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Abstract 

Background and purpose:  Studies of carotid endarterectomy (CEA) require stratification by symptomatic vs asymp-
tomatic status because of marked differences in benefits and harms. In administrative datasets, this classification has 
been done using hospital discharge diagnosis codes of uncertain accuracy. This study aims to develop and evaluate 
algorithms for classifying symptomatic status using hospital discharge and physician claims data.

Methods:  A single center’s administrative database was used to assemble a retrospective cohort of participants 
with CEA. Symptomatic status was ascertained by chart review prior to linkage with physician claims and hospital 
discharge data. Accuracy of rule-based classification by discharge diagnosis codes was measured by sensitivity and 
specificity. Elastic net logistic regression and random forest models combining physician claims and discharge data 
were generated from the training set and assessed in a test set of final year participants. Models were compared to 
rule-based classification using sensitivity at fixed specificity.

Results:  We identified 971 participants undergoing CEA at the Vancouver General Hospital (Vancouver, Canada) 
between January 1, 2008 and December 31, 2016. Of these, 729 met inclusion/exclusion criteria (n = 615 train-
ing, n = 114 test). Classification of symptomatic status using hospital discharge diagnosis codes was 32.8% (95% CI 
29–37%) sensitive and 98.6% specific (96–100%). At matched 98.6% specificity, models that incorporated physician 
claims data were significantly more sensitive: elastic net 69.4% (59–82%) and random forest 78.8% (69–88%).

Conclusion:  Discharge diagnoses were specific but insensitive for the classification of CEA symptomatic status. 
Elastic net and random forest machine learning algorithms that included physician claims data were sensitive and 
specific, and are likely an improvement over current state of classification by discharge diagnosis alone.
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Introduction
Historical evidence supports asymptomatic [1] (primary 
prevention) and symptomatic [2] (secondary prevention) 
indications for carotid endarterectomy (CEA), but there 

is equipoise for the benefit of asymptomatic interven-
tion in the context of contemporary medical therapy [3]. 
If the ongoing CREST-2 study [4] fails to demonstrate 
the benefit of primary prevention CEA beyond medical 
therapy, then studies of the appropriate use of CEA by 
symptomatic status are expected to follow. Administra-
tive data is likely to be used for these studies, given its 
low cost and population-level scope. Whether these stud-
ies will be valid will entirely depend on the accuracy of 
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administrative data for classifying CEA symptomatic sta-
tus. Classification of symptomatic status is also critical 
for the construction of administrative data indicators for 
CEA quality, including: (1) timeliness: a widely-accepted 
two-week time target is applicable only to secondary pre-
vention [2] and (2) safety: acceptable rates of peri-opera-
tive morbidity and mortality for primary prevention are 
lower than rates acceptable for secondary prevention [5].

Using a systematic search strategy, we identified studies 
that used administrative data to classify the symptomatic 
status of patients who had undergone CEA (Supplemen-
tary Table 1). All studies identified by our search classi-
fied patients by rule using hospital discharge diagnosis. 
Only one group studied the performance of this classi-
fication relative to a gold standard chart review popula-
tion, determining sensitivity 36.6% and specificity 93.1% 
[6]. Consistent with an insensitive measure, the rates for 
symptomatic intervention were generally much lower in 
administrative-data based cohorts (2.7–30.1%) [6–28] 
than in comparable registry cohorts relying on manual 
classification (CEA 30.7–43.5%) [28–32]. Rule-based 
classification by discharge diagnosis will likely yield 
‘asymptomatic’ cohorts with many symptomatic patients, 
threatening the validity of studies that use this technique.

In this study, we aimed to improve upon the current 
rule-based method for classifying CEA symptomatic 
status by: 1) augmenting discharge data with physician 
claims data, and 2) using elastic net logistic regression 
and random forest machine learning (ML) models. We 
developed our models using a cohort of patients under-
going CEA at a major tertiary center in Vancouver, 
Canada between 2008 and 2015, and validated them in a 
cohort undergoing CEA at the same institution in 2016.

Method
Study setting and cohort
The setting of the study was the Vancouver General Hos-
pital, a quaternary centre with a mixed catchment of local 
urban and rural/remote referral populations. We defined 
our study cohort by querying our institution’s hospital 
discharge database for carotid revascularization codes 
(Canadian Classification of Interventions 1.JE.57, 1.JE.50, 
1.JE.87) [23] between January 1, 2008 and December 31, 
2016. For participants with multiple procedures during 
this time, only the earliest was included. We identified 
very few instances of carotid stenting, so these patients 
were excluded from our cohort. Other exclusion criteria 
included: indication unrelated to atherosclerotic second-
ary prevention, symptomatic status not documented, 
symptom onset outside of province, symptom onset in 
hospital, stroke as complication of procedure, or initial 
treatment with medical therapy (Supplementary Fig. 1).

Data sources
Participants were linked with population-level datasets 
for physician claims (Medical Services Plan Payment 
Information File [33] and Consolidation File [34]), hos-
pital discharges (Discharge Abstract Database [35]) and 
demographics. These are available as by-products of 
the setting’s single-payer healthcare system, with near-
universal population coverage. An anonymized dataset 
was created for analyses. Raw data were accessible to the 
investigators. The data that support the findings of this 
study are available from Population Data BC, but restric-
tions apply to the availability of these data, which were 
used under license for the current study, and so are not 
publicly available. Data are however available from the 
authors upon reasonable request and with permission of 
Population Data BC.

Data preparation
Claims and hospital discharges were trimmed to a win-
dow of 6 months pre-surgery (by definition, symptomatic 
status refers to events that happened within 6 months of 
surgery [2], and we did not wish to add noise from pos-
sible earlier events) and 7 days post-procedure (to reduce 
risk of excluding relevant physician claims based on 
claim date error). Duplicate physician claims, generated 
through the billing adjudication process, were removed. 
Physician claims diagnoses (ICD-9) were truncated at 
three characters, as per previously published methods 
[36]. All test set participants were allocated from the final 
year of data to maximize similarity to future data [37].

Discharge variables
All ICD-9-CM diagnostic codes used in previous stud-
ies [6–28] were mapped to their ICD-10-CA equivalents, 
which was the discharge coding standard used through-
out our study period (Table 1). We additionally examined 
all I6X diagnostic codes present in our dataset to ensure 
that no relevant diagnoses were missed. Other discharge 
variables included age, sex, in-metro residence, and 
admission type (emergent, urgent, or elective).

Physician claims variables
Claims data were used to create diagnosis and service 
variables. Diagnoses were defined by 3-character ICD-9 
codes, which was the coding standard for physician 
claims used throughout the study period (in contrast to 
discharge ICD-10 coding). Reasoning that the predictive 
value of a diagnosis might vary depending on the person 
making it, we pre-specified select diagnosis by specialty 
combinations (e.g. TIA by neurologist vs. non-neurol-
ogist (Supplementary Table  2). Based on clinical expe-
rience, we expected that symptomatic patients would 
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undergo symptom-specific evaluation, such as a CT head 
for a new central nervous system symptom, and that this 
would be reflected in claimed services. We believed that 
the occurrence of these services would likely prove to be 
reliable signals for symptomatic events. Services were 
defined by 5-character fee item codes, which were clus-
tered into categories based on descriptions in the physi-
cian payment schedule (Supplementary Table 3).

We used a 4-step workflow to transform the many-
to-one raw data into a one-to-one analytical dataset: (1) 
clustering – grouping similar service or diagnosis items 
together, such as ICD-9362 retinal disorders and 368 
visual disturbance, (2) reduction – removing conceptual 
duplicates, such as the same diagnosis made by the same 
provider on different days, (3) weighting – assigning 
a value based on time from CEA, and (4) summarizing 
– collapsing data into a single row as either the sum or 
maximum value (Supplementary Fig.  2 presents a step-
by-step illustration of these terms in the context of our 
data).

Missing values
Given the original dataset, missing values in predic-
tor data are not possible (conditions are either observed 
or not observed). Median imputation was used for par-
ticipants missing symptom type (N = 6), which was used 
only to describe the study population.

Outcome definitions
The gold standard for this study was symptomatic sta-
tus as assessed by chart review (SVG, AA). Consulta-
tions, operative notes, and discharge summaries within 
6 months of the intervention were reviewed. Interrater 
agreement for symptomatic status was measured using 
the Kappa statistic for two raters. Interrater conflicts 
were subsequently resolved by consensus.

Comparison of model discrimination
The ML models used in this analysis yield continuous 
probability values, which can be easily used in receiver-
operating characteristic curve (ROC) analysis for the 
measurement of discrimination. However, the rule-based 
diagnosis method yields a single binary class, which can-
not be used in ROC analysis. As an alternative, for each 
ML model we calculated confidence intervals for sensi-
tivity at a fixed specificity matching the specificity of the 
rule-based method. Specifically, if the ML model’s 95% 
CI for sensitivity excluded the measured sensitivity of the 
rule-based method, at the same margin of specificity, we 
took this as evidence for superior discrimination of the 
ML model. We believe that this sets up a reasonable like-
to-like comparison between binary and continuous clas-
sifier types. In contrast, because all ML models generate 
continuous output, ML models are compared to each 
other using the area under the ROC curve (AUC).

Sample size
Sensitivity is a binomial proportion, so the necessary 
sample size can be estimated by calculating the confi-
dence interval of a comparison value [38]. As long as the 
true sensitivity of the comparison test is 0.6 or greater, 
a test set of n = 75 participants (25 cases / 50 controls) 
will have more than 95% power to exclude the previously 
reported sensitivity of 36% [6]. Assuming a test set of no 
larger than 25% of the total, a minimum of n = 300 par-
ticipants is required.

Models
We specified a set of five models of increasing com-
plexity: (1) RuleDX: rule-based classification by hospi-
tal discharge diagnosis alone (current state method), (2) 
LogisticHOSP: elastic net logistic using hospital discharge 

Table 1  Diagnosis cluster definitions for ICD-9 and ICD-10-CA

Diagnosis cluster ICD-10-CA (5-character code) ICD-9 (3-digit code)

Ischemic stroke I63.X (except I63.6, venous thrombosis), I64 (stroke not speci-
fied as hemorrhage or infarction), I66.0–2,4,8–9 (cerebral 
arterial stenosis or occlusion without infarction; included 
even though these codes specifically exclude infarction)

434 (some codes exclude infarction, but these are rarely used 
in BC), 436 (acute cerebrovascular disease), 438 (late effects of 
cerebrovascular disease)

TIA G45.X (except G45.3, amaurosis fugax) 435

Retinal G45.3, H34.X (retinal vascular occlusion), H35.82 (retinal 
ischemia), H53.1 (transient visual loss)

362 (retinal disorders), 368 (visual disturbances)

Cerebral G81.0 & G81.9 (hemiparesis), H53.4 & H53.9 (visual non-
retinal), R29.5 (transient paralysis of limb), R29.8 (other 
neurological symptoms), R47.0, R47.1 & R7.8 (aphasia & 
dysarthria)

781 (neurological symptoms), 341 (demyelinating symptom, 
but frequently used in our sample). Omit 784 (embeds speech 
in context of ‘head and neck’)

Stenosis (asymptomatic) I65.2, I65.3, I65.9 (stenosis of carotid or multiple arteries) 433 (some codes include infarction, but these are rarely used 
in BC)
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variables, (3) LogisticDX: elastic net logistic adding physi-
cian claims diagnoses to hospital discharge variables, (4) 
LogisticALL elastic net logistic using all variables, and (5) 
ForestALL: random forest using all variables. Elastic net 
and random forest models were selected because they 
incorporate automated variable selection, require a mod-
est amount of data for training (e.g. in contrast to neu-
ral network) and include variable importance metrics for 
model interpretation. Random forest models are addi-
tionally advantaged by the automatic incorporation of 
interactions, whereas elastic net models are advantaged 
by linear relationships (random forest are binary).

Models were built and analyzed using a 4-step work-
flow: (1) model specification tuning using training set 
10-fold 3-repeat cross-validation, (2) model performance 
assessment using training set 10-fold 10-repeat cross-val-
idation, (3) final model fitting using the complete train-
ing set, and (4) final model performance measurement 
using 2000 bootstrapped test set samples.Model specifi-
cations were tuned using the tidymodels implementation 
of Bayesian grid search [39], using default values except 
where noted. Elastic net logistic regression models were 
built using glmnet [40], with tuning of mixture and pen-
alty (controlling variable selection and overfitting con-
trol). Random forest models were built using ranger [41], 
with tuning of the number of variables randomly sam-
pled as candidates at each split (specified range 2–20), 
minimum node size, and tree number (all controlling the 
complexity of the resulting algorithm).

Sensitivity and AUC​
Exact binomial confidence intervals for the sensitivity 
and specificity of RuleDX were calculated using the com-
bined test and training sets. To permit like-to-like com-
parison between the diagnosis only and ML methods, 
the sensitivity of ML models was assessed at the speci-
ficity observed for RuleDX. Training set sensitivity and 
AUC were calculated using cross-fold hold-outs, yielding 
mean and standard error. Test set sensitivity and AUC 
were assessed via bootstrapped empirical 95% confidence 
intervals.

Calibration
Calibration was assessed was assessed by plot within the 
test set using LOESS-smoothed curves [42]. These curves 
were used to calculate the calibration intercept a (assess-
ing whether the number of predicted events matches the 
number of observed events) and slope bL (assessing the 
tendency for extreme or uninformative predictions) [43]. 
The unreliability index was then calculated, which eval-
uates H0: a = 0 and bL = 1 using a single 2-df chi square 
test.

Variable importance
Variable importance was assessed by standardized logis-
tic regression coefficients and ranger’s random forest 
permutation importance.

Statistical software and reproducibility
R version 3.6.1 was used for all analyses. A comprehen-
sive list of packages is provided in the Data Supplement. 
Annotated statistical code has been included in the Data 
Supplement and is available in native format on request.

This study was approved by the University of British 
Columbia Clinical Research Ethics Board, with waiver 
for informed consent. All methods were performed in 
concordance with institutional ethics guidelines and 
regulations.

Results
Cohort and chart review
Of 971 unique participants identified by procedure code, 
729 were included in the analytic data set. This dataset 
was split by year into train (year 2008–2015, n = 614) and 
test sets (year 2016, n = 114). Participant characteristics 
are summarized in Table  2. Between-rater agreement 
was very strong for symptomatic status (Kappa = 0.846, 
n = 21).

Sensitivity
Model sensitivity is summarized in Fig.  1A. Within the 
combined train and test sets, RuleDX was 32.8% (95% CI 
29–37%) sensitive and 98.6% specific (96–100%). Within 
the train set, LogisticDX, LogisticAll and ForestALL were 
more sensitive than RuleDX at the 98.6% specificity mar-
gin. LogisticHOSP was less sensitive in the train set, so 
performance in the test set was not assessed. Test set 
confidence intervals for LogisticAll and ForestAll did not 

Table 2  Characteristics of included participants by train and test 
population, Vancouver, Canada, 2008–2016. P-values reported for 
t-test (age) and Fisher exact test (all other variables)

Train Test P-value

N 615 114

Data years 2008–2015 2016

Age – mean (SD) 72.1 (9.1) 71.3 (9.7) 0.4

Female – N (%) 207 (33.7%) 33 (28.9%) 0.4

In metro – N (%) 482 (78.4%) 89 (78.1%) 1

Symptom type – N (%) 0.02

  Asymptomatic 189 (30.7%) 29 (25.4%)

  Retinal 111 (18.0%) 22 (19.3%)

  TIA 198 (32.2%) 27 (23.7%)

  Stroke 117 (19.0%) 36 (31.6%)
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overlap with RuleDX, confirming the higher sensitivity of 
these models (95% CI 59–82% and 69–88%, respectively).

Roc
Model ROC AUC is summarized in Fig.  1B. Within 
the train set, mean AUC was highest for LogisticALL 
and ForestALL (0.938 ± 0.003 and 0.933 ± 0.003), inter-
mediate for LogisticDX (0.918 ± 0.004) and lowest for 

LogisticHOSP (0.722 ± 0.006). Within the test set, AUC 
95% CI for LogisticAll and ForestAll (0.893–0.977 and 
0.906–0.979) excluded LogisticHOSP (0.726–0.879) 
and overlapped with LogisticDx (0.809–0.960). Test 
set ROC curves (Fig.  2A) highlight the discordance in 
AUC and sensitivity at the high specificity margin for 
LogisticHOSP and LogisticDX.

Fig. 1  Model performance assessed by sensitivity at 98.6% specificity (panel A) and area under the receiver operating characteristic curve (panel B). 
The diagnosis-only rule-based method involves no parameter tuning, so it is reported for all participants. All other models are analysed by train and 
test population. Training results are calculated using cross-fold hold-outs and are plotted with mean and 95% confidence interval for standard error. 
Testing results are calculated using n = 2000 bootstrapped samples and are plotted by empiric 95% confidence interval. Area under the curve is not 
calculable for the rule-based diagnosis-only method

Fig. 2  Model performance in the test set by receiver operator characteristic curve (panel A), observed vs. predicted probability calibration curve 
(panel B). In panel A, a grey bar is positioned at specificity 98–100%, highlighting the limited sensitivity of LogisticDX at this margin
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Calibration
LOESS-smoothed calibration curves are provided in 
Fig.  2B and summary statistics for calibration are pro-
vided in Supplementary Table  4. All logistic regression 
models approximated the identity line, consistent with 
good calibration-in-the-large (intercept) and weak cali-
bration (slope). The unreliability index for the ForestALL 
calibration curve was marginally significant (p-value 
0.053), indicating probable deviation from the identity 
line.

Variable importance
Normalized logistic regression coefficients and random 
forest permutation importance metrics are presented in 
Fig. 3. Emergent hospital admission was weighted more 
heavily than discharge diagnoses. Physician diagnoses 
for stroke / TIA were heavily weighted, particularly those 
made by a neurologist. Fee items relating to the evalua-
tion of probable ischemic symptoms, such as CT head, 
were moderately weighted.

Discussion
In a cohort of participants with known CEA, rule-based 
classification by hospital discharge diagnosis was highly 
specific but insensitive for symptomatic status. The 
results of our study are concordant with a previous chart 
review [6] and likely explain implausibly low rates of 
symptomatic intervention observed in some administra-
tive data studies [13, 18]. Given the available evidence, it 
is unlikely that this current state method will yield valid 
cohorts for population-level study of asymptomatic 
intervention.

We believe that the low sensitivity of diagnostic codes 
for symptomatic status is an expected side effect of 
Canadian discharge coding regulation. If a patient is 
initially admitted for a symptomatic event, such as an 
ischemic stroke, and undergoes unscheduled surgery 
on the same admission, the symptomatic event is cor-
rectly coded as either a most responsible diagnosis or 
preadmit comorbidity diagnosis type. These patients 
are likely to be correctly classified by a diagnosis-code 

Fig. 3  Standardized logistic regression model coefficients and random forest permutation importance for each model. Negative coefficients are 
shaded in light grey. Variables are sorted by importance in the first model in which they appear
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only system. However, if the patient is admitted for 
scheduled surgery after their initial symptomatic event, 
then neither of these types can be used. It would be 
possible to code the ischemic event as a secondary 
diagnosis type, but this would also include ischemic 
events not relevant to the procedure. We do not see an 
obvious way to remedy this.

As an alternative to rule-based classification by dis-
charge diagnosis, we explored the impact of increas-
ingly complex ML models. To allow a direct comparison 
against rule-based classification, we evaluated all mod-
els by sensitivity at fixed high specificity. Our simplest 
model, elastic net with hospital discharge variables, 
performed no better by this metric in the training set 
and was not evaluated further. Adding physician claims 
diagnoses improved sensitivity in the training set but was 
inconsistently sensitive in the test set.

We hypothesized that two novel variable types might 
improve upon this result. First, we included a limited set 
of specialist-specific diagnoses, such as TIA diagnosed by 
neurologist, reasoning that these would be more predic-
tive of true symptomatic status a diagnosis of TIA by a 
non-neurologist. Second, we identified a set of services, 
such as head CT, that might signal the investigation of a 
symptomatic event. Variables from both of these types 
were heavily weighted in both the logistic regression and 
random forest models, suggesting they are discriminat-
ing for symptomatic status. Performance of a head CT 
was especially important to the random forest model, 
reflecting its status as an essential investigation in the 
investigation of any central nervous system symptom. 
Incorporating these variables substantially improved 
model performance, in particular sensitivity at the high 
specificity margin. We believe that the gains in model 
performance justify the modest increase in data process-
ing and model complexity.

We additionally evaluated whether a random forest 
model would be more discriminating than logistic regres-
sion. Although a marginal improvement in training set 
AUC was observed, confidence intervals for the test set 
essentially overlapped. We do not think that the small 
potential gain in discrimination justifies the increase in 
model complexity and loss of interpretability. It may be 
the case that the specific advantages of the forest were 
not relevant to this dataset. In addition, the strong per-
formance of the logistic regression model yielded little 
grounds for improvement.

All logistic models appear well calibrated by plot and 
the unreliability index statistic. This suggests that our 
models were reasonably resilient against concept drift 
that might have occurred between the training and test 
data years (2008–2015 vs. 2016). Notably, the number of 
asymptomatic patients in our sample is small (n = 29), 

which limits the power of graphical methods and statisti-
cal tests to identify calibration errors [43].

While a strength of this study is its access to popula-
tion-based physician claim and hospital discharge data, 
the use of single center to construct our cohort is a limi-
tation. The resulting models likely include some prac-
tice-style features specific to this study’s jurisdiction. 
For example, the occasional use of the diagnostic code 
for demyelinating diseases is potentially specific to our 
jurisdiction and may not generalize. A second limitation 
of this study is the use of a test set drawn from the same 
institution. This limits the generalizability of the study 
to new populations and should be addressed by exter-
nal validation using a nationally representative sample in 
future research. Finally, given restrictions on small cell 
size, we were not able to analyse classification accuracy 
for asymptomatic patients with peri-operative stroke. 
These patients are potentially at highest risk for misclas-
sification by discharge diagnosis and are also the numera-
tor cases for peri-operative complications. We thought it 
preferable to exclude these patients, rather than assume 
classification accuracy similar to the general population.

The intended future use case for this algorithm is to 
support national-scale quality monitoring programs for 
carotid endarterectomy. In this single-center study we 
demonstrate proof-of-concept for the use of administra-
tive data for accurate classification of symptomatic sta-
tus. Future work will need to evaluate the algorithm in 
nationally representative test and development sets. Ide-
ally, the data set would be enriched with known cases of 
peri-operative complication, to ensure that the algorithm 
correctly classifies these high-importance cases.

Conclusion
Classification of symptomatic status for carotid endar-
terectomy by discharge diagnosis is insensitive. Logis-
tic regression models combining physician claims and 
discharge data yield discriminating and well-calibrated 
models.
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CEA: Carotid endarterectomy; ICD: International Classification of Diseases; 
ROC: Receiver operating characteristic curve; AUC​: Area under curve (in 
this context, area under the receiver operating characteristic curve); LOESS: 
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