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Abstract
Background Health services research often relies on quasi-experimental study designs in the estimation of 
treatment effects of a policy change or an intervention. The aim of this study is to compare some of the commonly 
used non-experimental methods in estimating intervention effects, and to highlight their relative strengths and 
weaknesses. We estimate the effects of Activity-Based Funding, a hospital financing reform of Irish public hospitals, 
introduced in 2016.

Methods We estimate and compare four analytical methods: Interrupted time series analysis, Difference-in-
Differences, Propensity Score Matching Difference-in-Differences and the Synthetic Control method. Specifically, 
we focus on the comparison between the control-treatment methods and the non-control-treatment approach, 
interrupted time series analysis. Our empirical example evaluated the length of stay impact post hip replacement 
surgery, following the introduction of Activity-Based Funding in Ireland. We also contribute to the very limited 
research reporting the impacts of Activity-Based-Funding within the Irish context.

Results Interrupted time-series analysis produced statistically significant results different in interpretation, while 
the Difference-in-Differences, Propensity Score Matching Difference-in-Differences and Synthetic Control methods 
incorporating control groups, suggested no statistically significant intervention effect, on patient length of stay.

Conclusion Our analysis confirms that different analytical methods for estimating intervention effects provide 
different assessments of the intervention effects. It is crucial that researchers employ appropriate designs which 
incorporate a counterfactual framework. Such methods tend to be more robust and provide a stronger basis for 
evidence-based policy-making.
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Introduction
In health services research, quasi-experimental methods 
continue to be the main approaches used in the identifi-
cation of impacts of policy interventions. These methods 
provide alternatives to randomised experiments e.g. Ran-
domised Controlled Trials (RCTs), which are less preva-
lent in health policy research, particularly for larger scale 
interventions. Examples of previously conducted experi-
ments include the RAND Health Insurance Experiment 
[1] and the Oregon Health Insurance Experiment [2] 
which have since led to the restructuring of health insur-
ance plan policies across the United States. Although 
such large-scale experiments can generate robust evi-
dence for informing health policy decisions, they are 
often too complex, expensive, unethical or infeasible to 
implement for larger scale policies and interventions [3, 
4]. Quasi-experimental methods provide an alternative 
means to policy evaluation, using non-experimental data 
sources, where randomisation is infeasible or unethical 
when the intervention already occurred and its evalua-
tion occurred later [3].

The evaluation of policy impacts, regardless of analyti-
cal approach, is aimed at identifying causal effects of a 
policy change. A concise guide highlights the approaches 
which are appropriate for evaluating the impact of health 
policies [3]. A recent review identified a number of meth-
ods appropriate for estimating intervention effects [5]. 
Additionally, several control-treatment approaches have 
recently been compared in terms of their relative perfor-
mance [6, 7].

However, there is limited empirical evidence in the 
health services research field comparing control-treat-
ment analytical approaches to non-control-treatment 
approaches, used for estimating health intervention or 
policy effects. We use an empirical example of Activity-
Based Funding (ABF), a hospital financing intervention, 
to estimate the policy impact using four non-experi-
mental methods: Interrupted Time-Series (ITS), Differ-
ence-in-Differences (DiD), Propensity Score Matching 
Difference-in-Differences (PSM DiD), and Synthetic 
Control (SC). A review of the application of these 
methods in the literature examining ABF impacts has 
recently been undertaken [5]. Out of 19 identified stud-
ies, six studies employed ITS, seven employed DiD and 
one study employed the SC approach [5]. The identi-
fied effects, as assessed by reporting on a set of hospital 
outcomes, varied based on the analytical method that 
was used. The studies which employed ITS all reported 
statistically significant effects post-ABF which have led 
to increased levels of hospital activity [8, 9], and reduc-
tions in patient length of stay (LOS) [10–13]. In contrast, 
the evidence is more mixed, among the remaining stud-
ies which employed control-treatment methods. For 
example, significant increases in hospital activity were 

reported in three studies which used the DiD approach 
[14–16], while another study found no significant impacts 
in terms of activity [17]. Similarly, contrasting evidence in 
terms of changes in LOS [16, 18, 19] and mortality [18, 
20] were also reported. Therefore, the overall evidence 
on the impacts of ABF on hospital outcomes can be con-
sidered mixed, and as highlighted by Palmer et al. (2014) 
[21] ‘Inferences regarding the impact of ABF are limited 
both by inevitable study design constraints (randomized 
trials of ABF are unlikely to be feasible) and by avoidable 
weaknesses in methodology of many studies’ [21].

The aim of this study is to compare these analytical 
methods in their estimation of intervention effects, using 
an empirical case of ABF introduction in Ireland. Specifi-
cally, we focus on the comparison of control-treatment 
analytical approaches (DiD, PSM DiD, SC), to ITS, a 
commonly used non-control-treatment approach for 
evaluating policies and interventions. Additionally, we 
contribute to the very limited research evidence assessing 
the impacts of ABF within the Irish context.

ABF and the Irish health system
Activity-based funding (ABF) is a financing model that 
incentivises hospitals to deliver care more efficiently [22]. 
Under ABF, hospitals receive prospectively set payments 
based on the number and type of patients treated [22]. 
Services provided to patients are reflected by an efficient 
price of providing those services and adjustments incor-
porated for different patient populations served. Prices 
are determined prospectively e.g. in terms of Diagnosis 
Related Groups (DRGs), and reflect differences in hospi-
tal activity, based on types of diagnosis and procedures 
provided to patients [23]. DRGs provide transparent 
price differences, directly linking hospital services pro-
vision to hospital payments. In theory, this incentivises 
hospitals to deliver more efficient healthcare (e.g. shorten 
LOS) and to be more transparent in their allocation of 
resources and finances [22, 24].

The Irish healthcare system is predominantly a public 
health system, with the majority of health expenditure 
raised through general taxation (72%), and remainder 
through out-of-pocket payments (13%) and voluntary 
private health insurance (15%) [25]. In Ireland, most 
hospital care is delivered in public hospitals and this 
care is mostly government-financed, with approximately 
one-fifth of care delivered in public hospitals privately 
financed [25, 26]. Patients who receive private day or 
inpatient treatment in public hospitals are required to 
pay private accommodation and consultant charges. 
The majority of private patient activity in public hos-
pitals is funded through private health insurance with 
the remainder through out-of-pocket payments. Public 
or private patient status relates to whether the hospital 
patient saw their consultant on a public or private basis 
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[27]. For non-consultant hospital staff, the same publicly 
funded staff are employed in delivering care to both pub-
licly and privately financed patients [27].

Traditionally, all Irish public hospitals were funded on 
a budgetary block grant basis based on historical perfor-
mance, making it difficult to measure and monitor activ-
ity and funding of public hospital care [28]. On the 1st 
January 2016, a major financing reform was introduced, 
and funding of public patients in most public hospitals 
moved to ABF [29]. ABF was introduced centrally by the 
Health Services Executive (HSE), responsible for deliv-
ery of public health services in Ireland. All public inpa-
tient activity is funded under ABF, while all outpatient 
and Emergency Department (ED) activity continues to 
be funded using block budgets [30]. The ABF funding 
model is based on prospectively set average DRG prices, 
and additionally financially penalises hospitals for long 
patient LOS [30]. Additionally, the amount of activ-
ity that a hospital can carry out as well as the maximum 
funding it can receive, is capped, to preserve the overall 
health budget provided to a particular hospital [30]. Pub-
lic patient reimbursement is based on the average price of 
DRGs, in contrast to private patients who are reimbursed 
at a per-diem basis [30].

Thus, this key difference in reimbursement between 
public and private patients treated in the same hospitals, 
lends itself to a naturally occurring control group for our 
analysis using the control-treatment approaches.

Methods
Estimation models
Interrupted time-series analysis
Interrupted Time Series (ITS) analysis identifies inter-
vention effects by comparing the level and trend of 
outcomes pre and post intervention [31]. Often, ITS 
compares outcome changes for a single population and 
does not specify a control group against which inter-
vention effects can be compared [32]. This can bias the 
estimated intervention effects, as a defined control group 
often eliminates any unmeasured group or time-invariant 
confounders from the intervention itself [33]. Therefore, 
ITS can overestimate the effects of an intervention pro-
ducing misleading estimation results [4].

The ITS analysis model can be presented as [34, 35],

 Y
t
= β0 + β1T + β2Xt + β3TXt + εt

Where Yt is the outcome measured at time t, T  is the 
time since the start of the study, Xt  is a dummy vari-
able representing the intervention (0 = pre-intervention 
period, 1 = post-intervention period), and TX is an inter-
action term; β0 represents the intercept of the outcome 
(baseline level at T = 0), β1 is the change in outcome until 

the introduction of the intervention (pre-intervention 
trend), β2 is the change in the outcome following the 
intervention (the level change), β3 represents the differ-
ence between pre-intervention and post-intervention 
slopes of the outcome (treatment effect over time).

Potential outcomes framework
Alternatively, analytical approaches such as Difference-
in-Differences (DiD), Propensity Score Matching Differ-
ence-in-Differences (PSM DiD) and Synthetic Control 
(SC) overcome some of the shortcomings of ITS. These 
approaches are based on the counterfactual framework 
and the idea of potential outcomes which quantify the 
estimation of causal effects of a policy or an interven-
tion1. The potential outcomes framework defines a causal 
effect for an individual as the difference in outcomes that 
would have been observed for that individual with and 
without being exposed to an intervention [36, 37]. Since 
we can never observe both potential outcomes for any 
one individual (we cannot go back in time to expose them 
to the intervention), we cannot compute the individual 
treatment effect [36]. Researchers therefore focus on 
average causal effects across populations guided by this 
potential outcomes framework [3, 36, 37]. Therefore in 
practice, estimation is always related to the counterfac-
tual outcome, which is represented by the control group 
[36, 38]2. Consequently, it is for this reason all of these 
analytical approaches use a clearly defined control group 
in estimation, against which the outcomes for a group 
affected by the intervention are compared. The inclusion 
of a control group improves the robustness of the esti-
mated intervention effects, by approximating experimen-
tal designs such as a RCT, the gold standard [38].

Difference-in-differences analysis
The DiD approach estimates causal effects by compar-
ing the observed outcome changes pre intervention with 
the counterfactual outcomes post intervention, between 
a naturally occurring control group and a treatment 
group exposed to the intervention change [33]. The key 
advantage of the DiD approach is its use of the interven-
tion itself as a naturally occurring experiment, allowing 

1  The treatment effect in terms of potential outcomes: where Y0 (i,t) is the 
outcome that individual i would attain at time t in absence of treatment and 
Y1 (i,t) is the outcome that individual i would attain at time t if exposed to 
treatment. The treatment effect on the outcome for individual i at time t 
is: Y1(i,t) – Y0(i,t). The fundamental identification problem is that for any 
individual i and time t, both potential outcomes Y0(i, t) and Y1(i, t) are not 
observed and we cannot compute the individual treatment effect. We only 
observe the outcome Y(i, t) expressed as: Y(i, t) = Y0(i, t)(1 − D(i, t)) + Y1(i, t)
D(i, t), [D(i,t) = 0 control and D(i,t) = 1 treatment]. Since treatment occurs 
after period t = 0, we can denote D(i) = D(i, 1), then we have Y(i, 0) = Y0(i, 0) 
and Y(i, 1) = Y0(i, 1)(1 − D(i)) + Y1(i, 1)D(i) (Rubin (1974)).
2  The change in outcomes from pre to post-intervention in the control 
group is a proxy for the counterfactual change in untreated potential out-
comes in the treatment group.
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to eliminate any exogenous effects from events occurring 
simultaneously to the intervention [33, 38].

The DiD approach estimates the average treatment 
effect on the treated (ATT) across individual units at 
a particular time point, represented by the general DiD 
model as [3, 6, 33, 38],

 

Yit = β0 + β1Di + β2Xt + β3 (Di ∗ Xt) + hi+
λt + εit

Where Yit is the value of the outcome observed for unit 
i at time t, Di  is an indicator of unit i being in a treat-
ment group (vs. control group), Xt  is a dummy variable 
representing the intervention period (0 = pre-interven-
tion period, 1 = post-intervention period), and Di ∗ Xt  is 
the interaction term between the two; β1 represents the 
estimated average difference in Y between the treatment 
and control groups, β2 is the expected average change in 
Y from before to after the onset of the intervention, β3 
is the DiD estimator which captures the difference in 
outcomes before and after the intervention between the 
treatment and control groups i.e. the estimated average 
treatment effect on the treated (ATT), hi is a vector of 
hospital fixed effects 3 which capture unobserved time-
invariant differences amongst hospitals (e.g. manage-
ment), λt captures time fixed effects for each quarter t, 
and εit  represents exogenous, unobserved idiosyncratic 
shocks.

However, DiD relies on the parallel trends assumption 
which states that, in the absence of treatment, the aver-
age outcomes for the treated and control groups would 
have followed parallel trends over time [33]. This parallel 
trends assumption can be represented as [33, 38],

 

E
[
Y 0( 1) − Y 0(0 )| D = 1] =
E[Y 0 (1) − Y 0 (0) |D = 0]

Where Y 0 (0)  is the outcome pre-intervention observed 
for all units in both the treatment (D = 1) and control 
(D = 0) groups; Y 0 (1)  is the outcome post-intervention 
observed only for the control group and represents the 
unobserved counterfactual for units in the treatment 
group (D = 1). This assumption cannot be statistically 
tested, as it applies to the unobserved counterfactual 
post-intervention [33, 38]. However, it is possible to 
examine the pre-treatment trends between both groups, 
by re-running the DiD model which includes an 

3  The unit used is at discharge level but we only have one observation per 
discharge by definition therefore we cannot apply discharge fixed effects and 
instead have to include hospital fixed effects.

interaction between time and the treatment dummy, in 
the pre-intervention period [39].

Propensity score matching difference-in-differences
PSM DiD is an extension to the standard DiD approach. 
Using this approach, outcomes between treatment and 
control groups are compared, after matching them with 
similar observable factors, followed by estimation by DiD 
[40–42]. Combining the PSM approach with DiD allows 
further elimination of any time-invariant differences 
between the treatment and control groups, and allows 
selection on observables and unobservables which are 
constant over time [40, 43]. Additionally, matching on the 
propensity score accounts for imbalances in the distribu-
tion of the covariates between the treatment and control 
groups [40] 4. We present this model as follows [40],

 

Y = E
(
Y1i|D=1 − Y1i|D=0

)
|P (x0i) −

E
(
Y0i|D=1 − Y0i|D=0

)
|P (x0i)

Where Y1i  and Y0i is the outcome in the post-interven-
tion and pre-intervention period for individual patient 
episode i respectively, Di = 1 indicates individual patient 
episode i is in the treatment group, Di = 0 indicates indi-
vidual patient episode i is in the control group, P (x0i) 
represents the probability of treatment assignment con-
ditional on observed characteristics in the pre-interven-
tion period.

In our final PSM DiD estimation model we estimate 
the average treatment effect on the treated (ATT) using 
nearest neighbour matching propensity scores, by select-
ing the one comparison unit i.e. patient episode whose 
propensity score is nearest to the treated unit in question. 
We present our estimation model as follows:

 
Y (PSMDiD) =

1
ND1

∑

i∈D1∩S




(

Y 1
i,t+1 − Y 0

i,t

)
−

∑

j∈D0∩S

wij

(
Y 0

j,t+1 − Y 0
j,t

)




Where D1  and D0  represent the treatment and control 
groups respectively, wij  the nearest neighbour matching 
weights, and S is the area of common covariate support5.

4  Matching on the propensity score works because it imposes the same 
distribution of the covariates for both the control and treatment groups 
(Rosenbaum and Rubin (1983)).
5  The common support condition guarantees that only units with suitable 
control cases are considered by dropping treatment observations whose 
propensity score is higher than the maximum or less than the minimum 
propensity score of the controls.
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Additionally, PSM makes the parallel trends assump-
tion more plausible as the control groups are based on 
similar propensity scores in the PSM DiD approach. PSM 
forms statistical twin pairs before conducting DiD esti-
mation, thus increasing the credibility of the identifica-
tion of the treatment effect [40]. Instead, PSM relies on 
the conditional independence assumption (CIA). This 
assumption states that, in absence of the intervention, 
the expected outcomes for the treated and control groups 
would have been the same, conditional on their past out-
comes and observed characteristics pre-intervention [40, 
44]. However, it is also important to note, that even if 
covariate balance is achieved in PSM DiD, this does not 
necessarily mean that there will be balance across vari-
ables that were not used to build the propensity score [40, 
44]. It is for this reason that the CIA assumption is still 
required.

Furthermore, recent developments of the DiD 
approach have highlighted that additional assump-
tions are necessary to ensure the estimated treatment 
effects are unbiased [45]. It is proposed that estimates 
will remain consistent after conditioning on a vector of 
pre-treatment covariates [45]. This was our motivation 
for employing the PSM DiD approach, as it accounts 
for pre-intervention characteristics, which allow to fur-
ther minimise estimation bias. PSM DiD achieves this 
by properly applied propensity scores, based on matched 
pre-intervention characteristics, thus eliminating obser-
vations that are not similar between treatment and con-
trol groups [41]. Further developments have been made 
to account for multiple treatment groups, which receive 
treatment at various time periods i.e. differential timing 
DiD [46]. However, this does not affect our analysis, as 
the introduction of ABF in our empirical example took 
place at one time.

Synthetic control
The Synthetic Control (SC) method estimates the ATT 
by constructing a counterfactual treatment-free out-
come for the treated unit using the weighted average of 
available control units pre-intervention [44, 47, 48]. The 
weights are chosen so that the outcomes and covariates 
for the treated unit and the synthetic control are similar 
in the pre-treatment period [44, 48]. This assumption 
may not hold in reality, particularly when estimating 
policy impacts, thus alternative analytical approaches 
which avoid the parallel trends assumption have been 
considered.

The SC approach becomes particularly useful in cases 
when a naturally occurring control group cannot be 
established, or in cases where the parallel trends assump-
tion does not hold, and can often complement other ana-
lytical approaches [48]. Similarly to PSM, the SC method 
also relies on the CIA, and controls for pre-treatment 

outcomes and covariates by re-weighting treated obser-
vations, using a semiparametric approach [44]. For a sin-
gle treated unit the synthetic control is formed by finding 
the vector of weights W that minimises [44]:

 (X1 − X0W )′V (X1 − X0W )

Where W represents the vector of weights that are posi-
tive and sum to 1, X1  contains the pre-treatment out-
comes and covariates for the treated unit, X0  contains 
the pre-treatment outcomes and covariates for the con-
trol unit, and V is a positive matrix capturing the relative 
importance of the chosen variables as predictors of the 
outcome.

The choice of V is important as W* depends on the 
choice of V. The synthetic control W*(V) is meant to 
reproduce the behaviour of the outcome variable for the 
treated unit in the absence of the treatment. Often a V 
that minimises the mean squared prediction error is cho-
sen [44, 48]:

 

T0∑

t=1




Y1t

−
J+1∑

j=2

W ∗
j (V ) Yjt




2

Where T0 is the pre-intervention period, Y1t  is the out-
come post-intervention at time t, Yjt  is the value of the 
covariates for unit j at time t, W ∗

j (V ) is the synthetic 
control for unit j, W* is a vector of optimally chosen 
weights.

Similarly, we limit biases in our estimated treatment 
effects [45] using the SC approach, which restricts the 
synthetic control weights to be positive and sum to one 
and such that the chosen weights minimise the mean 
squared prediction error with respect to the outcome 
[49].

Data and methods
In our empirical example analysis, we used national Hos-
pital In-Patient Enquiry (HIPE) administrative activity 
data from 2013 to 2019 for 19 public acute hospitals pro-
viding orthopaedic services in Ireland. HIPE data used 
in our analysis record and classify all activity (public and 
private) in Irish public hospitals [27]. We divided our 
data into quarterly time periods (n = 27) based on admis-
sion date. Data were available for 12 quarters pre-ABF 
introduction, and 15 quarters post-ABF introduction. 
We assessed the impact of ABF on patient average LOS, 
following elective hip replacement surgery, for a total of 
19,565 hospital patient episodes.

For each analysis, we included hospital fixed effects 
and controlled for the same covariates: Age categories 
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(reference category 60–69 years), average number of 
diagnoses, average number of additional procedures 
(additional to hip replacement), Diagnosis-Related 
Group (DRG) complexity (split by minor and major 
complexity) and interaction variables: Age categories by 
average number of diagnoses, age categories by average 
number of additional procedures, age categories by DRG 
complexity.

We estimated the ITS model using ordinary least 
squares and included public patient episodes only. Fol-
lowing guidance from previous studies [32, 50], we 
accounted for seasonality by including indicator variables 
for elapsed time since ABF introduction. Additionally, we 
checked for presence of autocorrelation by plotting the 
residuals and the partial autocorrelation function [32, 
50].

For the remaining models, we used treatment and con-
trol groups consisting of public and private patient epi-
sodes, respectively, and estimated the average treatment 
effects on the treated (ATT). We used the key differences 
in reimbursement between public (DRG payments) and 
private (per-diem payments) patient episodes, to dif-
ferentiate our treatment group from the control group. 
The identification strategy exploits the fact that per-diem 
funding of private patient care remained unchanged over 
the study period. Any change in outcome between public 
and private patients before and after the introduction of 
ABF should be due to the policy introduction.

In our DiD analysis, we controlled for common aggre-
gate shock changes by including dummy variables for 
each time period (time fixed effects). We additionally 
examined the parallel trends assumption by interacting 
the time and treatment indicators in the pre-ABF period 
(see Supplementary Tables 4, Additional File 6).

We estimated PSM DiD in a number of steps6: First we 
estimated propensity scores to treatment based on our 
list of covariates, using a probit regression. Second, we 
matched the observations in the treatment group (public 
patient episodes) with observations in the control group 
(private patient episodes) as per estimated propensity 
scores with the common support condition imposed. 
Finally, we compared the changes in the average LOS of 
the treated and matched controls by DiD estimation.

The SC estimation7 was conducted at the hospital level. 
It has been reported that the SC approach used in our 
analysis works best with aggregate-level data [44, 48, 52]. 
We incorporated the nested option in our estimation, a 
fully nested optimization procedure that searches among 
all (diagonal) positive semidefinite matrices and sets of 

6  Using the psmatch2 Stata command using nearest neighbour matching 
which showed the best balancing properties after comparing several algo-
rithms [51].
7  Using the synth Stata command [44, 52].

weights for the best fitting convex combination of the 
control units [44, 52]. The synthetic control group com-
position consisted of private patient episodes based on 
characteristics from 9 different public hospitals from the 
sample of 19 hospitals used in our analysis [see Supple-
mentary Tables 1, Additional File 2].

To examine whether the estimated effects from all anal-
yses still hold, we conducted sensitivity analysis and re-
estimated each analytical model using trimmed LOS at 7 
days (at the 90th percentile of the LOS distribution). As 
illustrated by the distribution of LOS in Supplementary 
Fig. 1, Additional File 1, this allowed for the exclusion of 
outlier LOS values. Additionally, to test the robustness 
of the estimated treatment effects, we tested the empiri-
cal strength of each model by inclusion and exclusion of 
certain covariates. We also examined the trends in the 
pre-ABF period across all DiD models, to check whether 
the trends were similar across the treatment and control 
groups.

Results
Table  1 summarises the key descriptive statistics of the 
data analysed. Over the study period, the overall average 
LOS for this sample of patient episodes was 5.2 days (5.3 
and 5.0 days for public and private patients, respectively). 
The majority (31.7%) of patients were aged 60–69 years 
(30.9% of public and 33.8% private patients, respectively). 
The average number of additional diagnoses was 2.5 for 
public and 2.1 for private patients (overall average of 2.4), 
and average additional procedures were 3.3 for public 
and 2.8 for private patients. The DRG complexity indi-
cates that most patients (95.7%) had undergone minor 
complexity hip replacement surgery.

We illustrate the estimated intervention effects for 
each of the models in Fig. 1. We observe a clear reduc-
tion in the average LOS from the ITS estimates (Fig. 1a). 
However, the DiD and PSM DiD estimates are very simi-
lar, and we do not observe a clear effect on the average 
LOS, with most coefficients distributed closely around 
zero (Fig.  1b and c). Similarly, the SC approach could 
not identify a clear effect (Fig. 1d). Additionally, both the 
SC (Fig. 1d & Supplementary Tables 1, Additional File 2) 
and PSM DiD (Supplementary Fig.  2, Additional File 3) 
approaches achieved good balance between the treated 
(public patient episodes) and control (private patient epi-
sodes) groups. Our examination of the pre-ABF trends 
did not identify any significant differences between treat-
ment and control groups (see Supplementary Tables  4, 
Additional File 6).

Table 2 summarises the estimated treatment effects for 
each estimation model8. The ITS analysis suggested ABF 

8  Reported p-values for ITS and DiD are for the hypothesis that ATT = 0. For 
DiD PSM, reported p-values are conditional on the matched data. For SC, 
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reported p-values were calculated using placebo-tests in a procedure akin to 
permutation tests (Abadie et al. 2010). This involved iteratively resampling 
from the control pool, and in each iteration re-assigning each control unit 
as a ‘placebo treated unit’, with a probability according to the proportion of 

treated units in the original sample. The synthetic control method was then 
applied on these ‘placebo data’ and ATT calculated for the placebo treated 
versus control units. The p-value for the ATT was calculated according to 
the proportion of the replicates in which the absolute value of the placebo-

Table 1 Descriptive Statistics of key covariates used in all models by treatment and control group
Treatment (Public) Control (Private) Total

Average LOS 5.3 days 5.0 days 5.2 days

Age group (%)
< 30
30–39
40–49
50–59
60–69
70–79
+ 80

96 (0.7%)
329 (2.3%)
1026 (7.3%)
2573 (18.3%)
4338 (30.9%)
4151 (29.6%)
1530 (10.9%)

18 (0.3%)
82 (1.5%)
373 (6.8%)
982 (17.8%)
1868 (33.8%)
1633 (29.6%)
566 (10.2%)

114 (0.6%)
411 (2.1%)
1399 (7.2%)
3555 (18.2%)
6206 (31.7%)
5784 (29.6%)
2096 (10.6%)

Average number of additional diagnoses 2.5 2.1 2.4

Average number of additional procedures 3.3 2.8 3.1

DRG complexity
- major
- minor

13,389 (95.3%)
654 (4.7%)

5322 (96.4%)
200 (3.6%)

18,711 (95.7%)
854 (4.3%)

N 14,043 5522 19,565

Fig. 1 Model estimates
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had the largest and statistically significant impact on the 
average LOS for public patients, a reduction of 0.7 days 
(p < 0.01). However, this effect could not be observed with 
the control-treatment approaches, although we also see a 
negative but smaller effect on the average LOS from the 
DiD, PSM DiD and SC estimates. The effect is not statis-
tically significant for any of these models. As illustrated 
in Fig. 2 below, we observe a generally declining trend in 
the average LOS for both the public and private patients 
in our data. This explains the statistically significant 
effects of ITS, relative to the control-treatment methods, 

ATT exceeded the estimated ATT. It should be noted that the p-value based 
on placebo tests relate to falsification tests, while the p-values reported 
for the other methods relate to sampling uncertainty. Hence the p-values 
between each estimated model are not directly comparable.

which differentiate out the average LOS effects between 
both public and private patient episodes.

The results from our sensitivity analysis (Supplemen-
tary Tables  2, Additional File 4) revealed no material 
change for the ITS estimates, which remained statisti-
cally significant (p < 0.001). The estimated treatment 
effects from the control-treatment approaches remained 
small, and not statistically significant. Similarly, addi-
tional robustness testing of the estimated treatment 
effects by each model (and pre-ABF trend examination) 
remained consistent with the main results (Supplemen-
tary Tables 3, Additional File 5).

Table 2 Estimated Treatment Effects by estimation model
Estimation Model Estimated Treatment 

Effect
(Std. Error)

t p-value R2 Observations FE

ITS -0.734
(0.162)

-4.54 0.001*** 0.43  N = 14,043 Yes

DiD -0.012
(0.280)

-0.04 0.966 0.42  N = 19,565 Yes

PSM DiD -0.013
(0.279)

-0.05 0.961 0.42  N = 19,549a Yes

SC -0.053
(0.136)b

- 0.400 - N = 28c -

Note: The treatment effect parameters for ITS, DiD and PSM DiD all indicate a marginal change (reduction) in the average LOS. The DiD and PSM DiD estimates are 
almost identical, indicating that the matched propensity scores did not have a substantial impact on the overall DiD estimates. In contrast, the difference between 
ITS and DiD estimates is substantial. All models control for hospital Fixed Effects (FE) except for SC estimation at the hospital level; a16 observations in the treatment 
group were not matched; bThe SC method relies on minimising the RMSPE; c due to aggregated data at hospital level; Significance level: *** ; p < 0.01; robust standard 
errors in parenthesis

Fig. 2 Average LOS by quarter 2013–2019 for treatment and control groups
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Discussion
In this study we compared the key analytical methods 
that have been used in the evaluation of policy interven-
tions and used the introduction of Activity-Based Fund-
ing (ABF) in Irish public hospitals as an illustrative policy 
case. Specifically, we compared several control-treat-
ment methods (DiD, PSM DiD, SC), to a non-control-
treatment approach, ITS. We contribute to the limited 
empirical evidence in the health services research field 
comparing control-treatment analytical approaches to 
non-control-treatment approaches, based on recent evi-
dence highlighting the common use of these methods 
in estimation of health intervention or policy effects [5]. 
Additionally, we contribute to the very limited research 
evidence on the evaluation of the ABF policy within 
the Irish context. We were able to utilise an important 
dimension of the funding changes, by exploiting the fact 
that both publicly and privately financed patients are 
treated in public hospitals in Ireland and over the period 
of analysis, private patients were not subject to a change 
in their funding.

From our comparative methods analysis, ITS produced 
statistically significant estimates, indicating a reduction 
in LOS post ABF introduction, relative to control-treat-
ment approaches, which did not indicate any significant 
effects. This is in line with the results from other studies, 
which have estimated ABF effects using ITS, and have 
reported significant reductions in LOS [10–13]. Caution 
should be taken when considering ITS, as the estimates 
may not truly capture the effects of the intervention of 
interest. This could lead to incorrect inferences, and 
potentially to misguided assessment of impacts from pol-
icy changes across the hospital sector. For instance, the 
estimated reduction in LOS for Irish public patients, may 
incorrectly indicate that the ABF reform has been suc-
cessful. From a policy perspective, the importance of the 
resulting ABF effects, would be informed by the size of 
ITS estimates, providing potentially misleading evidence 
on the funding reform.

Further, caution should be taken, as ITS analysis does 
not include a control group, relative to the other methods 
we considered which incorporated a control and treat-
ment groups. Therefore the conclusions drawn from the 
ITS analysis will differ to those drawn from the control-
treatment approaches. Additionally, our findings from 
ITS analysis align with a recent study which tested the 
empirical strength of the ITS approach, by comparing 
the estimated ITS results to the results from a RCT [4]. 
Relative to a RCT, ITS produced misleading results, pri-
marily driven by the lack of control group, and ITS model 
assumptions [4]. This would suggest, a comparison of the 
slope of outcomes before and after an intervention may 
lead to biased estimates when evaluating causal effects 
on outcomes affected over time, due to influences by 

simultaneous and other unobservable factors at the time 
of the intervention.

However, over the study period, the average LOS for 
both public (treatment) and private (control) patient 
cases shows a reducing trend over time (Fig. 2). By lim-
iting the analysis to the public patients only, the ITS 
approach ignores the system level effect for all patients 
treated (public and private), across public hospitals, and 
picks up a statistically significant and negative effect. In 
contrast, the control-treatment approaches account for 
the simultaneous downward trend in private (control) 
patient activity, thus approximating a natural experiment 
(e.g. a RCT) more closely, and producing more robust 
estimates, relative to ITS.

It is important to note that often no comparison 
group may be available, limiting the analysis to the ITS 
approach. This may be driven by various data limitations. 
For example, the data available over a period may only 
partially be available for a specific intervention. There-
fore, conventional regression modelling may be the only 
feasible approach to account for pre-intervention differ-
ences, even though there is evidence that these methods 
may provide biased results, most notably in the pres-
ence of time-dependent confounders [4]. Additionally, 
certain intervention and policy evaluations may not be 
feasible under a control-treatment design, and for which 
the ITS approach is more suitable. This applies to studies 
which focus on a specific patient [53] or hospital group 
[10], or policies at a more aggregate or population level 
[54], for which it is difficult to identify a naturally occur-
ring control group. Therefore, the inclusion of a control 
group in these instances would not be suitable, suggest-
ing a before-after comparison in the level and trend of 
outcomes using ITS analysis as a more suitable approach. 
Additionally, ITS models may be more effective in the 
evaluation of policy and intervention effects when the 
control-treatment specific assumptions of parallel trends 
and the common independence assumptions do not hold 
[55].

Additionally, ITS has been highlighted as an effective 
approach to study short-term policy and intervention 
effects, as estimation of long-term effects can be biased 
due to the presence of simultaneous shocks to the out-
come of interest [56]. In contrast, control-treatment 
approaches such as DiD and SC have been recognised 
as more appropriate and robust for estimation of long-
term intervention effects [57], as these allow interven-
tion effects to change over time [38, 49]. Despite recent 
improvements and developments of the ITS approach 
[34, 35], the benefits of adopting control-treatment 
approaches for health intervention and policy evaluation, 
have been previously highlighted [33].

It should be noted that all of the methods applied in 
this study are limited to the evaluation of a single policy. 
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Therefore, any other smaller scale simultaneous policies 
that are implemented during the period of analysis are 
difficult to differentiate out in many instances. However, 
the control-treatment methods account for any unmea-
sured group or time-invariant confounders from the 
main intervention itself by incorporating a control group 
[33]. For example, the introduction of ABF in our empiri-
cal example may have been accompanied by a hospital-
wide discharge policy aimed at reducing LOS. In this 
instance, ITS may attribute the reduction in LOS as the 
impact of ABF entirely, although this is a hospital pol-
icy effect. Alternatively, the inclusion of a control group 
(e.g. patients targeted in the LOS policy, but not to ABF) 
would difference out the ABF effect from the LOS policy, 
and would capture effects specific to ABF introduction. 
In this case, ITS may overestimate the impacts of ABF 
relative to the other approaches and may further contrib-
ute to different evidence base for policy decisions.

This study has several limitations. First, we limited 
our ITS analysis to a single group (public patient epi-
sodes) despite recent developments to ITS for multiple 
group comparisons [34]. However, this was informed by 
a recent review, which identified that ITS was employed 
to estimate intervention effects for a single group [5]. 
Second, for each of the control-treatment methods, we 
assumed that any individual shocks following ABF intro-
duction had the same expected effect on the average LOS 
for the treatment and control groups. Third, we assumed 
that all of the models were correctly specified in terms 
of their respective identification and functional form 
assumptions. However, if either the identification or the 
functional assumptions are violated, the estimates can be 
biased, particularly as highlighted in recent literature on 
DiD approaches [45]. Fourth, we limited our focus on two 
key assumptions applicable to the quasi-experimental 
approaches i.e. parallel trends and conditional indepen-
dence, and did not focus on other assumptions e.g. com-
mon shock assumption. Fifth, recent research evidence 
has addressed the issues related to intervention ‘spill-
over effects’ i.e. the unintended consequences of health-
related interventions beyond those initially intended [58]. 
It is possible that the differing estimated effects, based 
on the analytical method used, may have, or could lead 
to spillover effects as a result. However, given the nature 
of the data used in our analysis, and our focus on a single 
procedure in our empirical analysis, it is difficult to iden-
tify any potential spillover effects, which may have been 
linked to ABF. More exploration of such effects may be 
necessary in future research. Finally, caution should be 
taken in generalising the reported ABF effects in this 
study given that our empirical example focused on one 
procedural group in one particular country.

Conclusion
In health services research it is not always feasible to 
conduct experimental analysis and we therefore often 
rely on observational analysis to identify the impact of 
policy interventions. We demonstrated that ITS analy-
sis produces results different in interpretation relative 
to control-treatment approaches such as DiD, PSM DiD 
and SC. Our comparative method analysis therefore sug-
gests that choice of analytical method should be carefully 
considered and researchers should strive to employ more 
appropriate designs incorporating control and treatment 
groups. These methods are more robust and provide a 
stronger basis for evidence-based policy-making and evi-
dence for informing future financing reform and policy.
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