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Abstract 

Background:  The hospital management of patients diagnosed with COVID-19 can be hampered by heterogeneous 
characteristics at entry into the emergency department. We aimed to identify demographic, clinical and laboratory 
parameters associated with higher risks of hospitalisation, oxygen support, admission to intensive care and death, to 
build a risk score for clinical decision making at presentation to the emergency department.

Methods:  We carried out a retrospective study using linked administrative data and laboratory parameters avail-
able in the initial phase of the pandemic at the emergency department of the regional reference hospital of Pescara, 
Abruzzo, Italy, March–June 2020. Logistic regression and Cox modelling were used to identify independent predictors 
for risk stratification. Validation was carried out collecting data from an extended timeframe covering other variants of 
concern, including Alpha (December 2020–January 2021) and Delta/Omicron (January–March 2022).

Results:  Several clinical and laboratory parameters were significantly associated to the outcomes of interest, inde-
pendently from age and gender. The strongest predictors were: for hospitalisation, monocyte distribution width ≥ 22 
(4.09; 2.21–7.72) and diabetes (OR = 3.04; 1.09–9.84); for oxygen support: saturation < 95% (OR = 11.01; 3.75–41.14), 
lactate dehydrogenase≥237 U/L (OR = 5.93; 2.40–15.39) and lymphocytes< 1.2 × 103/μL (OR = 4.49; 1.84–11.53); 
for intensive care, end stage renal disease (OR = 59.42; 2.43–2230.60), lactate dehydrogenase≥334 U/L (OR = 5.59; 
2.46–13.84), D-dimer≥2.37 mg/L (OR = 5.18; 1.14–26.36), monocyte distribution width ≥ 25 (OR = 3.32; 1.39–8.50); for 
death, procalcitonin≥0.2 ng/mL (HR = 2.86; 1.95–4.19) and saturation < 96% (HR = 2.74; 1.76–4.28). Risk scores derived 
from predictive models using optimal thresholds achieved values of the area under the curve between 81 and 91%. 
Validation of the scoring algorithm for the evolving virus achieved accuracy between 65 and 84%.

Conclusions:  A set of parameters that are normally available at emergency departments of any hospital can be used 
to stratify patients with COVID-19 at risk of severe conditions. The method shall be calibrated to support timely clinical 
decision during the first hours of admission with different variants of concern.
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Background
Between December 2019 and April 2021, the corona-
virus SARS-CoV2 affected at least 130 Million people 
diagnosed with COVID-19 in 223 different countries, of 
which almost 2.9 Million died [1]. The range of compli-
cations associated with the disease generated enormous 
pressure on hospitalisation and intensive care [2–4].

Clinical symptoms range from pauci-symptomatic 
states presenting fever, cough and fatigue, to more severe 
forms including acute respiratory distress syndrome 
(ARDS) and/or other critically severe conditions [5]. 
Mortality is higher in the elderly, when the disease is at 
an initial stage and the virus replicates. In some cases, 
this activity triggers a second aggressive phase in which 
hyper-inflammation may require immediate urgent hos-
pitalisation [6]. Patients admitted with these characteris-
tics show a 20-fold increased risk of death compared to 
non-severe cases [7].

Timely identification of COVID-19 patients at higher 
risk of severe complications may enable early hospitali-
sation, risk-tailored clinical treatment and optimal allo-
cation of human and technical resources [8]. In these 
circumstances, a predictive risk tool may conveniently 
identify subjects requiring immediate attention, serv-
ing as a reference in the relative lack of evidence-based 
guidelines. A variety of methods have been used to iden-
tify subjects with a higher risk of target outcomes e.g. 
COVID-19 diagnosis, hospital admission and negative 
prognosis. However, their direct applicability in clinical 
practice appears still limited [9–11].

The triage of COVID-19 patients requires multiple 
parameters to be assessed by a multidisciplinary team 
at presentation to the Emergency Department (ED) 
[12]. Characteristics that need to be routinely evaluated 
include clinical signs and symptoms known to be asso-
ciated with subsequent prognosis [9] and various labora-
tory measurements e.g. decrease in albumin and increase 
in C-reactive protein (CRP), lactate dehydrogenase 
(LDH), lymphopenia and other haematological param-
eters that have been less investigated in clinical settings 
[9, 13].

In the framework of everyday care provided during 
the first wave of the outbreak, our aim was to identify 
patients diagnosed with COVID-19 with a higher risk of 
four key outcomes: hospital admission, mechanical venti-
lation, admission to Intensive Care Unit (ICU) and death.

The present study is a retrospective review of all con-
secutive cases presented at the ED over 3 months, 
addressing the following key research questions:

•	 Which demographic, clinical and laboratory param-
eters are associated with a higher risk for each of the 
key outcomes identified?

•	 How accurate are predictive models using only char-
acteristics available at presentation to the ED?

Materials and methods
Study population
We performed a retrospective analysis of all consecu-
tive patients presented with a confirmed diagnosis of 
COVID-19 at the ED of the General Hospital of Pes-
cara (Abruzzo, Italy), between 1st march – 30th June 
2020. The diagnosis was confirmed through a swab test 
performed by the hospital personnel in the same occa-
sion. The time frame follows the start of the outbreak of 
COVID-19 in Italy [14]. At that time, the province of Pes-
cara was the province most affected in the macro-area of 
Central/Southern Italy (+ 15.6% excess deaths compared 
to previous years) [15].

The Pescara General Hospital (PGH) is an urban 
650-bedded tertiary facility of regional reference for adult 
traumas, acute diseases of neurosurgical interest, and 
COVID-19. It includes two ICUs: an 11-bedded facil-
ity, receiving critically ill patients from other EDs in the 
region and most of the other wards in the same hospi-
tal, and a 24-bedded COVID Unit, specifically opened to 
respond to the emergency of the pandemic.

Data were merged from records available at differ-
ent sources, including the hospital discharge abstract 
database, the computerized hospital information system 
including personal health records of laboratory measure-
ments, and paper-based clinical abstracts, from which 
other characteristics were manually extracted.

Two additional samples were collected for external 
validation, using a large subset of entries to the same ED 
between December 2020–January 2021 (corresponding 
to the transition from the “Wild” lineage of COVID-19 
to the “Alpha” variant) [16] and January–March 2022 
(covering the transition between the “Delta” variant and 
“Omicron”) [17]. All data were included in an Excel sheet 
accessed for statistical analysis.

The study was conducted according to the Declaration 
of Helsinki (amended version). The local Health Admin-
istrative Board reviewed and approved the study plan 
submitted by the Infectious Diseases Unit, the Emer-
gency Department and the Laboratory Staff of PGH. The 
use of anonymised clinical and laboratory data for insti-
tutional research purposes was granted through signed 
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informed consent upon hospital admission by all patients 
included in the study. Specific consent for the conduction 
of the study was not considered required, as confidenti-
ality was guaranteed, and no specific interventions were 
performed beyond the ordinary good standard clinical 
practices.

Target characteristics
The study targeted four different outcomes after pres-
entation to the ED: hospitalisation, oxygen support, 
admission to the ICU, and death (in or out of hospital). 
By definition, not all combinations were possible, e.g. a 
patient can be discharged at home and experience a fatal 
event or can progress through all transitions from hos-
pitalisation. Some states directly implied others e.g. a 
patient receiving oxygen support or admitted to the ICU 
must be hospitalised.

Demographic and clinical characteristics, signs and 
symptoms and laboratory measurements were consid-
ered as potential predictors for the selected outcomes.

Age and gender were used as the only demographic 
characteristics of interest. For clinical variables, we con-
sidered a history of six comorbid conditions: diabetes, 
cardiovascular diseases (CVD), obesity, cancer, End Stage 
Renal Disease (ESRD), chronic obstructive pulmonary 
disease (COPD) and hypertension. These characteristics 
were recorded as part of routine clinical practice, using 
standardized definitions adopted by all hospitals in Italy.

Signs and symptoms related to COVID-19 were also 
considered, e.g. fever, cough, asthenia, diarrhea and 
dyspnea. Accurate recording was ensured by a standard 
national protocol applied routinely to monitor patients 
diagnosed with COVID-19.

Finally, eight device-assisted and laboratory param-
eters were considered as potential predictors of patients’ 
prognosis, based on high/low levels considered as poten-
tial correlates to the severity of the disease [18]: pro-
calcitonin, lactate dehydrogenase (LDH), monocyte 
distribution width (MDW), oxygen saturation level, 
D-dimer, prothrombin time, C-reactive Protein (CRP) 
and lymphocyte counts. Among these, only the levels of 
procalcitonin were pre-assigned, based on a threshold 
considered valid for all outcomes (value = 0.2 ng/mL). 
The remaining seven parameters were transformed into 
binary variables by using optimal thresholds for each 
of the four outcomes, defined by the maximum Youden 
index in a univariate ROC analysis [19]. The procedure 
allowed identifying a set of low/high levels for measures 
without prior targeted cut-offs for COVID-19-related 
outcomes (see Table 1).

Statistical analysis
We investigated hospitalisation and death in/out of hos-
pital through follow-up of all patients in the study popu-
lation. Oxygen support and admission to intensive care 
included only those hospitalised with less than 70 years, 
to avoid potential bias of deaths occurring before either 
option as a competing risk [20]. The choice is consist-
ent with the guideline of avoiding transfer to ICU for 
patients aged >75y. During the reference timeframe, only 
3 patients died in the selected subgroup.

Descriptive analysis included the calculation of mean 
and standard deviation for continuous variables and 
absolute and relative frequencies for categorical vari-
ables. Optimal thresholds for hospitalisation and oxy-
gen support were used to calculate frequencies for the 

Table 1  Categorization of continuous variables identified by ROC analyses (max Youden index)

Variable Category Hospitalisation Oxygen Support Intensive Therapy Death
Cutoff Cutoff Cutoff Cutoff

LDH U/L Low < 240 < 237 < 334 < 307

High ≥240 ≥237 ≥334 ≥307

MDW Low < 22 < 24 < 25 < 26

High ≥22 ≥24 ≥25 ≥26

Saturation % Low < 96 < 95 < 92 < 96

High ≥ 96 ≥95 ≥92 ≥96

D-dimer mg/L Low < 0.72 < 0.55 < 2.37 < 1.04

High ≥0.72 ≥0.55 ≥2.37 ≥1.04

Prothrombin time % Low < 95 < 88 < 85 < 77

High ≥95 ≥88 ≥85 ≥77

CRP mg/L Low < 21 < 42 < 68 < 43

High ≥21 ≥42 ≥68 ≥43

Lymphocytes x103μL Low < 1 < 1.2 < 0.7 < 0.7

High ≥1 ≥1.2 ≥0.7 ≥0.7
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reference population in the overall sample and among 
those aged<70y hospitalised. Logistic regression was 
used for univariate and multivariate odds ratios (OR) 
of non-fatal outcomes [21]. Survival analysis was used 
to consider censoring in the analysis of time to fatal 
events, calculated as the difference between the date of 
death and admission to the hospital. For survivors, the 
censoring time was defined as the lag between presen-
tation at the ED and the earliest date between the first 
negative swab result (an indicator of full recovery) and 
the date of study closure (30th June 2020). Cox propor-
tional hazards was used for the calculation of univariate 
and multivariate hazard ratios (HR) for time-to-event 
analysis [22]. An alpha level of 0.05 was used to present 
odds and hazard ratios together with their 95% confi-
dence intervals (95%CI) and p values. Forest plots were 
used to visualize results.

Predictive factors using a fully automated four-step 
backward elimination process in all multivariate regres-
sions. Age and gender were forced in all models, with all 
other variables sequentially excluded in three consecu-
tive rounds using a p value ≥0.20, ≥0.10 and ≥ 0.05.

Predictive formulas were defined using the regression 
coefficients as follows [23]:

a)	 odds/hazard ratios < 1 were turned into their recipro-
cal value and assigned a negative sign;

b)	 odds/hazard ratios greater or equal to 1.5 were 
rounded to their next integer value (to reflect 
increased risk by a multiplicative factor);

c)	 odds/hazard ratios between 1 and 1.5 were trans-
formed into their difference from 1 (rounded to the 
second decimal, to reflect increased risk by a per-
centage).

Total risk scores for each patient in the database were 
computed separately for each outcome, adding up all 
coefficients indicated above for all significant variables. 
A ROC analysis was performed using a separate 2 × 2 
“confusion matrix” for every possible threshold applied 
to the total score [24]. The best threshold was defined 
by the highest value of the Youden Index [19]. Point 
estimates and confidence intervals were computed 
using the bootstrap for sensitivity, specificity, Posi-
tive Predictive Value (PPV), Negative Predictive Value 
(NPV) and the De Long method for the Area Under the 
Curve (AUC) [25].

The same measures were produced for both the study 
sample and the additional datasets collected for external 
validation. Survival results for validation samples were 
only available as odds ratios, as Cox proportional hazards 
was not applicable due to the unavailability of time of 
negative swab test.

Reliability analysis of the predictive formula was sum-
marized using ROC curves showing optimal thresholds 
and sensitivity, specificity, AUC with point estimates and 
95% confidence intervals. All statistical analyses were 
carried out by developing ad hoc software in the R lan-
guage [26].

Results
A total of 536 consecutive admissions with a positive 
molecular assay to SARS-CoV2 were recorded at the ED 
in the reference period. The samples collected for valida-
tion were equal to 224 out of 639 (35%) for December 
2020 – January 2021 and 375 out of a total of 872 (43%) 
for January–March 2022.

Among subjects hospitalised in the baseline study 
sample, a total of 174 consecutive admissions involved 
patients aged less than 70 years. The samples used for val-
idation were equal to 95 out of 226 (42%) for December 
2020 – January 2021 and 56 out of a total of 135 (41%) for 
January–March 2022.

All details of the association including risk ratios and 
95% confidence intervals for the total population admit-
ted to the ED at baseline and those hospitalised below 70 
are reported in Tables 2 and 3 respectively.

Hospitalisation and deaths (in or out of hospital)
The mean age (standard deviation) was 63.2 (19.1) y, 
with 50.7% of males. The most frequent comorbidities 
were hypertension (36.2%), CVD (25.9%) and diabe-
tes (16.0%). The most frequent symptom was diarrhea 
(87.1%), followed by fever (79.9%), cough (43.7%) and 
dyspnea (43.3%). The parameter that was most frequently 
abnormal was prothrombin time < 95% (68.5%), followed 
by saturation < 96% (46.1%), lymphocytes< 1 × 103/μL 
(44.6%), D-dimer≥0.72 mg/L (43.3%), LDH ≥ 240 U/L 
(41.2%), CRP ≥ 21 mg/L (37.3%) and MDW ≥ 22 (28.2%).

A total of 365 subjects (68.1%) were hospitalised after 
presentation to the ED. Among the main baseline char-
acteristics observed, only cough and asthenia were not 
significantly associated with hospitalisation. An addi-
tional year of age was associated with a 6% increased risk 
of hospitalisation, while males were almost 70% more 
likely to be hospitalised. An over ten fold association 
with increased risk was found for CRP ≥ 21 mg/L, obe-
sity, ESRD and saturation < 96%. Associated risk was over 
five fold for MDW ≥ 22, D-dimer ≥0.72 mg/L, diabetes, 
hypertension, LDH ≥ 240 U/L and lymphocytes< 1 × 103/
μL. Moderate association was found for dyspnea, COPD, 
CVD, cough and cancer. Patients with diarrhea were over 
50% less likely to be hospitalised.

A total of 136 subjects (25.4%) died in or out of hos-
pital in the reference timeframe, following presentation 
to the ED with a confirmed diagnosis of COVID-19. 
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Among the main characteristics, gender, obesity, fever 
and cancer were not significantly associated with sur-
vival. An additional year of age was associated with a 8% 
increased risk of death, and an over threefold increase for 
procalcitonin≥0.2 ng/mL, D-dimer≥1.04 mg/L, ESRD, 
saturation < 96%, CVD, CRP ≥ 43 mg/L and COPD. Risk 
was more than doubled for lymphocytes< 0.7 × 103/μL, 
LDH ≥ 307 U/L, dyspnea, prothrombin time < 77% and 
hypertension. Moderate increased risk was found for 
diabetes and MDW. On the other hand, three conditions 
were found to be associated with survival after diagno-
sis with COVID-19: patients with diarrhea were 80% 
less likely to die, with almost a 50% risk reduction also 
observed for those presented with asthenia and cough.

Oxygen support and intensive care
The mean age (standard deviation) was 54.3 (10.1) y, 
with 64.4% of males. The most frequent comorbidi-
ties were hypertension (33.9%) and diabetes (18.4%). 
The most frequent symptoms were fever (92.5%) and 
cough (60.9%). The parameter found most frequently 
abnormal was LDH ≥ 237 U/L (74.7%), followed by lym-
phocytes < 1.2 × 103/μL (67.8%), MDW ≥ 24 (67.2%), 
D-dimer≥0.55 mg/L (64.9%), CRP ≥ 42 mg/L (62.6%) and 
prothrombin time < 88% (55.7%). Less than half of the 
patients had a saturation < 95% (47.7%) and procalcitonin 
≥0.2 ng/mL (24.7%).

A total of 129 subjects (74.1%) received oxygen after 
hospitalisation. None of the demographic and clini-
cal characteristics were significantly associated with 
such treatment. Among relevant parameters, a level 
of increased risk between four and fifteen-fold was 
found for saturation < 95%, LDH ≥ 237 U/L, MDW ≥ 24, 
CRP ≥ 42 mg/L and lymphocytes< 1.2 × 103/μL. 
Over three-fold association was found for procalci-
tonin≥0.2 ng/mL. D-dimer and prothrombin time were 
not associated with oxygen support.

A total of 51 subjects (29.3%) aged below 70 were 
admitted to the ICU after hospitalisation. Among subject 
characteristics, only age and CVD were associated with 
increased risk of intensive care. Among laboratory and 
device-assisted measurements, risk was at least five times 
higher for LDH ≥ 334 U/L and saturation < 92%, more 
than tripled for MDW ≥ 25 and CRP ≥ 68 mg/L, more 
than doubled for lymphocytes< 0.7 × 103/μL. Procalci-
tonin, D-dimer and prothrombin time were not associ-
ated with admission to ICU.

Multivariate analysis
The results of multivariate analysis are shown along with 
those obtained from validation over different samples in 
Fig. 1.

Among adjustment terms, only age (unit increase) 
was associated with a higher risk of experiencing three 
of the four outcomes of interest, namely hospitalisation 
(OR = 1.02; 1.01–1.04), intensive care (OR = 1.05; 1.00–
1.10) and death (HR = 1.06; 1.04–1.08).

Taking into account all potential confounders, further 
eight characteristics were significantly associated to an 
increased risk of hospitalisation. The risk was over four fold 
for patients with MDW ≥ 22 (OR = 4.09; 2.21–7.72), and 
over three fold for people with diabetes (OR = 3.04; 1.09–
9.84). All other significant characteristics had a risk between 
two and three times higher than their reference category: 
saturation < 96% (OR = 2.96; 1.54–5.82), CRP ≥ 21 mg/L 
(OR = 2.83; 1.54–5.17), procalcitonin≥0.2 ng/mL (OR = 2.80; 
1.20–7.23), D-dimer≥0.72 mg/L (OR = 2.26; 1.22–4.20), 
dyspnea (OR = 2.18; 1.19–4.05) and prothrombin time < 95% 
(OR = 2.09; 1.16–3.76).

Only one clinical characteristic was associated with 
an increased risk of death: ESRD (HR = 2.20; 1.30–3.72). 
Other four categories with abnormal levels were sig-
nificantly associated with an increased risk: procalci-
tonin≥0.2 ng/mL (HR = 2.86; 1.95–4.19), saturation < 96% 
(HR = 2.74; 1.76–4.28), D-dimer≥1.04 mg/L (HR = 1.87; 
1.24–2.81) and LDH ≥ 307 U/L (HR = 1.74; 1.19–2.53).

After hospitalisation, oxygen support was over ten 
times more likely for saturation < 95% (OR = 11.01; 
3.75–41.14), almost six times higher for LDH ≥ 237 U/L 
(OR = 5.93; 2.40–15.39) and over four times higher for 
lymphocytes< 1.2 × 103/μL (OR = 4.49; 1.84–11.53).

Admission to ICU recorded the highest level of associa-
tion found for a clinical characteristic, being almost sixty 
times more likely for ESRD (OR = 59.42; 2.43–2230.60). 
Other independent risk factors were LDH ≥ 334 U/L 
(OR = 5.59; 2.46–13.84), D-dimer≥2.37 mg/L (OR = 5.18; 
1.14–26.36), MDW ≥ 25 (OR = 3.32; 1.39–8.50) and lym-
phocytes< 0.7 × 103/μL (OR = 2.58; 1.18–5.80).

Several variables among those presented above were 
not significant in the validation over the extended 
timeframe.

Risk scores
Risk scores were directly derived from predictive models, 
according to the method outlined above. The predictive 
accuracy of the algorithms is presented in Table  4. The 
validation results are available as Supplementary Data.

For hospitalisation, an optimal cut point equal to 12 
achieved sensitivity of 80% (95%CI: 75–83%) and speci-
ficity of 87% (81–92%). The overall performance was very 
high (AUC = 91%; 89–94%), suggesting that the predic-
tive model may be suitable for regular use at ED.

The same performance was achieved with a cut-
off equal to 10 by the mortality predictive model 
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Fig. 1  Forest plot showing results of multivariate analysis for multiple outcomes and validation periods (* Odds Ratios computed for validation 
samples)
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(AUC = 91%; 87–94%), with a higher sensitivity (89%; 
82–93%), but lower specificity (79%; 74–83%).

Similar levels were obtained using a cut-off of 8 for oxy-
gen support, achieving a sensitivity of 87% (80–91%) and 
a specificity of 77% (63–87%), with a slightly lower overall 
performance (AUC = 87%; 82–92%).

Finally, admission to ICU recorded the lowest perfor-
mance with a cut-off equal to 10 and a sensitivity = 82% 
(70–90%), specificity = 71% (63–79%), and AUC = 81% 
(73–89%).

The external validation denoted an optimism in the 
accuracy measured by the AUC ranging between 3 and 
19%.

An overall ROC analysis of the performance achieved 
by all predictive models is presented in Fig. 2.

Discussion
The Italian National Health System (Servizio Sanitario 
Nazionale, SSN) delivers national guidelines for the 
standard provision of health services across the coun-
try. However, when Italy was first hit by the coronavirus, 
hospitals experienced a rapid increase of hospitalisations, 
followed by an exceptional shortage of medical equip-
ment and a limited set of recommendations regarding 

best practices [14]. The situation required immediate 
measures to organise local practices and provide urgent 
care. The rationale for the present study originates from 
the practical needs emerged during this phase of the 
emergency. To carry out our investigation, we strived 
to collect a large dataset that could help respond to the 
research questions posed at the outset.

Our results are consistent with those obtained by other 
studies carried out on different outcomes, including 
mortality, progression to severe/critical status, recov-
ery, length of hospital stay, admission to ICU, intuba-
tion, duration of mechanical ventilation, acute distress 
respiratory, cardiac injury and thrombotic complica-
tions. Evidence showed predictive factors including age, 
comorbidities, vital signs, image features, gender, lym-
phocyte count and C-reactive protein [9].

In this study, we considered specific predictors, e.g. 
optimal cutoffs for MDW, which have not been previ-
ously considered by algorithms for COVID outcomes 
using data available during the early phase of admis-
sion, to support clinical decision in the Emergency 
Department.

We identified eight known targets of hospital manage-
ment to be significantly associated with hospitalisation 

Table 4  Algorithms for the calculation of scores

Hospitalisation Oxygen Support < 70 yrs Intensive Therapy < 70 yrs Death

Algorithm
Condition value:
[1 = Yes; 0 = No]

round(0.02 * [age]) +
+  1 * [Male]
+  3 * [Diabetes]
+  2 * [Dyspnea]
+  3 * [Procalcitonin ≥0.2 ng/
mL]
+  4 * [MDW ≥ 22]
+  3 * [Saturation ≤ 95%]
+  2 * [D-dimer ≥0.72 mg/L]
+  2 * [Prothrombin 
time < 95%]
+  3 * [CRP ≥ 21 mg/L]

6 * [LDH ≥237 U/L]
+  11 * [Saturation < 95%]
+  4 * [Lymphocytes 
< 1.2 × 103/μL]

round(0.05 * [Age]) +
+  59 * [ESRD]
+  6 * [LDH ≥ 334 U/L]
+  3 * [MDW ≥ 25]
+  5 * [D-dimer ≥2.37 mg/L]
+  3 * [Lymphocytes 
< 0.7 × 103/μL]

round(0.06* [Age]) +
+  2* [ESRD])
+  3* [Procalcitonin 
≥0.2 ng/mL])
+  2* [LDH ≥ 307 U/L])
+  3* [Saturation < 96%])
+  2* [D-dimer 
≥1.04 mg/L])

Optimal Cutpoint ≥12 ≥8 ≥10 ≥10
Study population (“Alpha”: May–June 2020)
Confusion Matrix Yes No Yes No Yes No Yes No

Score + 284 19 303 Score + 111 10 121 Score + 42 35 77 Score + 118 80 192

Score - 73 132 205 Score - 17 34 51 Score - 9 88 97 Score - 15 297 312

Total 357 151 508 Total 128 44 172 Total 51 126 174 Total 133 377 510

Youden Index 0.67 0.64 0.54 0.67

Sensitivity 0.80 (0.75–0.83) 0.87 (0.80–0.91) 0.82 (0.70–0.90) 0.89 (0.82–0.93)
Specificity 0.87 (0.81–0.92) 0.77 (0.63–0.87) 0.71 (0.63–0.79) 0.79 (0.74–0.83)
PPV 0.94 (0.90–0.96) 0.92 (0.86–0.95) 0.54 (0.43–0.65) 0.60 (0.53–0.66)

NPV 0.64 (0.58–0.71) 0.67 (0.53–0.78) 0.91 (0.83–0.95) 0.95 (0.92–0.97)

LR+ 6.32 (4.29–10.30) 3.82 (2.38–7.68) 2.89 (2.16–4.05) 4.18 (3.43–5.20)

LR- 0.23 (0.19–0.29) 0.17 (0.10–0.26) 0.25 (0.11–0.41) 0.14 (0.08–0.22)

Accuracy 0.82 0.84 0.75 0.81

AUC​ 0.91 (0.89–0.94) 0.87 (0.82–0.92) 0.81 (0.73–0.89) 0.91 (0.87–0.94)
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independently from age and gender: diabetes, dyspnea, 
procalcitonin≥0.2 ng/mL, MDW ≥ 22, saturation < 96%, 
D-dimer≥0.72 mg/L, prothrombin time < 95% and 
CRP ≥ 21 mg/L. Among them, MDW deserves to be pre-
sented in more detail. MDW is a novel haematological 
parameter recently introduced for the diagnosis of sep-
sis [18, 27], which has been already targeted by recent 
investigations [28]. Our study confirmed a significant 

association between MDW and sepsis [29–31], consist-
ently with other viral diseases [29, 30, 32]. Changes in 
morphology and volumetric size of white blood cells 
are a well-documented consequence of cellular acti-
vation upon early infection, as a part of innate immu-
nity response [33]. Monocytes are involved in the early 
response to infection, acting as first interceptors of the 
invading microorganism, for phagocytosis and further 

Fig. 2  Overall ROC analysis showing the performances of algorithms over different validation samples
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immune processing. Further studies showed changes in 
the morphology during inflammation [34], differentiat-
ing into amoeboid cells, as assessed by microscopy after 
Giemsa staining, and increased expression of functional 
markers such as CD16 [35]. Another study found that 
monocytes homeostasis and morphology appear con-
siderably perturbed in patients with SARS-CoV2 infec-
tion [13], with MDW showing significantly elevated 
values also in patients with COVID-19, compared to 
other upper respiratory tract infections [36, 37]. As a 
consequence, the possibility of monitoring monocyte size 
in parallel with routine blood cell counts and other clini-
cal indicators at presentation to the ED may represent a 
convenient tool to identify patients at high risk among 
those diagnosed with COVID-19.

As a first relevant transition after hospitalisation, we 
focused on oxygen support among patients with COVID-
19 aged less than 70 years. In this group of subjects, dysp-
nea, chest distress and respiratory rate were found to be 
highly associated with oxygen therapy, suggesting strict 
monitoring for parameters that can be highly associated 
with clinical deterioration and adverse outcomes [38]. 
In addition to saturation < 95%, we also found levels of 
LDH ≥ 237 U/L and lymphocytes< 1.2 × 103/μL as ade-
quate targets for oxygen therapy.

Hospitalized patients aged<70y had a higher risk 
of being admitted to ICU if one of the following 
cases applied: ESRD, LDH ≥ 334 U/L, MDW ≥ 25, 
D-dimer≥2.37 mg/L and Lymphocytes< 0.7 × 103/μL. 
Other studies found heart disease, COPD and heart 
rate to be significantly associated with ICU, in addi-
tion to ESRD [39]. The dominant role found for the 
latter in our model can be explained by the organ dam-
age noticed in many patients admitted to ICU, which is 
associated with a high prevalence of limited renal func-
tion [40]. A high value of LDH is an indicator of tissue/
cell destruction that is frequently used to monitor tis-
sue damage associated with a wide range of disorders, 
including liver and interstitial lung disease. Patients 
with severe pulmonary interstitial disease present an 
increased LDH as one of the most important prog-
nostic markers of lung injury [41, 42]. Lymphopenia is 
a biological disorder in patients with COVID-19 fre-
quently considered as predictor of severe infection and 
myocardial injury, ARDS, and mortality [43]. Lympho-
penia is a common consequence of infection caused by 
cytokine-induced reaction [44]. Reduced CD4+ T-cell 
and CD8+ T-cell levels promote viral replication and 
predict worsening outcome [45]. T -cells appear lower 
and functionally exhausted, and patients with COVID-
19 with T- cells≤800/μL may still require urgent inter-
vention due to a higher risk of further deterioration of 
their condition [46].

Several characteristics at entry to the ED were 
predictive of mortality in or out of hospital, inde-
pendently from age and gender, including ESRD, procal-
citonin≥0.2 ng/mL, LDH ≥ 307 U/L, saturation < 96% and 
D-dimer≥1.04 mg/L. We did not find known any signifi-
cant predictive factor associated with increased mortal-
ity, differently from other reports addressing male gender, 
symptoms < 10 days prior to hospital admission, diabetes, 
coronary heart disease, chronic liver disease [47], white 
cell count, temperature, respiratory rate, lymphocytes 
and platelets [48, 49]. The significant association found 
between procalcitonin and mortality could be attributed 
to bacterial co-infection rather than viral replication [50].

Regarding our second research question, we were able 
to identify accurate risk scores, based on significant coef-
ficients extracted from predictive models. The risk scores 
showed an average performance ranging from moderate 
to very high. The performance was very high for hospi-
talisation, with AUC = 91% (89–94%) and PPV = 94% 
(90–96%), mortality prediction, with an AUC = 91% (87–
94%) and a low PPV = 60% (53–66%), as well as for oxy-
gen support, with AUC = 87% (82–92%) and PPV = 92% 
(86–95%). The performance was slightly lower for admis-
sion to ICU, with AUC = 81% (73–89%) and PPV = 54% 
(43–65%). Notably, the NPV was high for death (95%, 
92–97%) and admission to ICU (91%, 83–95%), indicat-
ing that a value of the score below the threshold, par-
ticularly for ICU, may be effective in ruling out major 
complications and considering oxygen therapy as a viable 
solution.

The comparison between predictive models estimated 
in our study and other scientific reports may be chal-
lenging. Predictive models use different types of cohorts 
to investigate a variety of outcomes including confirmed 
diagnosis, disease severity, ICU and mortality. Studies 
are conducted in different hospital environments, using 
different laboratory standards and applying heterogene-
ous inclusion/exclusion criteria e.g. tuberculosis, influ-
enza and bronchitis [9]. Variables included in predictive 
models are also heterogeneous, from vital signs to image 
features, contact with other infected individuals, lympho-
cyte count, liver enzyme and red distribution width [9]. 
In many cases, data of non-hospitalized patients are lim-
ited and do not include laboratory and imaging analyses 
[51], drawing conclusions only from a limited set of char-
acteristics, with an AUC as high as 90% [52].

To better respond to our second research question, 
we evaluated the accuracy of our predictive models 
under real life conditions during the second wave in 
late 2020.

We found that the overall performance was fairly 
robust for oxygen support, hospitalisation and death. 
On the other hand, the results were less satisfactory for 
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admission to ICU (ranging between 66 and 81%, which 
corresponds to a sensitivity drop between 51 and 82%). A 
possible explanation may be related to the heterogeneous 
characteristics of patients admitted during the second 
wave, which changed the prognosis and thus the predic-
tive ability of models specified under different conditions.

In summary, we identified a set of key parameters 
that can be translated into risk scores to inform clinical 
practice. The advantage of this approach is that it can 
be directly applied to the next patient entering the ED, 
even with a pocket calculator. A substantial barrier for 
the continuous update and adaptation of this method is 
the limited interoperability of health databases in most 
European contexts, which makes the process of data 
acquisition particularly burdensome. Improving the digi-
talization and standardization of health information at 
hospitals across Europe will be paramount to strengthen 
our preparedness to future outbreaks and favour the 
adoption of research methods in clinical practice [53–55].

Finally, several limitations of our study are worth to be 
outlined, along with their consequences on the future use 
of the algorithms.

Firstly, this is a retrospective study carried out at a sin-
gle hospital, enrolling a limited number of patients dur-
ing the initial phase of the COVID-19 outbreak in Italy. 
Consequently, the results may not equally apply to other 
jurisdictions and/or institutions. However, our report 
provides a focused stratification of subjects entering 
the ED that can be informative for clinical practice on a 
global scale.

Secondly, among the outcomes identified, only death 
represents a clinically objective measure, while all oth-
ers reflect decisions made by clinicians at the hospital. 
Therefore, we cannot infer on the validity of the same 
models under different settings and variable conditions. 
However, it is a specific feature of the approach to be able 
to identify factors orienting practices, so that pragmatic 
guidelines can be offered when they are not readily avail-
able. This feature implies a repeated application of the 
method to make it locally relevant.

Thirdly, we searched for predictive variables among 
measures readily available at presentation to the ED. As 
for all observational studies, we may have missed a sub-
set of characteristics that could be potentially predictive 
either at entry or in the subsequent follow up in and out 
of hospital. Nevertheless, we kept our focus on measures 
that are used in normal practice, so that they can be real-
istically applied.

Fourthly, the statistical models adopted did not take 
into account transitions between states e.g. oxygen sup-
port followed by intensive care. Our choice was based on 
the need to facilitate interpretation, rather than enhanc-
ing the statistical properties of our methods.

Finally, the stability of the algorithms should be con-
sidered in the broader perspective of a continuously 
evolving virus, in which the continuous update of the 
vaccination status may blunt the clinical response. This 
consideration triggers important closing reflections.

The vaccination status of individuals in our samples 
could not be ascertained from the available data. How-
ever, vaccination in Italy ramped up only in February–
March 2021, reaching over 90% for those 60+ in early 
2022 (see ECDC data at: https://​vacci​netra​cker.​ecdc.​
europa.​eu/​public/​exten​sions/​COVID-​19/​vacci​ne-​track​
er.​html#​uptake-​tab). Therefore, while obviously vacci-
nation was not an issue in 2020, it is also fair to assume 
that all patients included in the “Wild/Alpha” sample in 
Dec 2020-Jan 2021 were not vaccinated, while the major-
ity of those included in the “Delta/Omicron” sample 
could be considered vaccinated. On this ground, we can 
fairly assume that the vaccination status may have biased 
estimates obtained for the Omicron sample. On the other 
hand, the fact that this characteristic is not continuously 
available in routine hospital databases makes it a difficult 
candidate for risk evaluation in everyday practice (other 
than asking directly to the patient, which may be prone to 
information bias). Therefore, in practical usage, it could 
be appropriate to consider it as a non- observable con-
founder, thus incorporating its effect in the association 
found for other variables.

Overall, the predictive models appeared moderately 
accurate, irrespective of the variant dominating the ref-
erence period. The AUC did not fall below 70%, except 
for intensive care, for which no variable was significant 
under the “Delta/Omicron” variants, and only ESRD was 
significant under the “Wild/Alpha” variants. This slight 
deviation may show that the subgroup of those below 
70 years may not reflect practices following the initial 
emergency of the “Wild” outbreak (which is partially true 
also for oxygen support, where only lymphocytes retain 
their significance). Therefore, the method seems still gen-
erally useful to pick subjects at significantly increased 
risk.

The significance of specific variables in predictive 
models may also highlight differences in their relevance 
according to the lineage of the virus. The measurement of 
MDW, D Dimer, and Prothrombin did not appear as rel-
evant in the evolution of COVID-19 for matters related 
to hospitalisation. On the other hand, saturation retained 
its predictive value for hospitalisation and oxygen ther-
apy, while it was not significant to predict survival in the 
“Delta/Omicron” sample. These aspects seem to indicate 
changes in the characteristics of the population affected 
by different variants, reflecting the higher incidence of 
oxygen therapy and intensive care in the Wild/Alpha, as 
opposed to a sharp decrease in the incidence of all events 
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under the Delta/Omicron variants (nearly 50% hospitali-
sations and deaths compared to other variants). On the 
other hand, the Wild/Alpha sample showed an increased 
50% admission to intensive therapy, as opposed to the 
baseline population. Only few variables could be consid-
ered relevant for the new variants of COVID-19, primar-
ily for hospitalisation (dyspnea, procalcitonin, saturation, 
reactive C protein) and death (ESRD, procalcitonin, LDH, 
D Dimer).

Since the model was estimated on the original virus, 
we may assume that our scoring algorithms will continue 
to be particularly relevant for any future new SARS-type 
respiratory diseases, where severe cases of pneumonia 
are more frequent in the absence of vaccination. The 
same model could be possibly continuously updated, 
estimating the weights of significant variables repeatedly 
over time.

Conclusion
We identified demographic, clinical and laboratory 
parameters associated to hospitalisation, oxygen sup-
port, ICU admission and death in a population admitted 
to a large regional hospital with a confirmed diagnosis 
of COVID-19. Risk scores derived from multivariate 
models showed moderate to high predictive accuracy 
in flagging subjects with more severe prognosis, based 
upon the early evaluation of personal characteristics 
at the ED. The method can be conveniently applied to 
support clinical decisions under different conditions, 
using targeted data collection at a single point of entry. 
Recalibration of the scoring algorithms will be needed 
to cope with the continuous evolution of the virus in 
different contexts.
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