. The target value of interest was 30-day all-cause hospital 
readmissions, with the success of prediction measured using the area under the curve (AUC) statistic.

Results: Data from 428,669 patients (62% female, 38% male, 27% 65 years or older) were used for training and 
evaluating models: 24,974 (5.83%) were readmitted within 30 days of discharge for any reason. Patients were more 
likely to be readmitted if they utilized hospital care more, had more physician office visits, had more prescriptions, 
had a chronic condition, or were 65 years old or older. The LACE readmission prediction model had an AUC of 
0.66 ± 0.0064 while the machine learning model’s test set AUC was 0.83 ± 0.0045, based on learning a gradient 
boosting machine on a combination of machine-learned and manually-derived features.

Conclusion: Applying a machine learning model to the computer-generated and manual features improved 
prediction accuracy over the LACE model and a model that used only manually-derived features. Our model can be 
used to identify high-risk patients, for whom targeted interventions may potentially prevent readmissions.
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Introduction
Background/rationale
Nearly 10% of patients hospitalized in Canada are read-
mitted within 30 days [1]. Readmissions cost approxi-
mately 2 billion Canadian dollars per year in Canada [2] 
in 2011 and 26 billion US dollars per year in the United 
States [3] in 2014. Studies estimate that 10–60% of these 
readmissions are avoidable [4–6]. In the US, the Centers 
for Medicare & Medicaid Services financially penalize 
hospitals with high readmission rates [7]. These conse-
quences and costs of readmissions are one of the most 
important challenges facing the healthcare systems. 
Transitional care interventions may reduce readmissions, 
but these interventions are resource intensive. Predicting 
the readmission risk of individual patients can help better 
target these interventions, which can save expenses and 
may also suggest new ways to prevent readmissions.

Unfortunately, conventional models do not accurately 
predict readmissions; model c-statistics are rarely seen 
above 0.8 [8, 9]. Additionally, most of the existing pre-
diction models rely heavily on manual feature engineer-
ing [5, 10–24], which is based on domain knowledge and 
experience. Those features are often dataset-dependent, 
thus limiting generalizability between datasets or juris-
dictions. Recently, machine learning methods that auto-
matically identify which parts of a given set of data are 
essential for prediction have gained popularity, and there 
exists such work applied in the domain of readmission 
prediction as well. Notably, Rajkomar et al. used elec-
tronic health records and deep learning models to predict 
30-day readmissions and other outcomes [19]. However, 
their c-statistic for 30-day readmissions did not exceed 
0.75 despite their c-statistics for other outcomes such as 
mortality being above 0.8. There have been several simi-
lar studies, but their c-statistics are also moderate, below 
0.8 [19, 25, 26]. Choi et al. explored word embeddings to 
represent medical concepts [27–29], often paired with 
recurrent neural networks for the prediction of clinical 
events. This approach performed adequately on disease-
specific tasks (e.g., heart-failure prediction, differential 
diagnosis), but they did not apply these techniques to 
hospital readmission prediction. Nguyen et al. [30] used 
similar techniques for hospital readmission but their tar-
get outcome was 3- and 9-month readmission and are 
thus not directly comparable.

Objectives
This paper describes models to predict 30-day readmis-
sions, with a focus on testing the predictive performance 
of input features that are automatically generated using 
machine learning techniques, as well as manual features. 
Our study is not limited to a specific patient group – it is 
instead exploring ways to make accurate predictions for 
patients of all age groups and with all conditions, except 

those admitted due to a baby birth or a psychiatric con-
dition. We use detailed longitudinal health data from 
the province of Alberta, Canada. Alberta has a publicly 
funded, universally accessible, integrated health system 
and thus collects high-quality data. Our data set contains 
very few missing records, in particular, there exist no 
missing readmissions except for those who moved out of 
the province during the study period and those who died 
without being readmitted.

Methods
Study design
This is a population-based cohort study. We trained pre-
diction models using linked administrative observational 
data from Alberta, Canada.

Data and target population
Our target population consists of patients who were dis-
charged from any of the acute facilities in the province of 
Alberta between January 1, 2015 and December 31, 2016, 
excluding only patients who were hospitalized due to a 
baby birth or a psychiatric condition. For each patient, 
we extracted detailed health records from 2011 to 2017 
including hospitalizations from Discharge Abstract Data-
base (DAD), ambulatory visits from National Ambula-
tory Care Reporting System (NACRS), physician office 
visits from claims data, drug prescriptions from Pharma-
ceutical Information Network (PIN), and lab test results.

From DAD, we extracted institution number, admit and 
discharge dates, discharge disposition, diagnosis codes, 
procedure codes, and the role of the providers associ-
ated with the patient’s care for each hospitalization. From 
NACRS, we obtained institution number, visit mode, visit 
date, disposition, diagnosis codes, procedure codes, and 
functional centre account code for each ambulatory visit. 
From claims data, we extracted information about visits 
to primary care physicians (family medicine), internal 
medicine specialists, and general surgery specialists. For 
each visit, we obtained the date, diagnosis codes, pro-
cedure codes, paid amount, and service provider skill 
code. From PIN, we extracted the following variables for 
each prescription: Canadian Drug Identification Num-
ber, Anatomical Therapeutic Chemical (ATC) code, date, 
dispensed quantity, and the number of days the prescrip-
tion covers. From lab data, we received test code, test 
name, date, reference range, result, and unit of measure 
for each lab test. We extracted the lab data variables only 
for the lab tests listed in Appendix A in the Supplemen-
tary Material. Lastly, the extracted data also included sex, 
age, and the first three alpha-numerics of postal code. All 
diagnosis codes were ICD-10-CA except those in claims, 
which are ICD-9. All procedure codes are following the 
Canadian Classification of Health Interventions (CCI) 
except those in claims which were the Health Service 
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Canadian Classification of Procedures Extended Code 
(CCPX).

The data were extracted and anonymized by the 
Alberta Strategy for Patient Oriented Research SUP-
PORT Unit. This study was approved by the Health 
Research Ethics Board of the University of Alberta (Study 
ID Pro00082041).

Definition of index hospitalization
Patients may have been discharged multiple times in 
2015 and 2016. We selected one index hospitalization 
for each patient from these years, using the following 
procedure. Among the discharge records (DAD) of the 
target population in 2015 and 2016, we first excluded 
from the index hospitalization selection those records 
whose patient died during the hospitalization or that 
had an invalid patient identifier, as well as those patients 
who had at least one record whose postal code is not in 
Alberta (these criteria excluded 42,900 DAD records). 
We further removed records whose discharge disposi-
tion indicated transfers, which excluded 42,172 DAD 
records. As previously mentioned, discharge records 
related to a birth (or with disposition indicating stillbirth 
or organ/tissue retrieval) were not included in the initial 
data extraction. We also excluded psychiatric admissions 
from our selection by removing records whose primary 
diagnosis code was related to mental and behavioural 
disorders (ICD F00-F99 except F10-F19), leading us to 
remove the 74,618 records and 18,170 patients who had 
only psychiatric admissions. We then randomly selected 
one record of each patient as the index admission and we 
predicted 30-day readmission after the discharge from 
the index admission. To define the care episode of the 
index hospitalization, we connected DAD records that 
are considered continuation of care, by using the criteria 
described in Appendix A. From the list of patients with 
an index admission (n = 428,669), we randomly divided 
the data into 11 equal parts. One of these was selected 
for the holdout test set. The remaining 10 pieces were 
used to perform 10-fold cross-validation for comparing 
models.

Definitions of outcome and manual features
Our outcome was all-cause readmission within 30 days 
after discharge. In addition to the four raw features (age 
at discharge, sex, discharge disposition, and length of 
stay of the index episode -- included as part of model 
“manual” features), we also considered two sets of input 
features: derived manual ones and those automatically 
generated using machine learning. We first explain the 
derived manual features.

We computed the number of discharges and the 
total number of days the patient stayed in-hospital in 
the 6 months and 2 years prior to the current visit. The 

Charlson Comorbidity Index [31] was calculated based 
on ICD-10-CA codes of each patient’s DAD records over 
the past two years (including from the index admission). 
We also used the number of unique ICD-10-CA codes 
that appeared in the index episode, as well as the num-
ber of unique and total procedures performed during the 
index episode. We computed the numbers of emergency 
department (ED) visits and non-emergency outpatient 
visits in the past 6 months and in the past 2 years, and 
a binary variable if the index admission was through the 
ED. We also obtained the numbers of physician visits in 
the past 6 months and 1 year, separately for family phy-
sicians, internal medicine specialists, and general sur-
gery specialists. As a proxy of access to care, we included 
binary variables whether a patient incurred a claim dur-
ing the past 2, 3, and 4 years. Additionally, we calculated 
the total claimed dollar amounts from physician visits 
during the past 2, 3, and 4 years. Regarding prescrip-
tions, we computed the number of prescription records, 
the total prescribed days, and the number of unique 
drugs (in ATC code) in the past two years and during the 
index episode. Features based on the twenty most com-
mon lab tests were additionally created (Appendix A). 
Lastly, we identified the presence of four chronic condi-
tions (asthma, hypertension, chronic heart failure, and 
diabetes) using algorithms validated by Tonelli et al. [32] 
that use ICD9-CM/ICD10 codes. We extracted income, 
employment, housing status, citizenship status, and edu-
cation level of the first three digits of the postal code of 
each patient from the 2020 Canadian Census of Popula-
tion dataset [33] using the Postal Code Conversion File 
[34], but later removed these features as they did not 
improve model performance.

Machine learned features
In addition to the manual features, we extracted feature 
vectors using machine learning techniques from lon-
gitudinal health records of each patient, which cover at 
least four years prior to their index admissions and origi-
nate from various data sources. The number of these 
records (a proxy for healthcare usage) varies consider-
ably between patients. In this paper, we use Word2Vec 
[35] (from Python’s NLTK library, specifically, the Con-
tinuous Bag-of-Words implementation), an unsupervised 
technique borrowed from natural language processing, 
to encode the longitudinal information. Word2Vec not 
only summarizes, but also enriches the data by encoding 
related concepts from different data sources (e.g., a diag-
nosis code and a related medication) as similar numeric 
vectors rather than treating them as incomparable. In 
this process, we first created patient “sentences”, formed 
by collecting all medical data entries (ICD codes, ATC 
codes, codes representing different events such as an 
emergent admission, etc.) associated with a patient and 
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sorting them chronologically. In the sentence, each word 
is a diagnosis code or a procedure code or an ATC code, 
etc. For example, if a patient accrued “K65”, “1.SQ.52”, 
and “J01DH” in this order in the data, their associated 
sentence would be “K65 1SQ52 J01DH”. More details 
are available in Appendix B. The Word2Vec learner 
then effectively creates fixed-length numeric represen-
tations of each word (medical code) based on the con-
text within the sentences. Roughly speaking, words that 
tend to appear together in proximity in sentences receive 
numeric representations that are close. Once an inven-
tory of numeric representations of those words has been 
created, each patient’s sentence can be viewed as a list of 
numeric vectors. There are many techniques to create a 
patient’s feature vector with respect to their medical his-
tory. Here, we use a simple summation of the last 25 vec-
tors (as well as 15 for the purposes of sensitivity analysis, 
see Appendix C for these results as well as other values 
tested). If two patients have the exact same set of 25 most 
recent medical codes in sequence, then their resulting 
feature vectors are the same.

Model training
We considered learning both logistic regression (LR) and 
gradient boosting machine (GBM) models for predict-
ing readmission from our patient representations. GBMs 
encompass ensemble learning techniques that use many 
base learners, such as decision trees, to build a sequence 
of prediction models; and later, to predict for a novel 
instance, it aggregates the predicted outcomes from those 
individual base models. We note that our main objective 
is not a thorough comparison of machine learning mod-
els and we chose GBM as an example of machine learning 
models for illustration. GBM has parameters adjusting its 
training process and we used the default setting of the 
Python library scikit-learn [36] in all of our comparisons. 
In addition, we used a set of manually selected training 
parameters that are expected to lead to a better perfor-
mance [37], to observe the impact of training parameters 
(called GBM Tuned). The manually selected parameters 
were: learning_rate = 0.01, max_depth = 8, and n_estima-
tors = 1000. For definitions of these parameters, please see 
the scikit-learn GBM documentation [38]. In addition, an 
LR model based on the LACE score [39] was evaluated as 
a baseline. The LACE Score was developed and validated 
using the Canadian Discharge Abstract Database and has 
been externally validated [40] and become the industry 
standard for readmission risk prediction, which was our 
motivation to test LACE as a baseline in this study. All 
classification models described above were implemented 
in Python using scikit-learn.

Results
Descriptive statistics
We used data from 428,669 patients (62% female, 38% 
male, 27% 65 years or older, Table 1) for training and eval-
uating models: 24,974 (5.72%) were readmitted within 30 
days of discharge for any reason. Table 1 contains sum-
mary statistics for the raw and derived manual features 
used, excluding lab-based features. Lab test features were 
not shown in the table as each of the 20 included lab tests 
were formatted as multiple categorical variables with 
many possible values (Appendix A), thus their summary 
is extensive. The average LACE score was found to be 
7.10 (Std.Dev 3.27) over the entire study population, 6.99 
(Std.Dev 3.22) for patients without a 30-day readmission 
event, and 8.91 (Std.Dev 3.61) for those who were read-
mitted in 30 days. According to Table 1, infants, seniors, 
and patients with hypertension or heart failure appear to 
have a higher chance of 30-day readmission.

Table  2 shows AUC scores of different models evalu-
ated by 10-fold cross-validation (Fig.  1) and using the 
test set, which was not used during the model building 
(Fig. 2). It also reports the standard deviation of the train-
ing-set AUC from cross-validation. Here, we compare 
the performance of LR and GBM, each trained with dif-
ferent combinations of manual and Word2Vec features. 
In Word2Vec, all results used the last 25 codes (this value 
outperformed other candidates such as 15 codes, see 
Appendix C) in the patient vector summation step. Other 
sensitivity analyses can be found in Appendix C.

Using both manual and Word2Vec features in com-
bination yields the best results regardless of the model 
used (LR: 0.786 ± 0.0058, GBM: 0.814 ± 0.0045, GBM with 
tuned parameters: 0.825 ± 0.0045, all from cross-valida-
tion; see Fig. 3 for ROC curves). Each of these compari-
sons is statistically significant after Bonferroni correction 
using paired t-tests, P < 0.00001. Within LR, Word2Vec 
features alone perform the second-best with a test AUC 
of 0.757, followed by manual features alone with an AUC 
of 0.747. Within GBM, the manual feature model yielded 
a test AUC of 0.804. The Word2Vec model yielded a test 
AUC of 0.768. We compared the sensitivity of the GBM 
models trained on the three different feature sets when 
the specificity is fixed at 0.75. The sensitivity of the Word-
2Vec features was 0.653, the manual features yielded 
0.716, and the combination of the two was 0.748. In addi-
tion, we computed the net reclassification improvement 
(NRI) [41] from the GBM model with manual features to 
the GBM model with both manual and Word2Vec fea-
tures. The NRI was 0.0142 with a 95% confidence interval 
(CI) [0.0006, 0.0278]. The NRI for events (readmission) 
was 0.0059 with a 95% CI [-0.0073, 0.0191], and the NRI 
for non-events was 0.0083 with a 95% CI [0.0050, 0.0116]. 
The LR LACE baseline far underperformed the rest of 
our models with AUCs of 0.655 from cross-validation 
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Descriptive Statistics of Raw and Manually Defined Features
All
(n = 428,669)

Not readmitted in 30 days
(n = 403,695)

Readmitted in 30 
days
(n = 24,974)

Variable Number (%)
or
Mean (Std.Dev)

Number (%)
or
Mean (Std.Dev)

Number (%)
or
Mean (Std.Dev)

Raw Features

Sex (Female) 266,549 (62%) 253,429 (63%) 13,120 (52%)

Age

< 1 12,841 (3%) 10,257 (3%) 2584 (10%)

1–14 20,020 (5%) 19,279 (5%) 741 (3%)

15–24 34,125 (8%) 32,931 (8%) 1194 (5%)

25–64 243,808 (57%) 233,650 (58%) 10,158 (41%)

≥ 65 117,875 (27%) 107,578 (27%) 10,097 (41%)

Length of Index Admission Stay 2 (4) 2 (4) 4 (7)

Discharge Disposition

01: Transferred to an acute care inpatient institution 133 (0.03%) 101 (0.03%) 32 (0.1%)

02: Transferred to Continuing Care 10,081 (2%) 9311 (2%) 770 (3%)

03: Transferred to Other Facility 2249 (0.5%) 2055 (0.5%) 194 (0.8%)

04: Discharged to home or home setting with sup-
port services

33,954 (8%) 29,805 (7%) 4149 (17%)

05: Discharged home (no support services required) 376,625 (88%) 357,453 (89%) 19,172 (77%)

06: Signout (left against medical advice) & AWOL 
(absent without leave)

4699 (1%) 4065 (1%) 634 (3%)

07: Died 567 (0.1%) 566 (0.1%) 1 (0.004%)

12: Patients who do not return 361 (0.08%) 339 (0.08%) 22 (0.09%)

Manually Defined Features (Excluding Lab-Based Features)

Admitted through ED - Index 377,112 (88%) 353,341 (88%) 23,771 (95%)

Num. procedures - Index 1.54 (1.70) 1.57 (1.69) 1.06 (1.87)

Num. unique procedures - Index 1.53 (1.65) 1.56 (1.64) 1.04 (1.77)

Num. unique ICD codes - Index 4.32 (3.66) 4.27 (3.59) 5.16 (4.52)

Num. unique drugs - Index / Last 2y 1.47 (2.48) /
7.18 (6.73)

1.43 (2.41) /
6.99 (6.55)

2.12 (3.26) / 10.31 
(8.50)

Num. prescribed days - Index / Last 2y 46.62 (125.33) /
1730.75 (2719.67)

45.01 (122.87) /
1671.71 (2680.03)

71.35 (157.82) /
2685.03 (3144.93)

Num. prescription records - Index / Last 2y 2.40 (16.83) /
53.85 (162.04)

2.33 (15.68) / 51.39 (156.83) 3.49 (29.76) /
93.62 (226.78)

Num. hospital admissions - last 6 m / 1y 0.16 (0.50) /
0.26 (0.72)

0.14 (0.45) /
0.23 (0.64)

0.46 (0.98) /
0.73 (1.43)

Num. emergency department visits - last 6 m / 1y 1.45 (2.58) /
2.06 (4.00)

1.39 (2.44) /
1.97 (3.74)

2.44 (4.18) /
3.52 (6.76)

Num. non-emergency department visits - last 6 m 
/ 1y

3.72 (8.69) /
5.63 (14.76)

3.60 (8.30) /
5.42 (14.07)

5.52 (13.46) /
8.92 (22.96)

Total length-of-stay in hospital - last 6 m / 2y 1.47 (8.12) /
4.78 (21.28)

1.26 (7.41) /
4.26 (19.77)

4.98 (15.25) /
13.26 (37.07)

Num. General Practice Visits - last 6 m / 1y 8.98 (10.89) /
14.29 (16.77)

8.79 (10.43) /
13.97 (16.03)

12.18 (16.27) /
19.62 (25.37)

Num. General Surgery Visits - last 6 m / 1y 0.52 (2.09) /
0.68 (2.80)

0.50 (1.94) /
0.65 (2.56)

0.79 (3.73) /
1.14 (5.35)

Num. Internal Medicine Visits - last 6 m / 1y 1.00 (3.61) /
1.44 (5.22)

0.92 (3.28) /
1.32 (4.71)

2.26 (6.98) /
3.37 (10.22)

Patient with physician claim incurred - last 2y / 3y / 4y 416,397 (97%) /
417,609 (97%) /
418,188 (98%)

393,196 (97%) /
394,359 (98%) /
394,921 (98%)

23,201 (93%) /
23,250 (93%) /
23,267 (93%)

Table 1 Raw and Manually Derived feature descriptive statistics of the whole target population, those who were not readmitted 
within 30 days, and those who were. The lab test features are not shown
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and 0.655 on the test set. Though our main purpose is 
to compare feature sets, the results also provide a com-
parison between models. Fixing the set of features used, 
GBMs perform better than LR models. When using 
manual and Word2Vec features, GBM is statistically bet-
ter during cross-validation than LR according to a two-
sided paired t-test with P < 0.001. We computed the NRI 
between the two models, both with manual and Word-
2Vec features. The NRI was 0.0570 with a 95% CI [0.0407, 
0.0732]. The NRI for events was 0.0354 with a 95% CI 
[0.0197, 0.0511], and the NRI for non-events was 0.0216 
with a 95% CI [0.0177, 0.0255]. We also evaluated the 
performance of our best model (GBM Tuned) on differ-
ent subpopulations and obtained the feature importance 
analysis result of the model. These results can be found in 
Appendix D.

Discussion
In this paper, we built features and models to predict 
30-day readmissions using seven years of data from 429 K 
patients. We considered Word2Vec features, which were 
automatically generated using machine learning tech-
niques, as well as manual features. Our analysis shows 
that Word2Vec features improve the prediction accuracy 
and that equipping an advanced prediction model with 
both the manual and Word2Vec features achieves the 
best performance. Our best model achieved an AUC of 
0.83 on a test set over 42 K patients, which was not used 
during the model building.

Using only the automated features also showed good 
performance. LR using only the Word2Vec features had 
AUC 0.76 and GBM using the same features was AUC 
0.77. This shows the potential of using features that are 
automatically generated without domain experts’ manual 
work. We also note that using only manual features per-
formed well, too: LR (resp., GBM) achieved AUC 0.75 
(resp., 0.80), which is similar to or higher than most of the 
models reported in literature. This underscores a major 
strength of this study – the high quality of the data used, 
which likely contributed to the high AUC values obtained 
using manual features. Regarding data quality, the prov-
ince of Alberta has a single payor, universally accessible, 
integrated health system, which enables the collection of 
comprehensive administrative data, with minimal loss 
to follow-up. In all the feature combinations, GBM con-
sistently performed better than LR. This showcases the 
importance of utilizing more recent advancements in 
machine learning to make better predictions in the health 
sector; it is likely that even higher performance could be 
achieved by employing and tuning state-of-the-art classi-
fication techniques, at the cost of a higher computational 
load. Another strength is that our model makes predic-
tions for all age ranges, covers both medical and surgical 

Table 2 Area Under the Curve (AUC) of models generated with 
Python, where the Word2Vec features are the sum of the numeric 
vectors of the last 25 codes
Validation and Test AUCs of Different Models and Feature 
Configurations
Model Features Average Cross-

Validation AUC (St. 
Dev.)

Test 
AUC

Logistic Regression (LR) Manual 0.7612 (0.004123) 0.747

Word2Vec 0.7470 (0.005600) 0.757

Manual and 
Word2Vec

0.7862 (0.005758) 0.783

Gradient Boosting Ma-
chine (GBM)

Manual 0.8037 (0.004001) 0.804

Word2Vec 0.7700 (0.005138) 0.768

Manual and 
Word2Vec

0.8138 (0.004534) 0.813

Manual and 
Word2Vec†

0.8249 (0.004549) 0.826

Logistic Regression (LR) LACE 0.6548 (0.006444) 0.655
†GBM with manually selected training parameters (see Section Methods - 
Model Training)

Descriptive Statistics of Raw and Manually Defined Features
All
(n = 428,669)

Not readmitted in 30 days
(n = 403,695)

Readmitted in 30 
days
(n = 24,974)

Variable Number (%)
or
Mean (Std.Dev)

Number (%)
or
Mean (Std.Dev)

Number (%)
or
Mean (Std.Dev)

Claimed amount - last 2y / 3y / 4y 1835.68 (2038.73) /
2389.30 (2601.73) /
2870.56 (3086.34)

1790.39 (1932.89) /
2330.13 (2470.42) /
2800.01 (2934.25)

2567.71 (3222.20) /
3345.84 (4069.96) /
4010.92 (4790.24)

Comorbidity

Charlson score, mean (Std.Dev) 0.42 (0.99) 0.40 (0.96) 0.81 (1.42)

Hypertension 124,407 (29%) 114,068 (28%) 10,339 (41%)

Diabetes 59,359 (14%) 54,119 (13%) 5240 (21%)

Heart failure 26,217 (6%) 22,534 (6%) 3683 (15%)

Asthma 8503 (2%) 8013 (2%) 490 (2%)

(continued) Table 1
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admissions, and is not limited to patients with a specific 
condition.

Our study is not without limitations. First, linked 
administrative data were used, which are a less complete 

and less detailed data source compared to electronic 
medical or electronic health records. Accordingly, infor-
mation from the latter type of repository, such as nar-
rative physician and allied health notes, may further 

Fig. 2 Area Under the Curve (AUC) comparison for Logistic Regression (LR) and Gradient Boosting Machines (GBM) on the test data using different fea-
ture sets. See the ‘Methods - Model Training’ section for an explanation of the model GBM Tuned

Fig. 1 Average Area Under the Curve (AUC) comparison for Logistic Regression (LR) and Gradient Boosting Machines (GBM) on different feature sets 
using 10-fold cross validation. See the ‘Methods - Model Training’ section for an explanation of the model GBM Tuned
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improve prediction accuracy when incorporated into 
the approach studied here. Second, if a patient died after 
discharge without being readmitted, then the death was 
not captured in our data. Third, although our results can 
be considered generalizable to other single-payor, uni-
versally accessible health systems (such as those in other 
Canadian provinces), generalization beyond this setting 
should be performed with caution. Lastly, in the process 
of building Word2Vec features, we added the numeric 
representations of words in a patient’s sentence to obtain 
a feature vector for the patient. More sophisticated meth-
ods to combine the numeric vectors may improve the 
prediction performance.

Overall, the models we created performed similarly 
well, but using a machine learning model along with the 
computer-generated features improved the prediction 
accuracy. Using only the Word2Vec features produced 
models with AUCs similar to or higher than previous 
work based on features automatically generated from 
electronic health records [19, 26]. Although the perfor-
mances of different studies cannot be compared directly 
due to different methods and samples, these results vali-
date the potential of the proposed automatic feature gen-
eration. There have been some attempts to define a large 
number of features manually from longitudinal data and 
apply feature selection methods [20–24, 42]. However, it 
is unclear how to represent temporal aspects as features 
(for example, one has to determine whether to distin-
guish the same diagnosis code issued one week ago vs. 
three months ago and how). Also, the manual method 
may be labor-intensive and less applicable generally 
across different systems. Our paper provides a compre-
hensive and automated method to derive features from 
longitudinal data that takes the temporal components 
into account. Also, there have been some studies training 

a deep learning model such as a convolutional neural 
network using longitudinal data [19, 25, 30, 43]. In con-
trast, we present a feature generation method that sum-
marizes longitudinal data (including its temporal aspects) 
into a single feature vector so that it can be used to train 
any prediction model. The suggested method provides 
an interpretation of the generated features (Appendix 
B), which is often difficult in deep learning prediction 
models. The fact that using both kinds of features results 
in the best accuracy in our study raises the question of 
whether it is feasible to improve the automated feature 
generation to such an extent that the need for manual 
features can be eliminated.

To implement the presented model, we needed to link 
administrative data to create patient sentences, compute 
the numeric representations of the sentence components 
(e.g., diagnosis codes, procedure codes, etc.), and build 
the prediction model. Once the model is trained, we can 
make a prediction for a new patient by first converting 
his/her records into a sentence, computing the Word-
2Vec features of the patient (by using the numeric repre-
sentations of words previously obtained), and computing 
the manual features for models that require them. Note 
that all of these steps after model training can be auto-
mated in practice and require the same data access as the 
LACE model, because both require accessing adminis-
trative data of a patient. The major computations of our 
framework are learning the numeric representations 
of codes and training a machine learning model, which 
are done a priori, before making a prediction for a new 
patient. Computing the features of the target patient in 
real-time would require linking the patient’s data from 
different sources in real-time. This study benefited from 
the fact that the data are from an integrated health sys-
tem. However, such integrated data sets are expected to 
become more available in the near future (e.g., the CRISP 
program [44], as well as others [45–47]), and our study 
demonstrates the potential of those initiatives to innovate 
healthcare delivery. Also, we highlight that our model is 
not limited to a specific subpopulation and yet showed 
high performance. Deploying a unified model can save 
tremendous amounts of administrative cost and effort 
compared to deploying multiple models.

In general, it is more desirable to predict readmission at 
the time of admission than the time of discharge, but the 
prediction timing of most past studies is at discharge [9]. 
The present study predicts readmissions also at discharge 
because our models used some variables from the index 
hospitalization episode in addition to records from before 
the index admission. Therefore, building models that pre-
dict at the time of admission is beyond the scope of the 
current study. It is also preferable to predict preventable 
readmissions so that appropriate action could perhaps 
be taken to avoid the second admission. However, past 

Fig. 3 Receiver Operating Characteristic (ROC) Curves for Gradient Boost-
ing Machine (GBM) models trained using only Word2vec features, only 
manual features, and a combination of Manual and Word2Vec features
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studies have shown a wide variation in the definitions of 
preventable readmissions and, therefore, operationalizing 
models to predict this outcome remains a challenge. One 
important use of readmission prediction is to inform tar-
geted interventions that may prevent readmissions. Past 
studies suggest that some post-discharge interventions 
can reduce readmissions and save associate costs [48, 49]. 
For example, Alberta provides home-based acute care for 
individuals with chronic or complex diseases or low acu-
ity medical conditions. Because resources for these inter-
ventions are limited, health systems are under pressure 
to better target these interventions. Using our prediction 
model to help decisions regarding these interventions is a 
future direction to explore.

In conclusion, we have shown that using both com-
puter-generated and manual features improved predic-
tion accuracy over manually-derived features alone and 
over a LACE model. This demonstrates that modeling 
using machine learning features can improve upon con-
ventional methods, illustrating the potential of this new 
method to improve understanding of readmission and its 
effect on clinical care delivery.
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