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Abstract

Background: Prediction of the necessary capacity of beds by ward type (e.g. ICU) is essential for planning purposes
during epidemics, such as the COVID− 19 pandemic. The COVID− 19 taskforce within the Ghent University hospital
made use of ten-day forecasts on the required number of beds for COVID− 19 patients across different wards.

Methods: The planning tool combined a Poisson model for the number of newly admitted patients on each day
with a multistate model for the transitions of admitted patients to the different wards, discharge or death. These
models were used to simulate the required capacity of beds by ward type over the next 10 days, along with worst-
case and best-case bounds.

Results: Overall, the models resulted in good predictions of the required number of beds across different hospital
wards. Short-term predictions were especially accurate as these are less sensitive to sudden changes in number of
beds on a given ward (e.g. due to referrals). Code snippets and details on the set-up are provided to guide the
reader to apply the planning tool on one’s own hospital data.

Conclusions: We were able to achieve a fast setup of a planning tool useful within the COVID− 19 pandemic, with
a fair prediction on the needed capacity by ward type. This methodology can also be applied for other epidemics.
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Background
The enormous impact of the COVID− 19 pandemic has
surprised many hospitals beginning March 2020. It soon
became apparent that the capacity of hospital beds was
at the verge of coming under great pressure. Besides a
shift of regular beds to specific COVID-19 beds with
special hygiene measures, pressure on the number of
beds arose primarily from the need to foresee sufficient
capacity in the Intensive Care Unit (ICU). Indeed, while
approximately 9 to 11% of admitted COVID-19 patients
were in need of advanced life-supporting measures [1],
ICU capacity was limited in terms of the number of

beds, but also the number of monitoring devices, life
supporting machines and specific trained personnel to
provide high quality of care. In the Belgian situation,
which we will consider, the number of ICU beds is on
average 15.9 per 100.000 inhabitants; it is less favourable
in the rest of Europe, numbering 11.5 per 100.000 inhab-
itants [2]. For healthcare systems, and hospitals within
these systems, organizational preparedness and capacity
planning was thus essential [3]. In Belgium, for instance,
a Surge Capacity Plan [4] has been set up to monitor the
number of occupied ICU beds and to create extra ICU
beds where needed. In cases of (near) saturation, contact
had to be made with the local health inspector. More-
over, so long as saturation was threatened at the national
level, a certain percentage of the beds needed to be allo-
cated and foreseen for potential COVID-19 patients
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(described in different phases by the government). To at-
tain the required capacity, patients in burn units were
centralized at the national level.
Hospital capacity planning is driven by complex dy-

namics between input, output and the number of avail-
able beds [5, 6]. In normal times, hospitals aim to
achieve an optimal bed occupancy by maximizing bed
occupancy while minimizing overflow, which often has a
negative effect on patient outcomes [7]. However, pan-
demics and natural disasters typically come with a sud-
den influx of unforeseen patients, which almost instantly
pushes the boundaries of a hospital’s capacity [8]. Front-
line health care workers, directly engaged in the diagno-
sis, treatment, and care for patients with COVID-19, are
susceptible to experience psychological burden in return,
while also being at greater health risks [9]. Lack of bed
capacity, scarcity in supplies and high occupancy rates
further increases that burden.
In order to prevent such overflow, healthcare systems

can take several measures. In China, new hospitals have
been built [10], which immediately increased capacity
via a larger number of available beds. However, most
European countries underestimated the pandemic po-
tential and virulence, and as such did not take such ac-
tions. In most countries, the influx in hospitals was
instead reduced by means of a nationwide quarantine,
measures of social distancing, hand washing, school clo-
sures, mouth mask or other activities [3]. Such measures
successfully flattened the curve, decreasing the influx
and therefore putting less stress on hospital capacity.
However, successfully flattening the curve means ex-

tending the duration of the pandemic, making it impos-
sible to further postpone regular care [11]. A fragile
equilibrium needs to be found between reserving a suffi-
cient number of beds for COVID-19 cases, while also
providing sufficient beds for regular, necessary care
which cannot be delayed. In order to achieve such bal-
ance, predictive models can play an important role, not
only to predict the number of needed beds that should
be allocated to the pandemic, but also to inform the hos-
pital on providing the right equipment and training suf-
ficient healthcare workers for specific cases [12].
The ability to predict hospital bed capacity for differ-

ent types of wards is essential for monitoring and plan-
ning purposes during epidemics, such as the ongoing
COVID-19 pandemic. At the start of the pandemic, the
available models were scarce. Most efforts then focused
on susceptible-infected-removed (SIR) models, and vari-
ations thereof, aimed at predicting the number of posi-
tive COVID-19 cases at a national level (e.g. [13, 14]).
While these provide valuable insights into the dynamics
of future disease spreading in a population, we could not
readily make use of those for hospital planning because
they demand input on parameters, such as doubling

times and social distancing measures, that were not
available for our local setting at that time. Moreover,
they are not designed to give detailed predictions for a
specific hospital, organized by type of ward. A further
limitation is that standard SIR models not accounting
for cohort structure underestimate the peak of COVID-
19 infectious cases and their timing [15]. General pur-
pose simulation toolboxes, such as the (free) web appli-
cation corona.simbox.ai, predict capacity building on
observed trends in the number of new cases and the ex-
pected length of hospital stay observed in specific coun-
tries (data from https://www.worldometers.info/
coronavirus/). While potentially more directly useful,
their generic nature has the disadvantage of providing
capacity predictions that are not well aligned with the
regional variation in the severity of the epidemic, local
treatment, triage and hospital management policies.
Within the Ghent University Hospital, we have therefore
set up a planning tool to predict on each day the needed
capacity of different bed types over the subsequent ten-
day period. Based on the tool’s predictions, the required
human capacity (i.e. healthcare workers) can be assessed
and the needed material can be stocked. Such capacity
planning forms an essential primordial step in preparing
a hospital. In particular, we will develop a data-driven
prediction algorithm which makes use of daily updated
hospital records to make predictions on each day, of the
number of new cases that can be expected over the next
10 subsequent days, as well as how admitted cases are
expected to transition during this period between differ-
ent wards, as well as to discharge or death. The pro-
posed algorithm makes use of Poisson models with
smoothing splines to model the evolution in the number
of new cases over time, along with multistate models
[16] to describe patient transitions between multiple
states (namely, wards, discharge or death). These fitted
models, which are daily updated, are then used to simu-
late the capacity needed over the subsequent 10 days.

Methods
Population
The data includes all patients admitted to the University
Hospital Ghent and labelled as COVID-19 patient; some
of these are transferals from other hospitals. We label a
patient as a COVID-19 patient, when a positive PCR test
in the lab (internal or external) is present. Some patients
in our dataset had already been admitted before obtaining
a positive PCR test result (e.g. in the Rehabilitation depart-
ment). We use data from different time points from one
hospital and use as such a longitudinal study design.

Inclusion criteria
The model is trained on all positive COVID-19 patients
who were in the University Hospital Ghent before April
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20, 2020. We test the model on the patients who were in
the hospital between April 20, 2020 and April 27, 2020.
This range of dates falls within the peak of the pandemic
and refers to one of the first weeks the model was fully
operational.

Statistical modelling
The implementation of the different steps can be found
in the Supplementary Appendix, along with code
snippets.

Multistate model
We use multistate modelling to model the time for
current patients needed to transition to a different ward,
as well as to discharge or hospital death. In particular,
we model transitions between the wards Non-Covid19,
Cohort, ICU Midcare, ICU Standard and ICU Venti-
lated. Here, Non-Covid19 includes all the wards without
positive COVID-19 patients, such as the Emergency De-
partment, but also the wards where non-COVID-19 pa-
tients stay during the pandemic. Cohort includes all
wards with COVID-19 patients who need standard care.
The task force decided to open a specific COVID-19
midcare unit (ICU Midcare), to better guarantee avail-
ability of Intensive Care department (ICU) beds for the
most severely ill patients with a good chance of ICU sur-
vival. The ICU was further divided into unventilated
critically ill patients (ICU Standard) and ventilated critic-
ally ill patients (ICU Ventilated). We chose to split these
two types of ICU wards to enable capacity planning on
the required number of ventilators. Our model makes
no distinction between discharge or death, as it has no
consequences for capacity planning.
Multistate models describe events over the course of

time as transitions between multiple states. A first step
is to define all possible transitions (Fig. 1, Appendix A1).
Patients arrive at Non-Covid19 (e.g. emergency depart-
ment), from which they can be transferred to Cohort (=
all non-ICU wards with COVID-19 patients), ICU Mid-
care, ICU Standard or ICU Ventilated. Each patient can

have multiple transfers between the different wards, ter-
minating in state Discharged, which indicates that the
patient either has been discharged or has died.
The considered multistate model places no constraints

on the possible transitions that can be made. In particu-
lar, the cause-specific hazard of each transition is mod-
elled non-parametrically and estimated using the Aalen-
Johansen estimator [17]. This is done under a standard
Markovian assumption that the hazard to transition to a
given state (e.g. ward), while possibly different depending
on the current state in which the patient is present, has
no residual dependence on earlier states in which the
patient was observed. For instance, the cause-specific
hazard to transition to Cohort after having spent 10 days
on ventilation is assumed to be the same, regardless of
whether the patient was already in the ICU prior to ven-
tilation, versus was directly admitted to ICU Ventilated.
To enable a fast implementation and because covariate
data of future cases are obviously missing, no covariate
adjustment is made in these models.
All models were fitted in R (version 3.6.1), using the

implementation from the mstate [18] package for multi-
state models (see Appendix A2).

Simulating transition for patients already present in the
hospital
The fitted multistate model was used to simulate on
each day of the pandemic, how COVID-19 patients cur-
rently present in the hospital are expected to transition
to other wards, discharge or death. In particular, for
each patient, we calculated their cause-specific hazard to
transition to each of the other wards, discharge or death
on each of the subsequent 10 days, based on their latest
state and the time already spent in that state. Based on
these estimated cause-specific hazards, the patient’s pos-
sible transitions through the different states were then
randomly simulated. Subsequently, the number of occu-
pied beds on each ward was calculated for each of the
subsequent 10 days. This process was repeated M times
(in our case 500) in order to eliminate simulation error

Fig. 1 Possible transitions in the multistate model
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as well as to develop insight into the degree of uncer-
tainty. Simulations were based on the R function
mstate::mssample (see Appendix A2.4).

Simulating transitions for new patients
To predict the number of new cases expected over the
subsequent 10 day(s), we use additive Poisson modelling.
In particular, we model the logarithm of the number of
daily new cases using a Poisson model with a penalized
regression spline for calendar time. Smoothing parame-
ters are selected based on Mallow’s Cp. All models are
fitted in R (version 3.6.1), using the implementation
from the mgcv [19] package for additive Poisson model-
ling (Appendix A4).
Based on the fitted Poisson model, we next simulate

the number of new cases that is expected to arrive on
each of the coming 10 days. For convenience, these pa-
tients are assumed to enter the Non-Covid19 ward (such
as ER) (R package mgcv::gam), with their time set to
zero. Next, the fitted multistate model is used to simu-
late how new cases will transition to different wards, dis-
charge or death over the coming 10 days. Also this
entire simulation process was repeated five hundred
times. In doing so, we accounted for the fact that e.g. for
a patient who was simulated to be newly admitted on
day eight, we only need to simulate his/her transitions
for the subsequent two days (see Table 1).
The total number of occupied beds across existing and

new patients was calculated for each of the subsequent

10 days in each of the M simulation runs. The obtained
results were averaged across the M simulation runs to
eliminate simulation error. In addition, to summarize
the uncertainty in the possible capacity needed on each
day, we report a best case scenario (corresponding to the
5% percentile of the needed capacity) and a worst sce-
nario (corresponding to the 95% percentile of the needed
capacity).
To assess the degree of inaccuracy in the results stem-

ming from the limited number of simulation runs, we cal-
culated Monte Carlo simulation error. For the mean
scenario, this is given by the standard error of the mean
(defined as the standard deviation of the capacity across
the M simulations, divided by the square root of the num-
ber of simulations). For the two percentiles, we report the
standard error calculated using Nyblom’s interpolated
order statistic approach [20] (available from the R package
quantileCI::quantile_confint_nyblom) (Appendix A3).

Model validation
To validate the model we compare the bed occupancy
predicted on April 20, 2020 and April 27, 2020, which
corresponds with the first peak of the pandemic, with
the actual values. We also evaluate one-day-ahead pre-
dictions in the period in between these two dates. This
means that for every day a new prediction is made for
just the next day, e.g. on April 23, 2020 the prediction is
made for April 24, 2020 and on April 24, 2020 the pre-
diction is made for April 25, 2020.

Table 1 Example table of the predictions made for each day the next coming ten days

1 2 3 4 5 6 7 8 9 10

April 20,
2020

April 21,
2020

April 22,
2020

April 23,
2020

April 24,
2020

April 25,
2020

April 26,
2020

April 27,
2020

April 28,
2020

April 29,
2020

1 April 20,
2020

X

2 April 21,
2020

X x

3 April 22,
2020

X x x

4 April 23,
2020

X x x x

5 April 24,
2020

X x x x X

6 April 25,
2020

X x x x X x

7 April 26,
2020

X x x x X x x

8 April 27,
2020

X x x x X x x x

9 April 28,
2020

X x x x X x x x x

10 April 29,
2020

X x x x X x x x x x

Legend: An x represents 500 simulations in our analysis
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Results
Patient characteristics
We use and apply this approach on data from the Ghent
University hospital during the COVID-19 pandemic. On
April 20, 2020 this dataset consists of 203 different
people in hospital, while on April 27, 2020 222 admis-
sions are included. More males than females are admit-
ted with an average age of sixty (Table 2). At the two
selected time points, a large fraction of all patients (29–
24%) is still in hospital.

Multistate models
We estimate the overall transition probabilities (using
the mstate::probtrans function) from the multistate
model (fit with mstate::msfit) (Appendix A1). In Fig. 2
we can see the overall transition probabilities for the
ward in which we wish to predict the number of patients
by day, which express what percentage of patients is ex-
pected in each state in function of the number of days
since admission. It shows a majority of patients in

Cohort, and moreover indicates long length of stay on
ICU Ventilated.

Simulating transition for all patients
The results of the Poisson modelling to predict the num-
ber of expected patients for the next ten days is given in
Fig. 3. We show the actual numbers in dark bars and the
predicted number of new patients in lighter boxplots. For
interpretation of the boxplots we refer to Appendix A5.
The results of the simulations are visualized in bar

charts and in a table with the absolute numbers of pa-
tients. The bar chart (Fig. 4) shows the trends as well as
the difference between actual and predicted number of
patients; the table (Table 3) holds the absolute numbers
which are of interest to stakeholders. The graph and
table also display simulation error, which is small, indi-
cating that 500 simulation runs suffice. As expected
from the transition probabilities, the largest proportion
of patients is expected to stay in Cohort. This number
first increases, as this is where new patients arrive before
possible transfer to other wards. We observe a similar ef-
fect on ICU Midcare, where transfers from Cohort and
ICU Ventilated result in an increase of patients on this
ward and transfers back or to these same wards for a de-
crease. The evolution on ICU Ventilated is different,
with patients tending to have long lengths of stay once
admitted. ICU Standard has a very limited number of
patients.

Model validation
To validate our model, we compare the actual and pre-
dicted numbers of patients (Table 4).

Table 2 Patient characteristics for April 20, 2020 and April 27,
2020

April 20, 2020 April 27, 2020

N (number included admissions) 203 222

Gender (male) 130 (64%) 139 (63%)

Age [SD] 56.84 [17.51] 57.07 [17.72]

Patient status at moment of data collection

Non-survivors 21 (10%) 24 (11%)

Discharged 123 (61%) 145 (65%)

Non-discharged 59 (29%) 53 (24%)

Legend: SD Standard Deviation

Fig. 2 Transition probabilities: probabilities to transition from the first state (Non-Covid19) to selected states over the considered time window
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Where Table 4 shows the prediction for the next 10
days, Table 5 shows the prediction for just the next day.
If the actual difference on one day is large, this has a
negative effect on the prediction (e.g. April 22, 2020 ICU
Midcare). This has no effect on the prediction for the
days after, as the actual numbers are included in the
dataset. Nevertheless, this does imply that for prediction
on multiple days (e.g. 10 days as in Table 4) will results
in an unexpected change that will be lower or higher
than expected.
The large difference on April 28, 2020 in ICU Venti-

lated is caused by a sudden two deaths and three
transfers.

Discussion
In this paper, we have proposed an algorithm that can
be used for capacity planning during an epidemic, along
with software code. We are not aware of similar data
driven approaches that fully rely on one’s own hospital
health records.
We have found the proposed approach to be fairly reli-

able in predicting the required capacity within Ghent

University hospital, except at the start of the pandemic
where the number of data is still too limited to enable
reliable prediction, and where the organization may not
be in a sufficiently stable situation to enable extrapola-
tion to the future. For this, it can be useful to borrow
strength by combining data across multiple regional hos-
pitals. Also, it can be used in a second wave, using the
parameters from the first wave. This would then become
more specific for the institution, as physicians and treat-
ment protocols differ among the different institutions.
While using this tool during the COVID-19 pandemic,

we have found the number of patients on ICU Midcare
to be the hardest to predict (Table 5), where we observe
between − 3 and + 5 deviation between the actual and
predicted numbers. The reason is that this ward receives
input and output from Cohort as from ICU Standard/
ICU Ventilated, making the numbers of patients on this
ward very sensitive to human decisions made on these
other wards, and possibly even the insight of a single
physician. Our results, including the ones reported in
this paper (and used by the task force of the Ghent Uni-
versity hospital), are based on predictions made on

Fig. 3 Observed and predicted number of new patients - Poisson modelling – April 20, 2020. The dark bars are the actual numbers of new
admission by day. The lighter boxplots show the predicted numbers of expected admissions by day
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Mondays. These are subject to a possible weekend effect,
as decisions on opening/closing/changing wards were usu-
ally made just prior to the weekend and this could influ-
ence the results. These decisions mainly related to shifting
or changing ICU Midcare, adding to the difficulty of pre-
dicting the capacity on ICU Midcare on Mondays.
A further limitation of our proposal is that the Poisson

model may need some time to pick up sudden increases
or drops in the expected number of new cases, e.g. due
to a relaxation of lockdown regulations. The use of
smoothing splines allows sufficient flexibility to pick up
such effects, but some time is needed for this to be
picked up in a reliable way.
The proposed approach is simulation-based, which is

useful to develop insight into random fluctuations that
may occur in the required capacity. The calculated
Monte Carlo simulation error suggested 500 simulations
to suffice in order to dampen simulation error. Model
validation was based on an independent dataset as the

predictions were evaluated on future data not known
upfront or used within the training set data.
Our reported best- and worst-case scenario ignore the

excess variability that may arise from the fact that the
Poisson and multistate models were themselves fitted on
limited data and are thus subject to imprecision, making
the reported intervals somewhat optimistic. Acknow-
ledging this excess variability is non-trivial, and beyond
the scope of this work.
The proposed approach is transposable to any other

epidemic or very specific pathology/disease for which
one is interested to know the required number of beds
for specific wards and with a specific flow. As most ad-
ministrative systems will have at least one row for every
transfer for all patients, these can be bundled and as
such used in the same approach as described. The extent
of data manipulation should not be underestimated as
each system has its own layout / structured and is diffi-
cult to generalize internationally (in Belgium most

Fig. 4 Resulting actual and predicted number of beds with the Monte Carlo simulation error for three scenarios: best (Q05), mean and worst
(Q95) – April 20, 2020. There are four types of ward: Cohort, ICU Midcare, ICU Standard (=non-ventilated), ICU Ventilated
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hospitals have one of the larger software vendors to cap-
ture this administrative data). We presume that this step
will take most of the time to set up the model for the
planning tool. The need for an accurate planning tool is
high, as a lack of equipment to apply oxygen related
therapies, such as invasive mechanical ventilation, in-
creases mortality [21], and so does an overflow on ICU
beds [22]. An optimal organization within the hospitals
is therefore needed, and we believe that prediction strat-
egies as discussed in this paper can be helpful to obtain
this objective.
The prediction accuracy of our model can in principle

be further improved by making use of patient

characteristics, such as age and gender, when modelling
transitions between wards. We have chosen not to do
this in view of the additional cost of data manipulation,
the risk of model misspecification when Cox propor-
tional hazards models are used for the cause-specific
transition hazards, and the fact that such patient charac-
teristics are unknown for future patients.

Conclusions
The proposed algorithm can be quickly setup and is an
added value during the COVID-19 pandemic to predict
the needed capacity within the hospital by ward type.

Table 3 Result table

day Cohort ICU Midcare ICU Standard ICU Ventilated

Actual Actual Actual Actual

2020-04-15 36 8 0 27

2020-04-16 35 8 1 26

2020-04-17 41 6 0 23

2020-04-18 28 7 0 24

2020-04-19 24 8 1 24

Best Median Worst Best Median Worst Best Median Worst Best Median Worst

2020-04 −
20

24
[24–24]

25
[24.96–
25.04]

27
[27–28]

10
[10–
10]

10
[9.98–
10.02]

11
[10.6–11]

1
[1–
1]

1
[0.98–
1.02]

1
[1–1]

24
[24–
24]

24
[23.98–
24.02]

24
[24–26.13]

2020-04-21 25
[25–26]

27
[26.91–
27.09]

30
[29–32]

8
[8–8]

9
[8.96–9.04]

10
[10–
10.53]

1
[1–
1]

1
[0.96–
1.04]

1
[1–
3.32]

24
[24–
24]

24
[23.96–
24.04]

25
[24.47–
25.67]

2020-04-22 27
[26.89–28]

30
[29.84–
30.16]

33
[32–
33.11]

6
[6–6]

7
[6.93–7.07]

8
[8–9]

1
[1–
1]

1
[0.93–
1.07]

1
[1–2]

25
[25–
25]

25
[24.93–
25.07]

26
[26–27]

2020-04-23 31
[31–32]

34
[33.8–34.2]

37
[37–
39.33]

5
[5–5]

6
[5.91–6.09]

8
[8–9]

1
[1–
1]

1
[0.91–
1.09]

1
[1–2]

26
[26–
26]

26
[25.91–
26.09]

27
[27–28]

2020-04-24 27
[26–27]

30
[29.76–
30.24]

34
[33–
35.22]

4
[4–4]

5
[4.89–5.11]

7
[7–8]

1
[1–
1]

1
[0.89–
1.11]

2
[1–2]

26
[26–
26]

26
[25.89–
26.11]

28
[28–28]

2020-04-25 23
[21.89–
23.1]

26
[25.72–
26.28]

30
[29–
31.22]

2
[2–2]

3
[2.88–3.12]

6
[5–6]

1
[1–
1]

1
[0.88–
1.12]

2
[2–2]

25
[25–
25]

26
[25.88–
26.12]

27
[27–27.18]

2020-04-26 15
[14–16]

19
[18.7–19.3]

23
[22–25]

1
[1–1]

3
[2.86–3.14]

5
[5–6]

1
[1–
1]

1
[0.86–
1.14]

2
[1–2]

25
[25–
25]

26
[25.86–
26.14]

27
[27–28]

2020-04-27 9
[8–9]

12
[11.7–12.3]

16
[15.9–18]

1
[1–1]

3
[2.87–3.13]

5
[5–5]

1
[1–
1]

1
[0.87–
1.13]

2
[1.19–
2]

25
[25–
25]

26
[25.87–
26.13]

28
[27–28]

2020-04-28 11
[9–11]

14
[13.7–14.3]

18
[17–20]

1
[1–1]

3
[2.87–3.13]

5
[5–6]

1
[1–
1]

1
[0.87–
1.13]

2
[1–2]

23
[23–
23]

24
[23.87–
24.13]

26
[25.46–26]

2020-04-29 9
[8–10]

13
[12.66–
13.34]

17
[16–
18.11]

1
[1–1]

3
[2.85–3.15]

5
[5–5]

1
[1–
1]

1
[0.85–
1.15]

2
[1–2]

22
[22–
22]

23
[22.85–
23.15]

25
[25–26]

Legend: Actual numbers of patients in the hospital at the specific wards and the predicted numbers for the next ten days – April 20, 2020. The predictions are
made for the three different scenarios (Best Q05, Median. Worst Q90) with the Monte Carlo simulation error
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Table 5 One-day-ahead predictions - mean case scenario

Cohort ICU Midcare ICU Standard ICU Ventilated

actual day Actual prediction diff actual prediction diff actual prediction diff actual prediction Diff

April 20, 2020 22 9 0 25

April 21, 2020 19 23 4 9 9 0 1 0 -1 24 25 1

April 22, 2020 20 21 1 4 9 5 1 0 -1 25 24 -1

April 23, 2020 19 21 2 4 3 -1 1 1 0 22 25 3

April 24, 2020 16 20 4 5 4 -1 2 1 -1 22 21 -1

April 25, 2020 14 19 5 6 4 -2 2 2 0 21 21 0

April 26, 2020 13 16 3 9 6 −3 2 2 0 20 20 0

April 27, 2020 14 14 0 10 8 −2 1 2 1 20 20 0

April 28, 2020 17 15 −2 8 10 2 0 1 1 15 20 5

Legend: `Actual’ refers to the actual numbers of patients on the actual day. `Prediction’ refers to the prediction number of patients for this Ward type made on
the previous day. `Diff’ shows the difference between the predicted and the actual number of patients

Table 4 For each ward the prediction as on April 20, 2020 and April 27, 2020, for the next ten days, as reported via a best-mean-
worst case scenario

day Cohort ICU Midcare ICU Standard ICU Ventilated

Predictions Actual Predictions Actual Predictions Actual Predictions Actual

20-apr 27-apr 20-apr 27-apr 20-apr 27-apr 20-apr 27-apr

April 15, 2020 36 8 0 26

April 16, 2020 35 8 1 25

April 17, 2020 41 6 0 22

April 18, 2020 28 7 0 23

April 19, 2020 24 8 1 23

April 20, 2020 24–25 - 27 22 10–10 – 11 9 1–1 – 1 0 24–24 - 24 24

April 21, 2020 26–28 - 31 19 8–9 – 10 9 1–1 – 1 1 24–24 - 25 23

April 22, 2020 28–31 - 34 20 6–7 – 8 4 1–1 – 1 1 25–25 - 26 24

April 23, 2020 29–32 - 36 19 5–6 – 8 4 1–1 – 1 1 26–26 - 27 21

April 24, 2020 26–29 - 33 16 4–5 – 7 5 1–1 – 2 2 26–26 - 28 21

April 25, 2020 20–23 - 27 14 2–3 – 6 6 1–1 – 2 2 25–26 - 27 20

April 26, 2020 14–18 - 22 13 1–3 – 5 8 1–1 – 2 2 25–26 - 27 20

April 27, 2020 8–12 - 16 14 1–3 – 5 9 1–1 – 2 1 25–26 - 28 20

April 28, 2020 10–13 - 18 15–16 - 17 18 1–3 – 5 11–11 - 12 7 1–1 – 2 2–2 – 2 0 23–24 - 26 20–20 - 20 15

April 29, 2020 11–15 - 19 16–18 - 20 17 1–3 – 5 10–10 – 11 8 1–1 – 2 2–2 – 2 1 22–23 - 25 20–20 - 21 14

April 30, 2020 18–20 - 23 17 10–10 – 11 6 1–1 – 2 1 20–20 - 21 11

May 1, 2020 20–23 - 26 20 7–8 - 10 6 1–1 – 2 1 21–21 - 22 10

May 2, 2020 17–20 - 23 20 9–10 - 12 8 1–1 – 2 1 18–18 - 20 9

May 3, 2020 19–22 - 26 21 5–6 - 9 9 1–1 – 2 1 19–20 - 21 9

May 4, 2020 15–19 - 22 17 3–4 - 7 8 1–1 – 2 1 18–19 - 21 9

May 5, 2020 7–10 - 14 16 2–4 - 6 9 1–1 – 2 0 23–24 - 26 6

May 6, 2020 6–9 - 13 15 3–5 - 7 8 1–1 – 2 1 17–18 - 20 6

May 7, 2020 6–10 - 14 16 4–6 - 8 9 1–1 – 2 1 17–18 - 21 5

Legend: In the `Actual’ column we show the number of actual used beds in the hospital (at noon)
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