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Abstract 

Background: COVID-19 mass vaccination programs place an additional burden on healthcare services. We aim to 
model the queueing process at vaccination sites to inform service delivery.

Methods: We use stochastic queue network models to simulate queue dynamics in larger mass vaccination hubs 
and smaller general practice (GP) clinics. We estimate waiting times and daily capacity based on a range of assump-
tions about appointment schedules, service times and staffing and stress-test these models to assess the impact 
of increased demand and staff shortages. We also provide an interactive applet, allowing users to explore vaccine 
administration under their own assumptions.

Results: Based on our assumed service times, the daily throughput for an eight-hour clinic at a mass vaccination hub 
ranged from 500 doses for a small hub to 1400 doses for a large hub. For GP clinics, the estimated daily throughput 
ranged from about 100 doses for a small practice to almost 300 doses for a large practice. What-if scenario analysis 
showed that sites with higher staff numbers were more robust to system pressures and mass vaccination sites were 
more robust than GP clinics.

Conclusions: With the requirement for ongoing COVID-19 booster shots, mass vaccination is likely to be a continu-
ing feature of healthcare delivery. Different vaccine sites are useful for reaching different populations and maximising 
coverage. Stochastic queue networks offer a flexible and computationally efficient approach to simulate vaccination 
queues and estimate waiting times and daily throughput to inform service delivery.
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Background
Mass vaccination programs against the SARS-CoV-2 
virus are in operation around the world. There is a clear 
imperative to vaccinate the global population as quickly 
as possible: high coverage results in less severe illness 
and fewer hospital admissions resulting from coronavi-
rus disease (COVID-19) [1–3], minimises expensive and 

disruptive public health interventions [4–10], and limits 
opportunities for the virus to mutate, potentially result-
ing in more transmissible or deadly variants [11, 12]. As 
at February 2022, ten billion COVID-19 vaccinations 
have been administered globally, with over 20 million 
additional doses administered daily [13]. While many 
high-income countries have already achieved high levels 
of population coverage there is a large global inequity in 
vaccine distribution, and many highly populated low-
income countries remain under-vaccinated [13]. Booster 
shots are already being rolled out in many countries 
and the potential requirement to provide annual shots 
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matched to variants of concern is likely to make popula-
tion-level COVID-19 vaccination programs a fixture of 
health care delivery for years to come [14–16].

Vaccines are routinely administered at a wide range 
of locations including hospitals, general practices, and 
pharmacies. To facilitate rapid rollout of the COVID-
19 vaccine, many health departments also established 
improvised mass vaccination hubs in repurposed venues 
such as schools, churches, conference centres and sports 
arenas [17, 18]. The layout and potential capacity of these 
different venues have implications for how the vaccina-
tion process is organised and one of the many logistical 
challenges of mass vaccination is ensuring adequate staff-
ing and vaccine stock to meet demand and keep overall 
queueing times to an acceptable level. Getting this bal-
ance right is essential to an efficient and successful roll-
out [19–24]. Too few staff or too few vaccines may result 
in onerous waiting times or shortages of doses. Having 
too many doses on site may be impractical for storage 
reasons, given cold-chain requirements and the necessity 
to only reconstitute doses that will be used to minimise 
wastage.

Regardless of where the vaccine is administered, the 
process involves a sequence of administrative and clini-
cal tasks, that may include temperature checks on arrival, 
registration or booking confirmation, health assessment, 
recording consent, vaccine reconstitution and adminis-
tration of the vaccine. Planning is essential to avoid bot-
tlenecks resulting in long delays and a negative patient 
experience. In addition, vaccine demand fluctuates over 
time and it is important to be able to plan for surge 
capacity.

The application of computational operational research 
methods to health care delivery and capacity planning 
has a long history [25–29]. A recent umbrella review of 
systematic reviews [30] highlights the diverse range of 
healthcare applications, including obstetrics [31], radio-
therapy [32], surgery [33–35], emergency departments 
[36–38], community health care [39] and distribution of 
blood products [40]. These methods have also previously 
been applied to challenges arising in the context of a pan-
demic. A simulation approach was used to model and 
optimise nurse allocation in an emergency department 
in the event of a hypothetical influenza outbreak [41]. 
Similar methods were used to inform the delivery of a 
drive-through mass vaccination clinic which successfully 
vaccinated almost 20,000 residents against the H1N1 
virus over 1.5 days in 2009 [42].

Given this long history and array of applications, it 
is no surprise that the onset of Covid-19 saw the rapid 
uptake of simulation methods to inform various aspects 
of the pandemic response. A discrete event simulation 

was used to model the process of screening and test-
ing for Covid-19 in India using FlexSim Healthcare 
software [43]. This analysis was used to identify a bot-
tleneck in the testing facilty patient flow, and evaluate 
potential alternatives through simulation. In Canada, a 
hybrid discrete-event and agent based model was used 
to model thoughput at a drive-through mass vaccina-
tion clinic [22]. This model estimated total throughput 
and average processing and waiting times based on a 
range of assumptions including staff numbers, service 
times, vehicle occupancy and available drive-through 
lanes. Implemented using AnyLogic simulation soft-
ware, the model includes a web-based user interface 
[44].

In the United Kingdom, an existing open source tool 
for modelling patient pathways using discrete-event 
simulation modelling [45, 46] was adapted to model a 
Covid-19 mass vaccination hub located in a sports sta-
dium [23]. This model informed the organisation of the 
site by identifying bottlenecks and under-utilisation of 
resources in the proposed patient flow. The same model 
was also used to assess the impact of unplanned disrup-
tions at a second vaccination clinic, including delayed 
arrivals and staff shortages early in the day [24]. The 
analysis highlighted that early disruptions resulted 
in significant congestion with undiserable conditions 
persisting throughout the day, leading the authors to 
advise fewer daily bookings so that the system could 
absorb unplanned shocks, or ensuring additional over-
flow space to safely accommodate patients during con-
gested periods. The underlying simulation model is 
implemented in R and includes a user interface which 
can be downloaded and deployed locally [46].

In this study, we aimed to model the vaccination pro-
cess using stochastic queue network models to help 
inform public health planning for the delivery of vac-
cinations. We developed separate models for larger 
mass vaccination hubs and smaller GP vaccination clin-
ics and show how these models can be used to simu-
late the queueing process, plan staffing requirements to 
avoid bottlenecks and estimate daily throughput given 
constraints on staff capacity. Our analysis adds to the 
literature in two important ways. First, we incorporate 
the vaccine preparation process into the queue net-
work, which is important to consider given guidelines 
to reconstitute vaccines shortly before administration 
and use within a fixed timeframe. Second, we provide 
a free and opensource web-based user interface to our 
simulation models, which allows others to use this 
modelling tool without needing any specialised soft-
ware, installation or subscription.
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Methods
Queueing theory
Queueing is a ubiquitous phenomenon which we encoun-
ter daily at shops, airports, train stations and call centres. 
Queueing theory is a statistical representation of this 
everyday process. The most basic queue can be charac-
terised by three components: the rate of arrivals into the 
queue, the service time, and the number of servers [47]. If 
arrivals are infrequent, service times are fast, and servers 
are plentiful (e.g. an ATM on a quiet street) then the total 
waiting time will be short and the average queue length 
will be low. If arrivals are frequent, the service time is 
long or the number of servers too few (e.g. at an airport 
check-in desk on the first day of holidays) then the aver-
age queue length will increase as will waiting times.

Queueing theory offers a way to improve the experience 
for customers and for servers by modelling the queueing 
process and guiding the balance between these factors. 
Models of the queueing process represent arrival and ser-
vice times as stochastic processes. For example, the num-
ber of new customers joining a queue in a given period 
can be modelled as a Poisson process or, alternatively, 
inter-arrival times can be modelled as an exponential 
distribution. The aim is to then estimate characteris-
tics of the queue, such as average (median) waiting time 
and queue lengths given a fixed number of servers, or to 
estimate the number of servers required to keep average 
waiting times at a desired level given likely service times 
and arrivals. Complex queue networks can be formed by 
joining multiple simpler queues together, either as a tan-
dem network with an ordered series of queues, or a par-
allel network, with multiple parallel queues [47, 48].

Other features of queue networks include fork/joins 
and lags. A fork arises when a single queue bisects into 
two subprocesses; a join arises when two parallel queues 
merge. Lags are waiting times that don’t involve a server 
but nonetheless can also be modelled as a stochastic 
process.

Modelling the vaccination process as a queue network
In this analysis we represented the vaccination pro-
cess as a complex queueing network involving tandem 
queues, fork/joins and lags. We proposed two distinct 
queue networks—one for mass vaccination hubs and one 
for GP vaccination clinics—based on real-world exam-
ples of how these different delivery modes have deliv-
ered COVID-19 vaccines in Australia. For both queue 
networks, we specified three baseline models based on 
low, medium, and high staffing availability. We repeat-
edly simulated data from each model to estimate staff 
utilisation and service times and, by calibrating the 
appointment schedule to keep these two metrics within 
reasonable limits, we estimated baseline daily throughput 

for each delivery mode. Finally, we performed two what-
if scenario analyses to explore how the different queue 
networks and staffing capabilities responded to two 
potential system pressures. The first what-if scenario was 
to incrementally increase the number of appointments, 
reflecting capability to scale up daily throughput with 
the same number of staff. The second what-if scenario 
was to incrementally decrease available staff, reflecting 
staff shortages due to illness or an increase in competing 
demands for staff time.

Proposed queue networks
Our proposed queue networks for the mass vaccination 
hub and GP vaccination clinic differ in the layout of sta-
tions and how essential tasks are distributed across these 
stations. Each stage of the process is serviced by one or 
more servers—staff who undertake the tasks required 
for that stage. Patients are serviced by the next available 
server on a first-come-first-served basis, before moving 
on to the next station in the network.

An overview of the two queue networks is presented 
in Fig.  1 and these are described in more detail below. 
The main difference is that the GP network—assum-
ing a smaller physical space and fewer staff—distributes 
the necessary tasks to fewer stations. In this sense, our 
two proposed layouts are analogous to the ‘Separate’ 
and ‘Combined’ designs explored by Wood et al. (2021), 
where the combined design merged the clinical assess-
ment and vaccination stations.

The proposed queue network for a mass vaccination 
hub was modelled on the Pfizer/BioNTech vaccination 
hub based at the Royal Prince Alfred (RPA) Hospital in 
Sydney, Australia. In this queue network, patients tra-
versed five stations: Entrance, Registration, Assessment, 
Vaccination and Observation. The first four stations 
require the patient to wait for an available staff mem-
ber, so these stations are modelled as tandem queueing 
processes, with new arrivals from the preceding station 
serviced by the next available staff member on a first-
come-first-served basis. The observation station does not 
require patients to wait for an available staff member but 
to capture the constraint of observation area capacity this 
station is modelled as a queueing process where patients 
are ‘served’ by available seats. Because mass vaccination 
sites require a large premises, the queue network also 
incorporated a short walking time between stations. Vac-
cine doses must be prepared close to the time they are 
administered, and clearly delays to this process will result 
in delays at the vaccination stage. To capture this feature 
of the vaccination process, the queue network includes 
a parallel queue for vaccine preparation (Fig. 1A) which 
joins with the patient queue at the vaccination station. 
The exact steps for the preparation process will vary for 
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the type of vaccine being administered. The assumed 
activities at each station in the mass vaccination hub 
queue network are provided in an additional file (Addi-
tional file 1 – Appendix A).

The proposed queue network for a local GP vaccina-
tion clinic is presented in Fig. 1B. In this queue network, 
patients traverse three distinct stations: Registration, 
Vaccination and Observation. To advance through the 
Registration and Vaccination stations, patients must wait 
for the next available staff member, so these stations are 
modelled as queueing processes with patients serviced 
by the next available staff member on a first-come-first-
served basis. As with the mass vaccination model, the 
observation station is modelled as a queueing process 
where patients are ‘served’ by available seats and there is 
a parallel queue specified for vaccine preparation which 
joins at the vaccination station. Due to the implicit 
smaller venue size, the time taken to walk between sta-
tions at a GP clinic is assumed to be negligible and not 
included in the model. The distribution of assumed vacci-
nation tasks across the GP queue network is summarised 
in an additional file (Additional file 1 – Appendix A).

Parameterising the models
To model queue dynamics based on a given queue net-
works, three inputs must be provided: (i) simulated ser-
vices times for each station; (ii) simulated arrival  times 
for each station; and (iii) the number of staff/servers 
(or open queues) at each station. We defined the ser-
vice times at each node based on our experience at a 
mass vaccination hub at the RPA Hospital, Sydney and 

an exemplar GP clinic. We then calibrated the arrival 
frequency to ensure baseline models with comparable 
queue performance for the low, medium and high staff-
ing capacity scenarios using two metrics of queue perfor-
mance, median processing time and staff utilisation, as 
described in an additional file (Additional file 1 – Appen-
dix B). The RPA Hospital hub, which had seating for up 
to 175 patients in the observation area, would constitute 
a high-capacity mass vaccination hub.

Service times
For both the mass vaccination hub and GP vaccination 
clinic models, the user must specify service time distri-
butions for each station in the queue network. For each 
patient within the simulation, the time spent at each sta-
tion is sampled from the corresponding user-specified 
distribution. In the simulations presented here, the sta-
tion service times were sampled from exponential dis-
tributions with fixed minimum service times and rate 
parameters as summarised in Table  1. The choice of 
exponential distributions reflects the assumption that 
most patients take a relatively short time to process with 
a minority of patients taking longer.

The exception is the observation station, which was 
modelled as bimodal distribution, assuming normally 
distributed observation times for the majority of patients 
who do not experience an adverse reaction and exponen-
tially distributed observation times for a small random 
subset to reflect a low incidence of adverse reactions. In 
our simulations the probability of an adverse reaction 
was set to 2%. The assumed minimum service times and 

Fig. 1 Queue networks for (A) mass vaccination hubs and (B) GP vaccination clinics
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exponential rate parameters for each station are summa-
rised in Table 1, together with the resulting distribution 
of service times. Our web-based applet allows users to 
choose from five parametric distributions when speci-
fying service times: exponential, normal, log-normal, 
gamma and Weibull distributions.

Arrival times
Arrivals for both queue networks were generated based 
on a fixed appointment system for an eight-hour clinic. 
For mass vaccination hubs we assumed that appointment 
slots would be given on the hour, every hour. For GP clin-
ics we assumed that appointment slots would be provided 
in ten-minute intervals. The number of appointments 
issued per appointment slot for the low, medium and 
high-capacity scenarios are summarised in Table  2. The 
number of available appointments was calibrated such 

that queue performance metrics for our baseline mod-
els were within reasonable limits and stable for the three 
staff capacity scenarios. In particular, the number of 
appointments was scaled so that the median processing 
time remained below 60 minutes, and the staff utiliation 
across all stations remained below 0.8. This calibration 
process is described in detail in the additional file.

Stochastic arrival times were generated based on the 
number of appointments issued per appointment slot 
with the addition of some random noise, reflecting the 
assumption that most people arrive somewhat before 
their allotted time, while a smaller proportion arrive on 
or after their allotted time. Simulated arrival times also 
accounted for a small proportion of no-shows, set at 2% 
for both mass vaccination hubs and GP clinics.

Staffing levels
For each of the proposed queue networks we specified 
models with low, medium and high staffing availability, 
ranging from 21 to 63 healthcare staff for mass vaccina-
tion sites and from 4 to 12 healthcare staff for GP vac-
cination clinics (Table 3). The distribution of staff across 
the stations of the queue network was kept stable regard-
less of the total staffing capacity. For example, for the 
mass vaccination model there were three staff assigned 
to the Registration station for every one staff member 
assigned to the Preparation station, regardless of the 
assumed size of the hub. This proportionality allows us 
to compare hubs with different numbers of available staff 
because the distribution of staff across different stations 
is consistent.

Table 1 Assumed service time distributions for the mass vaccination hub and GP clinic stations

Station Form Formula Percentiles (minutes)

5% 25% 50% 75% 95%

Mass vaccination hub
 Preparation exponential 1 + exp.(λ = 3) 1.0 1.1 1.2 1.5 2.0

 Entrance exponential 2 + exp.(λ = 1) 2.0 2.3 2.7 3.2 4.8

 Registration exponential 3 + exp.(λ = 0.7) 3.1 3.4 4.0 5.0 7.3

 Assessment exponential 2 + exp.(λ = 1) 2.1 2.3 2.7 3.4 4.9

 Vaccination exponential 3 + exp.(λ = 1) 3.1 3.3 3.7 4.3 5.8

 Observation normal norm(μ = 20, 𝜎 = 0.5) 19.8 19.9 20.0 20.1 20.2

 Adverse reaction exponential 20 + exp.(λ = 0.1) 20.4 22.9 26.7 33.0 46.1

General practice clinic
 Preparation exponential 1 + exp.(λ = 3) 1.0 1.1 1.2 1.4 1.9

 Registration exponential 3 + exp.(λ = 1) 3.1 3.3 3.7 4.3 5.9

 Vaccination exponential 5 + exp.(λ = 0.5) 5.1 5.6 6.3 7.7 11.2

 Observation normal norm(μ = 20, 𝜎 = 0.5) 19.2 19.6 20.0 20.3 20.8

 Adverse reaction exponential 20 + exp.(λ = 0.1) 20.4 22.6 26.6 33.3 48.7

Table 2 Assumed arrival frequency for the mass vaccination 
hubs and GP clinics

Size Appointment 
interval (minutes)

Appointments 
issued per 
interval

Mass vaccination hub
 low 60 60

 medium 60 120

 high 60 180

General practice clinic
 low 10 2

 medium 10 4

 high 10 6
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The implied size of the low, medium and high-capacity 
vaccination hubs and GP clinics is indicated by the cor-
responding observation area capacity and staff numbers 
presented above. For example, what we label a low-
capacity hub has a total of 21 staff with five vaccinators 
and 25 seats in the waiting area. A high-capacity hub has 
63 staff with fifteen vaccinators and 75 seats in the wait-
ing area. Although the model is agnostic to the physi-
cal setting, the former would more closely reflect a local 
sports hall or community center while the latter would 
imply a larger venue with more space such as a hospital 
or stadium.

Queue performance
We use two metrics to quantify queue performance, pro-
cessing time and staff utilisation. Processing time, meas-
ured here in minutes, is the total time from start to finish 
of the queue network or equivalently the total time from 
entrance to exit. Staff utilisation is the average proportion 
of staff that are serving a patient across the simulation 
run. An established property of queueing models is that 
queue performance rapidly degrades as staff utilisation 
exceeds 80% [49].

Simulations, software and code
The analysis was performed using R version 4.0.3 and 
associated packages [50, 51]. Queueing models were sim-
ulated using the queuecomputer package, which imple-
ments a computationally efficient algorithm that is up 
to three times faster than tradition discrete event simu-
lation methods [48]. The number of repetitions for each 
simulated scenario was set to 20, which was adequate to 
achieve stable estimates of the two queue performance 
measures. The complete source code to reproduce this 
analysis is openly available and can be accessed at https:// 
github. com/ CBDRH/ vacci neQue ue.

Results
For our baseline models, the estimated median process-
ing time at mass vaccination clinics was 52 minutes, and 
95% of patients were processed within 67 minutes or less. 
For GP clinics, the estimated median processing time was 
32 minutes, and 95% of patients were processed within 
37 minutes or less (Fig. 2). Staff utilisation was kept under 
80% for all stations (see Additional file 1 – Appendix B). 
By design, both measures of queue performance were 
stable across the low, medium and high staffing capacity 
for these baseline simulations.

The corresponding estimated daily throughput for an 
eight-hour clinic at a mass vaccination hub ranged from 
around 500 vaccinations for a low-capacity hub to 1400 
vaccinations for a high-capacity hub. For GP clinics, the 
estimated daily throughput ranged from about 100 vacci-
nations a day for a low-capacity clinic to almost 300 a day 
for a high-capacity clinic (Fig. 3). These results show that, 
while holding queue performance metrics constant, the 
number of daily vaccinations scales linearly with increas-
ing healthcare staff for both the mass vaccination hubs 
and GP vaccination clinics.

What‑if scenario analysis
In this section, we present the results of two what-if sce-
nario analyses. Figure 4 presents the median processing 
time based on incrementing the arrival frequency from 
the levels set for the baseline models. The increment step 
was ten additional arrivals per hour for mass vaccina-
tion hubs and one additional arrival every 10 min for GP 
clinics. In both settings, increasing the number of arriv-
als resulted in increased processing times. The degree to 
which sites of different size were able to absorb increased 
patient numbers varied. For example, at low-capacity 
mass vaccination hubs (21 staff), an additional 30 arrivals 
per hour pushed the median processing time to almost 
2 h (109 minutes, Fig.  4A), whereas high-capacity hubs 
(63 staff) were able to absorb this extra patient load while 

Table 3 Assumed staff numbers by station for low, medium and high staffing availability scenarios

Capacity Observation area 
capacity

Staff numbers

Preparation Entrance Registration Assessment Vaccination Total

Mass vaccination hub
 low 25 2 4 6 4 5 21

 medium 50 4 8 12 8 10 42

 high 75 6 12 18 12 15 63

General practice clinic
 low 5 1 NA 1 NA 2 4

 medium 10 2 NA 2 NA 4 8

 high 15 3 NA 3 NA 6 12

https://github.com/CBDRH/vaccineQueue
https://github.com/CBDRH/vaccineQueue
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maintaining the median processing time to under an 
hour (55 minutes, Fig. 4A).

Figure 5 presents the average processing time based on 
gradually decreasing the available staff for a given model. 
These results demonstrate that low-capacity vaccination 
sites with limited staff numbers are quickly affected by 
staff shortages, whereas large vaccination hubs with more 
staff can still maintain queue performance with the same 
number of staff shortages.

Interactive web‑based queue simulation applet
To accompany the analysis presented here, we have devel-
oped a free and open access interactive web-based queue 

simulation applet. This applet provides a graphical user 
interface to the mass vaccination and GP clinic queueing 
networks estimated with the R package queuecomputer 
[48]. On accessing the applet in a web browser, the results 
from two default models are presented. These models 
have been parameterised to reflect the medium-capacity 
baseline model presented here, i.e. the mass vaccination 
hub with 42 staff members and the GP clinic with eight 
staff members. The interactive interface allows users to 
adjust the appointment schedule, the arrival time and 
service times distributions and the available staff num-
bers to reflect their own situation or assumptions. Queue 
performance is summarised in terms of total throughput, 

Fig. 2 Estimated processing times for (A) mass vaccination hubs and (B) GP clinics with low, medium and high staffing capacity using the baseline 
model specifications

Fig. 3 Estimated daily throughput from 20 simulations for (A) mass vaccination hubs and (B) GP clinics with low, medium and high staffing 
capacity using the baseline model specifications
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processing times and staff utilisation. The applet can be 
accessed at https:// cbdrh. shiny apps. io/ queue Sim. The 
underlying source code is openly available on GitHub at 
https:// github. com/ CBDRH/ vacci neQue ueNet works.

Discussion
Summary and discussion of main results
We have used queueing simulation methods to model 
the vaccination process based on two proposed queue 
networks emulating delivery at a mass vaccination hub 
and a GP vaccination clinic. For each setting, we cali-
brated the number of arrivals that could be vaccinated 

Fig. 4 Estimated processing time with increasing arrivals by site size for (A) mass vaccination hubs and (B) GP vaccination clinics

Fig. 5 Estimated processing time with decreasing staff numbers by site size for (A) mass vaccination hubs and (B) GP vaccination clinics

https://cbdrh.shinyapps.io/queueSim
https://github.com/CBDRH/vaccineQueueNetworks
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over an eight-hour period while keeping two queue 
performance measures—total processing time and 
staff utilisation—constrained to reasonable levels. Our 
results provide estimates of potential daily throughput 
for these distinct vaccine delivery modes across a range 
of staffing levels. Under our assumed service times, 
a relatively small GP clinic could perform around 100 
vaccinations over an eight-hour clinic, while a rela-
tively large mass vaccination hub could perform around 
1400 vaccinations over the same period. Put differ-
ently, one large mass vaccination hub can achieve the 
same throughput as 14 GP small vaccination clinics. 
GP capacity and feasibility of large-scale hubs may vary 
by country and geography. In Australia, where there is 
universal healthcare and thousands of GP clinics, 62% 
of all vaccine doses have been administered in primary 
care settings [52].

Our throughput estimates have reasonable face-valid-
ity. The mass vaccination hub trialled by New South 
Wales Health in a 2008 pandemic response field exer-
cise administered 498 vaccines in 5 h using a mass vac-
cination process delivered through a local school [53]. 
The Sydney RPA Pfizer hub delivered between 1100 and 
1400 daily vaccinations throughout its first month of 
operation in March 2021.

Our models suggest that daily vaccination capacity 
scales linearly with staffing capacity while keeping queue 
performance constant. However, there are several other 
facets of the vaccine delivery process that are likely to 
offer economies-of-scale. For example, given a low inci-
dence of adverse events, a high-capacity post-vaccination 
area observation area could be overseen by a small num-
ber of staff members. Economies-of-scale are also likely 
to apply to vaccine transport, because it may be logisti-
cally more efficient and cost-effective to coordinate a sin-
gle delivery to one centralised hub rather than multiple 
deliveries to numerous smaller clinics, especially given 
that the cold-chain must be rigorously maintained at all 
stages of vaccine transport and handling.

By testing our baseline models using two what-if sce-
nario analyses, we have shown that mass vaccination 
hubs are better placed to scale up daily throughput with 
a fixed staff capacity while maintaining acceptable queue 
performance. We have also shown that mass vaccination 
hubs are also are more resilient to staff reductions due to 
absences or some staff being redirected to other urgent 
duties. Our queue simulation applet provides a simply 
interface for users to explore the interactions between 
arrivals, service times and staff capacity. This tool can 
be used to answer questions such as how many vaccina-
tors would be needed to achieve target daily throughput 
or how many appointments should be issued given fixed 
constraints on staff availability and service times.

Policy implications
Mass vaccination hubs and GP clinics offer distinct 
advantages as modes of vaccine delivery. As we have 
shown, mass vaccination hubs are more robust to sys-
tem pressures like increased arrivals and staff short-
ages. Smaller GP clinics are more likely to be vulnerable 
to concomitant, competing workplace demands, which 
fluctuate during the year and increase notably during the 
winter months. GP clinics have the advantage of existing 
infrastructure and existing relationships with patients. 
GP clinics are also highly flexible and can adapt to local 
circumstances and specific needs, as seen with carpark 
drive-through testing sites, which many practices helped 
set up during the COVID-19 pandemic [54].

The optimal vaccination site may vary for different 
population segments. Older people or clinically vulner-
able patients may benefit from attending their local GP 
who will be familiar with their medical history. Working 
adults may benefit from extended hours or more flex-
ible appointment scheduling that could be offered by a 
mass vaccination hub, as may younger adults—especially 
among marginalised populations—who are less likely to 
have a regular GP [55]. It may be easiest to reach univer-
sity students, and younger children, through vaccination 
hubs set up in campuses and schools. A combination 
of larger mass vaccination hubs and smaller GP clinics 
is likely to achieve mass vaccination faster than either 
alone.

In practice, the capacity provided by a vaccination site 
needs to be scaled according to demand, which can vary 
considerably over time. In NSW, due to an epidemic 
which started at a time when vaccination rates were low, 
there was a surge in demand around August 2021, with 
waning demand as high vaccination rates were achieved. 
The queue network modelling approach presented here 
can assist policy makers to plan staffing needs to respond 
to fluctuating demand.

Limitations
Our queueing models assume sufficiently available 
vaccine doses and we have not attempted to model 
the process of vaccine procurement or the logistics of 
delivering vaccine doses to the venues where they will 
be administered. We have proposed two possible queue 
networks based on our practical experience, but many 
other configurations are possible. By providing open 
source code we hope to facilitate others to extend our 
approach and define their own queue networks. Our 
analysis does not account for essential staff who are 
not directly involved in the queueing process but do 
need to be considered when estimating staffing require-
ments. For example, the staff needed to oversee the 
observation station are not included because patients 
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do not have to queue up to be “served” during the post-
vaccination observation period. Also not included here 
are other essential support staff, such as supervisors, 
cleaners, marshals and caterers. The number and type 
of support staff required will vary depending on the 
size and setting of the vaccination hub and must also 
be considered when planning vaccine distribution. The 
assumed queue networks rely on subjective assump-
tions of the distribution of service times at each station. 
We specified service times distributions that had rea-
sonable face-validity and produced realistic estimates 
of overall processing times based on our experience, 
however we did not have resources to formally validate 
the model results. This could be improved in the future 
through a time-use survey to empirically measure ser-
vice times for each station to inform the model inputs 
as well as total processing time to compare against 
the model-estimated processing time. Our web-based 
queueing simulation applet allows queue performance 
to be explored under different sets of assumptions 
for service times, appointment schedules and staffing 
availability.

Conclusions
Stochastic queue networks can be used to simulate 
the vaccination process and inform vaccine rollout by 
exploring the interactions between arrival frequency, 
service times and staff numbers on queue performance. 
Different modes of vaccine distribution have differ-
ent benefits and challenges. Mass vaccination hubs 
offer a higher daily throughput and are more resilient 
to increased arrivals and decreased staff availability, 
however they require larger premises and higher staff-
ing numbers. GP clinics can perform vaccinations at a 
similar rate per staff member compared to mass vac-
cination hubs, however it may be difficult to sustain a 
high throughput given existing workloads. A diverse 
profile of vaccination sites, drawing on the benefits of 
both distribution modes, may help to optimise COVID-
19 mass vaccination and booster delivery.
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