RESEARCH ARTICLE **Open Access** # Scoping review and bibliometric analysis of Big Data applications for Medication adherence: an explorative methodological study to enhance consistency in literature Salvatore Pirri^{*}, Valentina Lorenzoni and Giuseppe Turchetti ### **Abstract** **Background:** Medication adherence has been studied in different settings, with different approaches, and applying different methodologies. Nevertheless, our knowledge and efficacy are quite limited in terms of measuring and evaluating all the variables and components that affect the management of medication adherence regimes as a complex phenomenon. The study aim is mapping the state-of-the-art of medication adherence measurement and assessment methods applied in chronic conditions. Specifically, we are interested in what methods and assessment procedures are currently used to tackle medication adherence. We explore whether Big Data techniques are adopted to improve decision-making procedures regarding patients' adherence, and the possible role of digital technologies in supporting interventions for improving patient adherence and avoiding waste or harm. **Methods:** A scoping literature review and bibliometric analysis were used. Arksey and O'Malley's framework was adopted to scope the review process, and a bibliometric analysis was applied to observe the evolution of the scientific literature and identify specific characteristics of the related knowledge domain. **Results:** A total of 533 articles were retrieved from the Scopus academic database and selected for the bibliometric analysis. Sixty-one studies were identified and included in the final analysis. The Morisky medication adherence scale (36%) was the most frequently adopted baseline measurement tool, and cardiovascular/hypertension disease, the most investigated illness (38%). Heterogeneous findings emerged from the types of study design and the statistical methodologies used to assess and compare the results. **Conclusions:** Our findings reveal a lack of Big Data applications currently deployed to address or measure medication adherence in chronic conditions. Our study proposes a general framework to select the methods, measurements and the corpus of variables in which the treatment regime can be analyzed. Keywords: Big data, Medication adherence, Bibliometric analysis, Scoping review ### **Background** Medication non-adherence (MnA) in chronic diseases is one of the most complex issues in Public Health. As highlighted by the World Health Organization (WHO) [1] in 2003, MnA and in general a low degree of adherence to treatment regimes as prescribed lead to poor health outcomes [2, 3] and overall increasing health-care costs [4, 5]. Although MnA is one of the most significant public health issues [6], there are still inconsistent healthcare outcomes and methodological measurements [7], and there is no widely-accepted agreement on its definition [8, 9]. ^{*} Correspondence: s.pirri@santannapisa.it Institute of Management, Scuola Superiore Sant'Anna, Pisa, Italy © The Author(s). 2020 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. A recent proposal [10] defined medication adherence as the *process by which patients take their medication as prescribed*, and identified three quantifiable phases, *intention*, *implementation* and *discontinuation*, as consistent, measurable and quantifiable steps to analyze the adherence-related management [11]. In our definition of MnA we also include *persistence*, i.e. the length of time between *initiation* and the last dose prescribed [10]. Finding a gold standard to measure the rate of non-adherence or simply a common approach to address the problem is difficult [12]. MnA is a complex issue because diseases differ widely and patients and their drug interaction may react differently. The issue is further compounded by differing beliefs [13], social support and socio-economic status. Moreover, all these variables interact at different levels [14] to determine the magnitude of medication adherence [15]. Different approaches, measurement types and methods have thus been used to explore MnA [16], though this remains an unclear and deeply fragmented field of study [17]. Progress in medical technology has created new solutions to tackle complex issues, as well as new tools and policy strategies to deliver better healthcare services [18] and reduce or make more efficient the overall costs for the National Health Service (NHS) [19]. The proliferation of studies and applications on health information technologies have boosted enormously the possibility to create, understand and obtain valuable information from different sources. Data are generated from medical devices, hospital databases, laboratories and the like, but also from insurance claims, smart-phones, social media, and even more from real-time geolocated sources such as wireless technologies, wearables, and GPSs [20]. This has made the concept of Big Data one of the most promising fields of application in the healthcare domain [21]. Big Data analytics [22] refers to a new generation of technologies and architectures designed to extract value from a very large *volume* (i.e. petabytes) of a wide *variety* of data, by enabling high-*velocity* streaming data (3 V's) across a wide range of sources. These three characteristics are the common elements that currently enable data-intensive technology analysis. The application of such promising technologies has led to the development of new and effective applications in the healthcare sector [23], although most of the research tends to focus on technical issues [24]. Despite the technologies already in use, little has been done to develop methods, techniques or strategies to apply data intensive analysis to investigate medication adherence issues, particularly in terms of providing long-term strategies for medication adherence. In addition, all the *determinants* (factors) that impact medication adherence need to be considered, especially when these factors, and all the related variables, are modifiable risk factors and sources of information. Once these factors and variables have been recognized they can then be analyzed to determine the magnitude of the MnA, or at least to define a specific strategy to tackle it. Although strategies that define and explore types of medication adherence, measurements and barriers, are quite common, what is extremely important is the ability to engage and maintain a patient's persistence for the entire period of the treatment. The ability to improve patients' selfmanagement capabilities and to encourage any lifestyle changes (behaviors) entails a deep understanding of the determinants (factors) that drive patients' adherence. However there are inconsistent findings on the important role played by medication adherence factors, and the dynamics between the factors, methods and type of measurements have been poorly investigated, and some of its key components have been neglected. This paper presents the scoping review results of the methods and measurements adopted for medication adherence management in chronic disease. We highlight to what extent Big Data techniques have been deployed to improve or detect evidence-based results for medical decision-making. 1In doing so, we used the taxonomy of Big Data techniques in healthcare developed by Alonso et al. [25], to compare whether Big Data techniques are deployed in medication adherence measurements for chronic diseases. ### Method We followed the PRISMA Extension for Scoping Reviews (PRISMA-ScR) [26]. We exploited a two steps process to cover all the aspects of our research objectives. See Fig. 1. First step: Perform a Scoping Review adopting the Arksey and O'Malley framework [27]. *Second step*: A bibliometric analysis from the retrieved scoping review results, to analyze the knowledge domains, and possible future research trends. A scoping review is a relatively new research methodology, particularly effective for summarizing and covering broad research topics, comprising a high number of previous studies, publications, methods, theories, or evidence [28]. Most importantly, a scoping review can pinpoint research gaps without losing research robustness and rigorous quality assessments [29]. Arksey and O'Malley [28] outlined the fundamental five steps for a scoping review: (1) identify the research question and operationalize the definitions, (2) identify relevant studies through electronic databases and reference lists, (3) establish inclusion—exclusion criteria for the selection of studies, (4) chart the data through a narrative review,11 and (5) analyze, summarize, and report the results. To give a more comprehensive and complete overview of the extent and complexity of the topic of medication adherence, we decided to add, as a second step in our research study, a bibliometric mapping analysis [30, 31] using two software programs: VOSviewer [32] and the
bibliometrix package [33] in R statistical software. We used a bibliometric analysis to measure and visualize the influence of the scoping review results in the scientific community and VOSviewer explore *keyword trends* and the related concepts, as well as *collaboration network maps*. ### Step 1: scoping review 11The aims of this scoping review goals are to: (i) draw up a framework of the types of measurements, study design and methods that were used for medication adherence; (ii) determine whether, and if so which, Big Data techniques lend themselves to improving the decision-making procedures regarding patients' adherence; (iii) explore the research opportunities and strategies aimed at tackling medication adherence using a data-driven perspective. ### Stage 1.1) development of the research questions Rq1: What kinds of methods, measurements and approaches are applied to assess medication adherence in chronic diseases? Rq2: Considering the Big Data techniques used in healthcare [25], are there any data mining methods or techniques used in medication adherence measurement? Rq3: Are any new data-driven technologies or methods applied in relation to medication adherence? # Stage 1.2) framework stage: identification of electronic databases and relevant studies This study uses articles retrieved from the Scopus electronic database [34], which offers a wider range of journals compared with PubMed and Web of Science [35], and its citation analysis is faster and includes more information [36]. This citation property is a crucial component for our research investigation that influenced many of our decisions regarding data sources. At this stage, we defined the eligibility criteria (inclusion and exclusion) and defined the searching strategy and keywords used to retrieve the articles. See Table 1. ### Table 1 Inclusion and exclusion criteria ### Inclusion Criteria - Articles published in English - Selected period 01/01/2014-31/12/2018 - Research focused on chronic diseases - Studies published in peer-review journals - Type of studies: original articles, reviews, systematic reviews, metaanalyses, scoping reviews, narrative reviews - Research primarily focused on medication adherence management that aimed to analyze and investigate the relationship between factors/ determinants and tools to improve measures or knowledge. ### Exclusion Criteria - Research in which the methods applied and medication adherence measurement are NOT clearly defined - Research that does NOT take into consideration adherence factors or determinants - Articles without access to the full text - Articles that do NOT include relevant information specifically designed to increase or better understand medication adherence - Research/Articles NOT considering the minimum reporting criteria of EMERGE [37] reporting guidelines - Non adult population included (under 18+ years of age) - Double citations. Pirri et al. BMC Health Services Research (2020) 20:688 Page 4 of 23 All the retrieved articles were exported into *Mendeley*, the software used to organize, select and check the articles. ### Stage 1.3) screening and selection of publications We iteratively developed an extensive list of primary and secondary key terms, connected in a Boolean logic and filtering method in order to cover as many research articles as possible linked to the scope of the study. The primary search terms focused on the most common terms in the literature on medication and drug regimes, reflecting the core concept of medication adherence (adherence, compliance and concordance). The secondary type of key terms included a broader set of keywords related to factors, variables, datasets and methodologies applied to obtain specific results on those elements in the literature. A final set of keywords was related to the chronic conditions. The filtering methods included the date range (within the last 5 years), and articles written only in English. See Table 2 for details. ### **Results** The initial search results from the Scopus database yielded 533 articles. After an initial screening of the titles and abstracts, 285 articles were excluded either because they did not comply with the inclusion criteria and/or because they did not fit in with our study goals. A full-text screening was then conducted on 248 articles and 187 studies were excluded for reasons following the exclusion/inclusion criteria. A total number of 61 articles met all the criteria identified. Using Mendeley, two reviewers first screened the titles and abstracts for eligibility before reading the full texts. In the second part, the reviewers thoroughly examined the full text of all the potentially eligible articles to confirm whether or not they should be included. Disagreement was addressed by consensus after discussion, and a third reviewer was consulted if no consensus was reached. We used the PRISMA flow diagram for the selection flow [38], see Fig. 2. ### Stage 1.4) data charting In this section and in the following one, according to Arkesy and O'Malley's Scoping review framework, we present a synthesis and the composition of the 61 articles selected. Although there was a degree of heterogeneity in the literature retrieved, most of the characteristics selected in the inclusion and exclusion criteria enable the results to be categorized in a detailed and homogenous manner. The following Table 3 categorizes the articles based on *authors and title*, *year* of publication, *country* (selected by the first author's location), main *objective* of the study, *key findings* identified, *methods*, *study duration*, and *population* considered. # Stage 1.5) analyzing data, summarizing and reporting the results Table 3 reports the key characteristics of the selected articles including important aspects of the study design, and the types of measurements and methods applied and carried out in the articles. This provides a picture of the methods and approaches applied in published papers in order to understand and measure medication adherence in real settings. Table 4 reports the study design applied, the types of methods used to analyze the variables, the types of measurements used to assess medication adherence, and the list of the major chronic diseases in which they are deployed. As reported by *Grimes and Schults* [39], a description of clinical study designs can be used to categorize the types of evidence produced. Randomized controlled trials (RCTs) are the most appropriate in determining the causal effects and in reducing the likelihood of potential confounding results. If rules for RCTs are rigorously applied, the uniform diagnostic criteria for outcomes provide strong statistical ### Table 2 Search query protocol and flow - #1 ("medication adherence" OR "patient compliance" OR "patient persistence") - #2 ("factor*" OR "factors" OR "variabl*" OR "variables" OR "predictors" OR "predictors" OR "determinant*" OR "database*" OR "databaset*" OR "method*") - #3 ("chronic disease" OR "long term condition*") - #4 #1 AND #2 AND #3 - #5 (LIMIT-TO (DOCTYPE, "ar ") OR LIMIT-TO (DOCTYPE, "re ")) - #6 (LIMIT-TO (PUBYEAR, 2019) OR (LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2014)) - #7 LIMIT-TO (LANGUAGE, "English ") - #8 #5 AND #6 AND #7 - #9 #4 AND #8 and procedural efficacy, making RCTs highly suitable for an evidence-based approach. RCTs also have weaknesses too, such as organizational complexity, patient recruitment issues, high costs, infrequent external validation, and selection bias [40]. RCTs often do not comprise enough breadth and deep insights commensurate to the complexity of the diseases or to the degree of personalization of treatment needed. Big Data analytics can fill these knowledge gaps between controlled clinical trials results and clinical practice needs, by collecting data from different sources, and by adopting machine learning techniques able to augment data monitoring and real-world data collection. Big data can provide new insights into disease patterns and help to improve the safety and effectiveness of RCT design [41]. Tapping into these rich resources of real-world data issued through daily clinical practice or collected on a regular basis by hospitals, public bodies or through smart devices, mobile applications, should boost both the output and relevance of controlled clinical research results [42]. However, there are barriers due to regulatory, ethical, and data aspects, as well as the costs of setting up the routine data collection infrastructure [43]. For instance, data management and data linkage might be quite complex to organize and maintain, requiring significant planning and software development. Data accuracy and noisy data are the most challenging tasks to deal with. Regulatory and ethical aspects pose a major obstacle to the safe exchange and sharing of health records if not well prepared and organized. There are no definitive practical solutions to preserve privacy and to meet the current demand for intensive data-drive solutions. Data discrimination and data breaches are the key factors to avoid when developing a valuable strategy for Big Data **Table 3** Scoping review results categorized by Arksey and O'Malley's framework | Authors and Title | Year | Country | Objectives | Key Findings | Methods | Study
duration | Population | |---|------|-----------------|--
---|--|------------------------------|-----------------| | A. H. A. Al-Ganmi, L. Perry,
L. Gholizadeh, and A. M.
Alotaibi: 'Behaviour change
interventions to improve
medication adherence in
patients with cardiac dis-
ease: Protocol for a mixed
methods study including a
pilot randomised con-
trolled trial'. | 2018 | Australia | The study examine the role of individual, behavioural and environmental factors in predicting medication non-adherence in patients with CVD. | Multi-faceted medication adherence interventions com-prising motivational interviews and text reminders may improve adherence to cardiac medication regimens by targeting individual behaviour change. | Multivariate
Logistic
Regression | 12 months | Adults > 18+ | | Alsowaida, N., M.
Alrasheed, A. Mayet, A.
Alsuwaida, M. A. Omair:
'Medication Adherence,
Depression and Disease
Activity among Patients
with Systemic Lupus
Erythematosus'. | 2018 | Saudi
Arabia | Assess the prevalence of both medication non-adherence and depressed mood among Saudi patients with SLE. Validated tools and to explore the impact of both depressive symptoms and disease activity on medication non-adherence. | Medication non-adherence
and depressive symptoms
are highly correlated preva-
lent among Saudi SLE pa-
tients. Routine screening
could facilitate the early
detection and manage-
ment of depression and
medication adherence. | Logistic
regression | 6 months | Adults > 18+ | | C. Arbuckle et al.,
'Evaluating Factors
Impacting Medication
Adherence Among Rural,
Urban, and Suburban
Populations'. | 2018 | USA | To evaluate differences in prescription medication adherence rates, as well as influencing factors, in rural and urban adults. | The analyses suggest that there is no significant difference in adherence between rural and urban populations; however, the factors contributing to medication adherence may vary based on age and population density. | Multilinear
Regression
Analysis | NA | Adults > 18+ | | C. K. Chow et al., TEXT messages to improve MEDication adherence and Secondary prevention (TEXTMEDS) after acute coronary syndrome: A randomised clinical trial protocol'. | 2018 | Australia | The study aims to investigate whether a cardiac education and support programme sent via mobile phone text message improves medication adherence and risk factor in patients following an acute coronary syndrome | The prevention programme delivered via text messages has the advantages of low cost and being easily automated. These elements can allow these programmes to reach large numbers of people, including those in resource-poor settings and in geographically isolated communities. | Pearson's chi-
squared test
(x2) | 6 months
and 12
months | Adults > 18+ | | D. Chandrasekhar et al.,
'Impact of intensified
pharmaceutical
interventions in medication
adherence in chronic
kidney disease patients'. | 2018 | India | The study aims to evaluate
the medication adherence
behavior of individuals
using various cost effective
interventional methods. | The result suggests that the periodic counselling by clinical pharmacist at regular intervals can improve the medication adherence by improving awareness and removing the misconceptions about the disease and therapy. | ANOVA and
linear
regression | 12 months | Adults > 18+ | | G. Martin, N. Patel, Y. Grant, M. Jenkins, R. Gibbs, and C. Bicknell. 'Antihypertensive medication adherence in chronic type B aortic dissection is an important consideration in the management debate'. | 2018 | UK | The aims of this study were therefore to identify the rate of antihypertensive medication adherence and predictors of adherence in chronic type B aortic dissection (TBAD). | Medical management
remains the mainstay of
treatment in
uncomplicated TBAD;
however, the majority of
patients are poorly
adherent to their
antihypertensive
medications. | Linear
regression | NA | Adults > 18+ | | H. Durand et al.,
'Medication adherence for
resistant hypertension: | 2018 | Ireland | This study examined theoretical predictors of medication adherence | Associations among unique adherence measures were weak | Hierarchical
linear
regression | NA | Adults >
18+ | Table 3 Scoping review results categorized by Arksey and O'Malley's framework (Continued) | Authors and Title | Year | Country | Objectives | Key Findings | Methods | Study
duration | Population | |--|------|---------|---|---|--|-------------------|-----------------| | Assessing theoretical predictors of adherence using direct and indirect adherence measures'. | | | (treatment-related beliefs,
coherence of beliefs from
experience with
medication, habit strength,
and pill burden) for
patients with hypertension | overall, providing further
evidence that multiple
measures are necessary to
accurately assess
adherence. Habit strength
is a key predictor of
adherence for chronic
conditions | | | | | H. Kumamaru et al., 'Using previous medication adherence to predict future adherence'. | 2018 | USA | To evaluate multiple measures of patient previous medication adherence in light of predicting future statin adherence in a large U.S. administrative claims database. | The study found that previous adherence as a predictor of future adherence was best measured using the PDC. Adding multiple previous adherence measures to the prediction model did not lead to substantive improvement. | C-statistics;
concordance
statistics | 12 months | Adults > 18+ | | H. Y. Park, S. A. Seo, H. Yoo,
and K. Lee. 'Medication
adherence and beliefs
about medication in
elderly patients living alone
with chronic diseases'. | 2018 | Korea | The aim of this study was to assess medication adherence and its related factors among elderly people living alone with chronic diseases using a conceptual framework | To improve medication
adherence of elderly living
alone, it is essential to
identify barriers to
adherence, including their
concerns and attitudes
toward medications | Multivariable
analysis | NA | Adults > 65+ | | M. Greene, T. Yan, E. Chang, A. Hartry, M. Touya, and M. S. Broder. 'Medication adherence and discontinuation of long acting injectable versus oral antipsychotics in patients with schizophrenia or bipolar disorder'. | 2018 | USA | To examine medication
adherence and
discontinuation in two
separate groups of patients
with schizophrenia or
bipolar disorder | patients with schizophrenia
or BD who began
receiving long-acting in-
jectable (LAI) antipsychotic
had better medication ad-
herence and lower discon-
tinuation risk | Linear and Cox
regression
models | 12 months | Adults >
18+ | | Monroe, A. K., J. S. Pena, R. D. Moore, K. A. Riekert, M. N. Eakin, S. Kripalani, and others: 'Randomized Controlled Trial of a Pictorial Aid Intervention for Medication Adherence among HIV-Positive Patients with Comorbid Diabetes or Hypertension'. | 2018 | USA | A pictorial aid intervention
to improve medication
adherence for both HIV
and common chronic
conditions. | Patients with HIV are often medically complex and may have multiple barriers to adherence. Medication adherence is a multifaceted process and adherence promotion interventions require an approach that targets patient-specific barriers. | Logistic
regression | 6 months | Adults > 18+ | | O. O. Shiyanbola, E. Unni,
YM. Huang, and C. Lanier.
The association of health
literacy with illness
perceptions, medication
beliefs, and medication
adherence among
individuals with type 2
diabetes'. | 2018 | USA | The study examined the association between health literacy, beliefs in medicines, illness perceptions, and medication adherence in individuals with type 2 diabetes | Health literacy, especially
numeracy, needs to be
initially addressed before
diabetes adherence
interventions that address
individual concerns about
medicines and threatening
illness perceptions can
work. | ANOVA
correlation | NA | Adults > 20+ | | S. Brandstetter, G. Riedelbeck, M. Steinmann, J. Loss, B. Ehrenstein, and C. Apfelbacher. 'Depression moderates the associations between beliefs about medicines and medication adherence in patients with rheumatoid arthritis: Crosssectional study'. | 2018 | Germany | This study investigate the associations between beliefs about medicines and medication adherence among people with rheumatoid arthritis. | People experiencing more depressive symptoms showed stronger associations between necessity beliefs and adherence as well as attenuated associations between concerns and adherence. | Logistic
regression
analysis | NA | Adults > 18+ | Table 3 Scoping review results categorized by Arksey and O'Malley's framework (Continued) | Authors and Title | Year |
Country | Objectives | Key Findings | Methods | Study
duration | Population | |---|------|-----------|---|--|---|------------------------------|-----------------| | S. Surbhi, I. Graetz, J. Y. Wan, J. Gatwood, and J. E. Bailey. The effect of opioid use and mental illness on chronic disease medication adherence in superutilizers'. | 2018 | USA | To examine the factors associated with nonadherence to essential chronic medications, with special emphasis on mental illness and use of opioid medications. | This study demonstrated that high levels of opioid medication use are significantly associated with essential chronic disease medication nonadherence among superutilizers. Other risk factors nonadherence were aged < 65 years, lowincome status, and a higher number of unique prescribers. | Multivariable
associations
analysis | 6 months | Adults > 18+ | | V. Menon, N. Selvakumar, S. Kattimani, and C. Andrade. Therapeutic effects of mobile-based text message reminders for medication adherence in bipolar I disorder: Are they maintained after intervention cessation?'. | 2018 | India | Determine whether text
SMS reminders improve
medication adherence in
patients
with bipolar I disorder
even after discontinuation
of the intervention | The SMS intervention improved medication adherence and attitudes towards medication at the end of the treatment phase. These benefits were maintained for medication adherence but not for attitudes towards medication at the end of the follow-up phase. | (RMANOVAs)
Repeated
Measures
Analysis of
Variance | 6 months | Adults >
18+ | | W. Fischer et al., 'Specific, but not general beliefs about medicines are associated with medication adherence in patients with COPD, but not asthma: Cohort study in a population of people with chronic pulmonary disease'. | 2018 | Germany | This prospective study investigated the association between beliefs about medicines and medication adherence in patients with asthma and COPD. | Beliefs about medicines are important factors predicting future medication adherence in patients with COPD, but not asthma. | Logistic
regression | 3 months
and 12
months | Adults > 18+ | | X. C. Tham, H. Xie, C. M. L. Chng, X. Y. Seah, V. Lopez, and P. Klainin-Yobas. 'Exploring predictors of medication adherence among inpatients with schizophrenia in Singapore's mental health settings: A nonexperimental study'. | 2018 | Singapore | The aim of this study was
to explore the predictors of
medication adherence
among inpatients with
schizophrenia hospitalised
at tertiary hospitals in
Singapore | this study revealed that
there were six factors
(insight, religion, side
effects, types of
antipsychotics, social
support from
significant others, and
nurse-client relationship)
which are significant
predictive factors of
medication adherence | Multivariate
Logistic
regression | NA | Adults > 18+ | | X. H. J. Chua, S. Lim, F. P.
Lim, Y. N. A. Lim, HG. He,
and G. G. Teng. 'Factors
influencing medication
adherence in patients with
gout: A descriptive
correlational study'. | 2018 | Singapore | To examine the factors influencing adherence to urate-lowering therapy in patients with gout in Singapore | Significant differences in medication adherence scores were found among the subgroups of gender, ethnicity, marital status, employment status and presence of comorbidity. | Multiple linear
regression | NA | Adults >
18+ | | Y. Zhang et al., 'Factors affecting medication adherence in community-managed patients with hypertension based on the principal component analysis: Evidence from Xinjiang, China'. | 2018 | China | The purpose of this study was to assess the relationship between factors and medication adherence in Xinjiang community-managed patients with hypertension based on the principal component analysis. | Regular medication regimen instruction and better community management services through community-level have the potential to reduce nonadherence. | Binary logistic
regression | 3 months | Adults > 35+ | | YM. Huang, O. O.
Shiyanbola, and HY. Chan.
'A path model linking | 2018 | USA | The study propose a path
model that illustrates the
interrelated relationship | Medication self-efficacy
mediated but did not
moderate the relationship | Bivariate
correlations
using | NA | Adults > 20+ | Table 3 Scoping review results categorized by Arksey and O'Malley's framework (Continued) | Authors and Title | Year | Country | Objectives | Key Findings | Methods | Study
duration | Population | |--|------|----------------|--|--|---|-------------------|----------------------------| | health literacy, medication
self-efficacy, medication ad-
herence, and glycemic
control'. | | | between health literacy,
medication self-efficacy,
medication adherence, and
hemoglobin A1c (HbA1c). | between numeracy and diabetes medication adherence. | Spearman's rho | | | | Z. K. Lum, K. Y. K. Tsou, and
J. Y. C. Lee. 'Mediators of
medication adherence and
glycaemic control and their
implications for direct
outpatient medical costs: a
cross-sectional study'. | 2018 | Singapore | To investigate the effects of diabetes-related distress and perception of hyperglycaemia on self-reported medication adherence and glycaemic control | Mediation analyses showed a significant indirect effect of diabetes-related distress and perception of hyperglycaemia on medication adherence and HbA1c concentration. People with uncontrolled diabetes were found to incur significantly higher total direct medical costs than those with suboptimally controlled diabetes. | Linear
regression | NA | Adults > 21+ | | Elsous, A, M Radwan, H Al-
Sharif, and A A Mustafa,
'Medications Adherence
and Associated Factors
among Patients with Type
2 Diabetes Mellitus in the
Gaza Strip, Palestine'. | 2017 | Iran | Evaluate the adherence to
anti-diabetic medications
among patients with type
2 diabetes mellitus (DM)
seeking medical care in the
Gaza Strip, Palestine | Complete adherence to anti-diabetic medications was sub-optimal. New strategies that aim to improve patients' adherence to their therapies are necessary taking into consideration the influencing factors and the importance of having diabetes educators in the primary care centers. | multiple linear
regression | 6 months | Adults >
18+ | | Erku, Daniel A., Asnakew A. Ayele, Abebe B. Mekuria, Sewunet A. Belachew, Bisrat Hailemeskel, Henok G. Tegegn: The Impact of Pharmacist-Led Medication Therapy Management on Medication Adherence in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Study'. | 2017 | Ethiopia | Evaluate whether a pharmacist-led medication therapy management could enhance medication adherence in patients with type 2 diabetes. | Pharmacist-led medication therapy management might improve medication adherence and reduce number of hospitalizations in patients with type 2 diabetes. | ANOVA
(Analysis of
Variance) | 6 months | Adults > 18+ | | Goldstein, Carly M., Emily C. Gathright, John Gunstad, Mary A. Dolansky, Joseph D. Redle, Richard Josephson, and others: 'Depressive Symptoms Moderate the Relationship between Medication Regimen Complexity and Objectively Measured Medication Adherence in Adults with Heart Failure'. | 2017 | USA | Assess depressive
symptoms as a moderator
of regimen complexity in
observational study of
patients with HF. | Medication regimen
complexity in depressive
symptoms predicting
medication adherence in
patients with HF. | Hierarchical
multiple linear
regression | 3 to 6
months | Adults > 18+ | | Han, Euna, Hyun Soon
Sohn, Ju-Yeun Lee, and
Sunme Jang, 'Health Be-
haviors and Medication Ad-
herence in Elderly Patients'. | 2017 | South
Korea | Explore the relationships of selected health behaviors to medication adherence | Health promotion
programs for self-care
health behaviors of elderly
patientsshould emphasize
good medication adher-
ence to achieve successful
self-management of
diseases. | Multivariate
logistic
regression | 6 months | Elderly
adults >
65+ | | Hayward, K L, P C Valery, J
H Martin, A Karmakar, P J
Patel, L U Horsfall, and
others: 'Medication Beliefs | 2017 | Australia | Investigate the
impact of
medication beliefs, illness
perceptions and quality of
life on medication | Patients having strong
concerns or doubting the
necessity or helpfulness of
their medications should | ANOVA
(Analysis of
Variance) | NA | Adults >
18+ | **Table 3** Scoping review results categorized by Arksey and O'Malley's framework (Continued) | Authors and Title | Year | Country | Objectives | Key Findings | Methods | Study
duration | Population | |--|------|----------------|--|--|--|-------------------|----------------------------| | Predict Medication
Adherence in Ambulatory
Patients with
Decompensated Cirrhosis'. | | | adherence in people with cirrhosis | be explored further given
the clinical relevance. | | | | | Jung, Sun Hoi, Ok Sang
Lee, Hyang Sook Kim, Chan
Soon Park, Hyun Jung Lee,
Kyeng Hee Kwon, and
others, 'Medication
Adherence Improvement
By Using Administration
Timing Simplification
Protocol (ATSP) in
Cardiovascular Disease
Patients'. | 2017 | South
Korea | Evaluate the impact of
administration timing
simplification protocol
(ATSP) on medication
adherence and clinical
parameters of
cardiovascular diseases | Administration Timing
Simplification Protocol
(ATSP) was shown to be an
effective strategy to
improve medication
adherence in chronic
cardiovascular disease
patients | statistical
significance | 3 months | Adults >
18+ | | Keshishian, Allison, Natalie
Boytsov, Russel Burge, Kelly
Krohn, Louise Lombard,
Xiang Zhang, and others,
'Examining the Effect of
Medication Adherence on
Risk of Subsequent
Fracture Among Women
with a Fragility Fracture in
the U.S. Medicare
Population'. | 2017 | USA | The association of osteoporosis medication adherenceand the risk of a subsequent fracture among Medicare-enrolledwomen with a previous fragility fracture. | Enrolled women with low
and moderateadherence to
osteoporosis medications
had a higher risk of a
subsequentfracture
compared with high
adherence patients. | Cox
proportional
hazards models | NA | Adults >
18+ | | Kim, Jung-Ae, Eun-Sook
Kim, and Eui-Kyung Lee:
'Evaluation of the Chronic
Disease Management Pro-
gram for Appropriateness
of Medication Adherence
and Persistence in Hyper-
tension and Type-2 Dia-
betes Patients in Korea'. | 2017 | South
Korea | Evaluate the effect of CDMP on the appropriateness of medication adherence and persistence in hypertension or type-2 diabetes patients. | Patients visiting the same, single clinic showed a significant increase in appropriate-adherence. | Kaplan–Meier
survival analysis | 12 months | Adults > 20+ | | Lau, Ying, Tha Pyai Htun,
Kin Sun Chan, and Piyanee
Klainin-Yobas: 'Multidimen-
sional Factors Affecting
Medication Adherence
among Community-
Dwelling Older Adults: A
Structural-Equation-
Modeling Approach'. | 2017 | Singapore | Hypothetical model based
on the World Health
Organization's five-
dimensional model of
medication adherence
strategy | Finding partially confirmed
the conceptual basis of the
five-dimensional factors af-
fecting medication
adherence. | Structural-
equation
model (SEM) | NA | Elderly
adults >
65+ | | Lin, CY., M Yaseri, A H Pakpour, D Malm, A Broström, B Fridlund, and others: 'Can a Multifaceted Intervention Including Motivational Interviewing Improve Medication Adherence, Quality of Life, and Mortality Rates in Older Patients Undergoing Coronary Artery Bypass Surgery? A Multicenter, Randomized Controlled Trial with 18-Month Fo' | 2017 | Hong Kong | Evaluate the longterm effects of a multifaceted intervention (psychoeducation, motivational interviewing, and short message services). | Multifaceted intervention can improve medication adherence in older patients | Multilevel
mixed
hierarchical
models and
multiple linear
regression | 18 months | Adults >
18+ | | Michetti, Pierre, John
Weinman, Ulrich Mrowietz,
Josef Smolen, Laurent
Peyrin-Biroulet, Edouard
Louis, and others, 'Impact
of Treatment-Related | 2017 | Switzerland | Determine beliefs about
systemic medications in
patients with immune-
mediated inflammatory dis-
eases (IMIDs) and to ex-
plore the association of | Treatment necessity beliefs were higher than concerns about current medication in patients with IMID. Illness perceptions had a greater impact on | Multivariate
logistic
regression | 11 months | Adults > 18+ | **Table 3** Scoping review results categorized by Arksev and O'Mallev's framework (Continued) | Table 3 Scoping review | able 3 Scoping review results categorized by Arksey and O'Malley's framework (Continued) | | | | | | | | | | |---|--|-----------------|--|--|--|------------------------|----------------------------|--|--|--| | Authors and Title | Year | Country | Objectives | Key Findings | Methods | Study
duration | Population | | | | | Beliefs on Medication Adherence in Immune-
Mediated Inflammatory
Diseases: Results of the
Global ALIGN Study'. | | | those beliefs and other fac-
tors with adherence. | treatment necessity beliefs
than clinical parameters. | | | | | | | | Raebel, M A, W Dyer, G A
Nichols, G K Goodrich, and
J A Schmittdiel,
'Relationships between
Medication Adherence and
Cardiovascular Disease Risk
Factor Control in Elderly
Patients with Diabetes'. | 2017 | USA | Determine correlates of
adherence and examine
the effect of meeting Star
adherence targetson blood
pressure and LDL-C in the
Medicare-aged diabetes
population. | Adherence to ACEI/ARB is
not linked with reduced
blood pressure in patients
with diabetes who are at
least 85 years or with
multiple comorbidities. | Poisson
regression | NA | Elderly
adults >
65+ | | | | | Tang, K L, H Quan, and D
M Rabi, 'Measuring
Medication Adherence in
Patients with Incident
Hypertension: A
Retrospective Cohort
Study'. | 2017 | Canada | Compare adherence rates and associations with mortality using different operational definitions of adherence, and using various methods of handling concurrent medication use. | The range of adherence estimates varies widely depending on the operational definition used. Givenless variation in adherence rates and their stronger association against mortality | Multiple logistic
regression
models and
Cox
proportional
hazards
regressions | 12 months | Elderly
adults >
65+ | | | | | Wang, W, G S Chia, I F Tan,
S N J Tye, X Wang, B Zhu,
and others, 'Independent
Predictors of Medication
Adherence among
Singaporean Patients
Following an Ischaemic
Stroke or Transient
Ischaemic Attack'. | 2017 | Singapore | Investigate the independent predictors of medication adherence amongSingaporean patients following an ischaemic stroke or transient ischaemic attack | Nurses play an important role in promoting patients' medication adherence. Helping stroke patients understand the long-term benefits of their medications is essential to enhance patients' medication adherence | multiple linear
regression | NA | Adults > 18+ | | | | | Alkatheri, Abdulmalik M.,
Abdulkareem M. Albekairy,
Anan Jarab, Rami Bustami,
Nabil Khalidi, Abdulraham
Alshaya, and others,
'Medication Adherence
and Treatment Satisfaction
among Renal Transplant
Recipients'. | 2016 | Saudi
Arabia | Investigate factors that can
predict medication
adherence and to explore
the relationship between
treatment satisfaction and
medication adherence in
renal transplant recipients | Males and RTRs who
reported higher treatment
satisfaction (convenience
and side effects domains)
showed better medication
adherence | Multivariate
logistic
regression
modelling | 12 months | Adults > 18+ | | | | | Boland, M R S, J F M Van
Boven, A L Kruis, N H
Chavannes, T Van Der
Molen, L M A Goossens,
and others, 'Investigating
the Association between
Medication Adherence and
Health-Related Quality of
Life in COPD: Methodo-
logical Challenges When
Using a Proxy Measure of
Adherence'. | 2016 |
Netherlands | Investigate the association
between medication
adherence and HRQoL,
thereby
illustratingmethodological
challenges | Positive association of
adherence and HRQoL was
not found, even after
adjusting for lifestyle,
disease severity, and
previous HRQoL. | linear mixed
model and
Sensitivity
analysis | 12 and 24
months | Adults > 18+ | | | | | Garza, Kimberly B., Justin K.
Owensby, Kimberly Braxton
Lloyd, Elizabeth A. Wood,
and Richard A. Hansen,
'Pilot Study to Test the
Effectiveness of Different
Financial Incentives to
Improve Medication
Adherence'. | 2016 | USA | Measure the relative effectiveness of 2 behavioral economic-based incentive structures to improve medication adherence. | No statistically significant
differences in adherence
were demonstrated in this
small sample of highly
adherent participants,
larger studies in a more
diverse population or with
other medications might
show otherwise | ANOVA, and
Pearson's
correlations | 3 months | Adults > 18+ | | | | | Polsook, Rapin, Yupin
Aungsuroch, and
Sureeporn Thanasilp, | 2016 | Thailand | The use of multi-stage cluster sampling method involved 348 patients from 9 | Findings suggest that
nurses should understand
that depression, barrier, | LISREL (linear
structural
relations) | December
2011
to | Adults > 20+ | | | | **Table 3** Scoping review results categorized by Arksev and O'Mallev's framework (Continued) | | able 3 Scoping review results categorized by Arksey and O'Malley's framework (Continued) | | | | | | | | | |---|--|-----------|---|---|---|-------------------|--------------|--|--| | Authors and Title | Year | Country | Objectives | Key Findings | Methods | Study
duration | Population | | | | 'Medication Adherence
among Persons with Post-
Acute Myocardial
Infarction'. | | | regional hospitals in
Thailand | and self-efficacy are im-
portant factors to be con-
siderate to improve
medication adherence and
improve the quality of life | package used
in structural
equation
modeling
(SEM) | February
2013. | | | | | Tan, C. S.L., G. G. Teng, K. J. Chong, P. P. Cheung, A. Y.N. Lim, H. L. Wee, and others, 'Utility of the Morisky Medication Adherence Scale in Gout: A Prospective Study'. | 2016 | Singapore | evaluate the utility of the
8-item Morisky Medication
Adherence Scale (MMAS-8)
in monitoring medication
adherence in a multiethnic
Asian gout cohort | MMAS-8 had limited
construct validity in
assessing medication
adherence to ULT in our
gout patients | Cronbach's
alpha and
intraclass
correlation
coefficient (ICC) | 6 months | Adults > 21+ | | | | Beadles, Christopher A.,
Joel F. Farley, Alan R. Ellis,
Jesse C. Lichstein, Joseph P.
Morrissey, C. Annette
Dubard, and others, 'Do
Medical Homes Increase
Medication Adherence for
Persons with Multiple
Chronic Conditions?'. | 2015 | USA | Examine the association
between medical home
enrolment and adherence
to newly initiated
medications among
Medicaid enrollees with
MCC | Among Medicaid enrolees
with MCC, adherence to
new medications is greater
for those enrolled in
medical homes | Fixed effects
regression
model and
Sensitivity
analysis | 36 months | Adults > 18+ | | | | Freitas, T H, T N Hyphantis,
E Andreoulakis, J Quevedo,
H L Miranda, G S Alves,
and others, 'Religious
Coping and Its Influence
on Psychological Distress,
Medication Adherence,
and Quality of Life in
Inflammatory Bowel
Disease'. | 2015 | Brazil | Religious coping plays a role in the adaptation to several chronic diseases. However, the influence of religious coping on IBD-related psychological distress, HRQoL, and treatment adherence remains unknown. | Religious coping is
significantly associated
with psychological distress,
HRQoL, andadherence in
IBD. | Hierarchical
multiple
regression
models | NA | Adults > 18+ | | | | Kalichman, S C, J Pellowski,
C Kegler, C Cherry, and M
O Kalichman, 'Medication
Adherence in People
Dually Treated for HIV
Infection and Mental
Health Conditions: Test of
the Medications Beliefs
Framework'. | 2015 | USA | Unannounced phone-
based pill counts to moni-
tor adherence to psychi-
atric and antiretroviral
medications over a 6-week
period | Necessity concerns
medication beliefs
framework has utility in
understanding adherence
to multiple medications | Hierarchical
linear
regression
analyses | 12 months | Adults > 18+ | | | | Kang, C D, P P M Tsang, W
T L Li, H H X Wang, K Q L
Liu, S M Griffiths, and
others, 'Determinants of
Medication Adherence and
Blood Pressure Control
among Hypertensive
Patients in Hong Kong: A
Cross-Sectional Study'. | 2015 | China | Evaluate the determinants of medication adherence and BP control among hypertensive patients in Hong Kong. | Adherence-enhancing interventions should be targeted on younger subjects; employed patients; and those with poor self-perceived health status. Patients who are single and those with comorbiditiesshould be closely monitored for their BP control | Binary logistic
regression | 6 months | Adults > 18+ | | | | Musich, Shirley, Sara Wang,
and Kevin Hawkins, The
Impact of a Value-Based In-
surance Design Plus Health
Coaching on Medication
Adherence and Medical
Spending'. | 2015 | USA | Evaluate medication adherence, medical services utilization, and combined medical and pharmacy expenditures associated with diabetes and hypertension value-based insurance design VBID) plus health/disease coaching programs implemented by a large employer. | VBID program significantlyreduced pharmacy co-payments for participants and significantlyincreased medication adherence for both participants with diabetes and hypertension while nonparticipants had asignificant medication adherence drop-off. | Propensity
score
weighting and
Regression
model | 2-year | Adults > 18+ | | | **Table 3** Scoping review results categorized by Arksey and O'Malley's framework (Continued) | Authors and Title | Year | Country | Objectives | Key Findings | Methods | Study
duration | Population | |--|------|----------------|--|---|--|-------------------|-------------------| | Na, Euihyeon, Seon Jin Yim,
Joon Noh Lee, Jung Min
Kim, Kyungki Hong, Moon
Hwa Hong, and others,
'Relationships among
Medication Adherence,
Insight, and
Neurocognition in Chronic
Schizophrenia'. | 2015 | South
Korea | Identify the association
between medication non-
adherenceand possible risk
factors in a large sample of
patientswith chronic
schizophrenia. | Identify the relationship
between medication
adherence, insight, and
neurocognition in alarge
sample of patients with
chronic schizophrenia. | ANOVA and
Multiple
regression
models | 1 months | Adults > 55+ | | Park, Linda G., Jill Howie-
Esquivel, Mary A. Whooley,
and Kathleen Dracup, 'Psy-
chosocial Factors and
Medication Adherence
among Patients with Cor-
onary Heart Disease: A Text
Messaging Intervention'. | 2015 | USA | Compare medication self-
efficacy among patients
withcoronary heart disease
and identify the personal
(sociodemographic and
clinical characteristics) and
psychosocial factors that
were associated with. | TM medication reminders
and/or health education
did not improve
medication self-efficacy | ANOVA,
Multiple
regression
analysis | 11 months | Adults > 35+ | | Phillips, L. Alison, Michael
A. Diefenbach, Jessica
Abrams, and Carol R.
Horowitz, 'Stroke and TIA
Survivors' Cognitive Beliefs
and Affective Responses
Regarding Treatment and
Future Stroke Risk
Differentially Predict
Medication Adherence and
Categorised Stroke Risk'. | 2015 | USA | Assess the relative importance of four psychological domains – specifically, affective illness, cognitive illness, affective treatment and cognitive treatment for predicting stroke and transient ischemic attack (TIA) | Patients' cognitive illness
beliefs explained
the
greatest unique variance in
baseline and six-month ob-
jective categorised stroke
risk | Multiple
regression
model and
Pearson
bivariate
correlation | 6 months | Adults > 40+ | | Rust, Connie F., Cindy
Davis, and Matthew R.
Moore, 'Medication
Adherence Skills Training
for African-American Breast
Cancer Survivors: The Ef-
fects on Health Literacy,
Medication Adherence,
and Self-Efficacy'. | 2015 | USA | Provide information
addressing health literacy
with respect to medication
adherence and self-efficacy
in African American breast
cancer survivors | A statistically significant
relationship was detected
between initial health
literacy and medication
adherence, as well as initial
health literacy and self-
efficacy | Linear
regression
model | 4–6
months | Adults > 18+ | | Sandy, Robert, and Ulla
Connor, 'Variation in
Medication Adherence
across Patient Behavioral
Segments: A Multi-Country
Study in Hypertension'. | 2015 | USA | Adherence predictive power of the clusters relative to measures of patients' concerns over their medication's cost, side effects, and efficacy. | Predictive power of
segments was greater than
that for variables
measuring concerns over
cost, side effects, and
efficacy | Cluster
segmentation
model based
on linguistic
analysis | NA | Adults > 18+ | | Seabury, Seth A, Darius N
Lakdawalla, J Samantha
Dougherty, Jeff Sullivan,
and Dana P Goldman,
'Medication Adherence
and Measures of Health
Plan Quality.'. | 2015 | USA | Measure for performance-
based reimbursement con-
tractsin healthcare systems. | Plans with higher average
adherence had lower rates
of disease complications,
suggesting that medication
adherence measures are
potentially useful tools | multivariate
regression | NA | Adults > 18 to 65 | | Shallcross, A J, D A Becker,
A Singh, D Friedman, R
Jurd, J A French, and
others, 'Psychosocial
Factors Associated with
Medication Adherence in
Ethnically and
Socioeconomically Diverse
Patients with Epilepsy'. | 2015 | USA | Psychosocial correlates of medication adherence in a socioeconomically and racially diverse sample of patients with epilepsy. | This study suggest the importance of targeting social support in screening and intervention approaches in order to improve AED adherence among low-income, racially/ethnically diverse patients with epilepsy | Multiple
regression
model and
Pearson
bivariate
correlation | NA | Adults > 18+ | | Yue, Zhao, Chen Li, Qi
Weilin, and Wang Bin,
'Application of the Health
Belief Model to Improve | 2015 | China | Insight into
antihypertensive
medication adherence on
the basis of a well- | The HBM is reliable in predicting medication adherence among Chinese hypertensive patients. | Multivariate
logistic
regression | NA | Adults > 18+ | **Table 3** Scoping review results categorized by Arksey and O'Malley's framework (Continued) | Authors and Title | Year | Country | Objectives | Key Findings | Methods | Study
duration | Population | |---|------|----------------|--|---|--|-------------------|----------------------------| | the Understanding of
Antihypertensive
Medication Adherence
among Chinese Patients'. | | | developed behavior theory | | | | | | Abebe, S M, Y Berhane,
and A Worku, 'Barriers to
Diabetes Medication
Adherence in North West
Ethiopia'. | 2014 | Ethiopia | Assess the magnitude of
medication adherenceand
factors associated with it
among adult persons with
diabetes in northwest
Ethiopia | Half of the persons with
diabetes did not adhere to
medications. Adherence
was poor among users of
traditional treatment and
those dissatisfied with
services. | Logistic
regression | NA | Adults >
18+ | | Carpenter, Delesha M.,
Emily A. Elstad, Susan J.
Blalock, and Robert F.
Devellis, 'Conflicting
Medication Information:
Prevalence, Sources, and
Relationship to Medication
Adherence'. | 2014 | USA | Explore whether conflicting information is associated with sociodemographic factors, clinical characteristics, and medication adherence | The majority of patients (80.1%) received conflicting information and were most likely to receive conflicting information about medication risks. Physicians, media sources, and the Internet were the most common sources | | NA | Adults >
18+ | | Hong, JS., and HC. Kang,
'Relationship between
Continuity of Ambulatory
Care and Medication
Adherence in Adult
Patients with Type 2
Diabetes in Korea: A
Longitudinal Analysis'. | 2014 | South
Korea | The relationship between institution-level continuity of ambulatory care and medication adherence in adult patients with type 2 diabetes receiving a new hypoglycemic prescription | Ambulatory care was positively associated with medication adherence, which suggested that a high concentration of ambulatory care visits, whether it's a physician or an institution, could facilitate delivery of proper medical services to | Random
intercept
models using a
longitudinal
technique | NA | Adults > 20+ | | lyengar, Reethi N., Dhanur S. Balagere, Rochelle R. Henderson, Abbey L. LeFrancois, Rebecca M. Rabbitt, and Sharon Glave Frazee, 'Association Between Dispensing Channel and Medication Adherence Among Medicare Beneficiaries Taking Medications to Treat Diabetes, High Blood Pressure, or High Blood Cholesterol'. | 2014 | USA | Examine the association of pharmacy dispensing channel (home delivery or retail pharmacy) with medication adherence | Where medications are received may impact adherence, even when controlling for PAB. Use of the home delivery dispensing channel may be an effective method to improve adherence for Medicare beneficiaries. | Multiple logistic
regression | 12 months | Elderly
adults >
65+ | | Langley, Christopher A.,
and Joseph Bush, 'The
Aston Medication
Adherence Study: Mapping
the Adherence Patterns of
an Inner-City Population'. | 2014 | UK | Examine
nonadherencepatterns to
prescribed oral
medications within
threechronic disease states | The tool has been used to establish nonadherence levels within the three treatment groups and the demographic characteristics indicative of lower adherence levels, which in turn will enable the targeting of interventional support | Correlation | NA | Adults > 18+ | | Oliveira-Filho, Alfredo D.,
Donald E. Morisky,
Francisco A. Costa, Sara T.
Pacheco, Sabrina F. Neves,
and Divaldo P. Lyra-Jr, 'Im-
proving Post-Discharge
Medication Adherence in
Patients with CVD: A Pilot
Randomized Trial'. | 2014 | Brazil | assess the impact of a low-
cost intervention designed
to improve medication ad-
herence and clinicalout-
comes in post-discharge
patients with CVD | Validated patient self-
report instrument for asses-
sing adherence is a poten-
tially effective method to
improve adherent behavior
and can be successfully
used as a tool to guide ad-
herence counselling in the
clinical visit. | ANOVA and
Cohen's d
effect | 12 months | Adults > 55+ | Pirri et al. BMC Health Services Research (2020) 20:688 Page 15 of 23 Table 3 Scoping review results categorized by Arksey and O'Malley's framework (Continued) | Authors and Title | Year | Country | Objectives | Key Findings | Methods | Study
duration | Population | |---|------|---------|--|---|--|-------------------|--------------| | Rajpura, Jigar, and Rajesh
Nayak, 'Medication
Adherence in a Sample of
Elderly Suffering from
Hypertension: Evaluating
the Influence of Illness
Perceptions, Treatment
Beliefs, and Illness Burden'. | 2014 | USA | Collective influence of illness perceptions, medicationsbeliefs, and illness burden on medication adherence of a sample of elderly people suffering from hypertension. | insights into how
perceptions of illnessand
burden relate to
medication adherence in
hypertension | Multiple linear
regression
analysis | NA | Adults > 55+ | | Xie, Lin, Feride Frech-
Tamas, Elizabeth Marrett,
and Onur Baser, 'A Medica-
tion Adherence and Per-
sistence Comparison of
Hypertensive Patients
Treated with Single-,
Double- and Triple-Pill
Combination Therapy'. |
2014 | USA | Single-, double-, and triple-
pilltreatment regimens
among hypertensive pa-
tients in a US clinical prac-
tice setting. | Pill burden was directly and significantly associated with decreased adherence and persistence with antihypertensive therapies in real-practice settings. Use of fixed-dose combinations that reduce pill burden could help patients to continue treatment and may result in improved clinical outcomes | Logistic
regression Cox
proportional
hazards models | 11 months | Adults > 18+ | analytics implementation in healthcare programs and services [44]. On the other hand, observational methods such as the commonly-used *cross-sectional studies* [45], require less organizational efforts than experimental approaches like RCTs, and provide information on the presence or absence of the exposure in a specific period and act like a time snapshot of the prevalence of an illness in the population under investigation. It is not the goal of this study to present a list of the best solutions to assess medication adherence in terms of quality or robustness of methods. However, taking into consideration the types of research design that emerged in our scoping review, there is an interesting balance in the study design types between experimental and observational studies. This is quite crucial in understanding adherence phenomenon, because even though RCTs are the gold standard for causal inference, medication adherence is still a patient's subjective choice and cannot be randomly assigned [46]. Therefore, also observational studies are key to exploring such complex phenomenon. Looking at the types of models used to analyze and evaluate the effect of the variables on medication adherence, the regression model clearly dominates in the versions of both *linear regression model* (26%), and *multivariate logistic regression* (26%). Choosing the most appropriate model to analyse medication adherence is a critical decision, full of uncertainty and with little consensus regarding a standard method to operationalize this measure [47]. Although our aim is not to judge the quality or the appropriateness of the models used to analyse medication adherence we found that the most used model was the *regression model* whose main purpose is to assess whether or not the independent variable influences the dependent variable [48]. The regression model investigates the relationships between variables as well as the explanatory mechanism underlying the phenomenon under investigation. However, without a strong theory (or model) in which the relationship between variables and determinants is defined, no meaningful decision or result can be made regarding the analyses carried out [49]. Most of the methods highlighted by the results are guided by regression assumptions rather than by a data-driven approach. Despite the complexity of medication adherence phenomena, we found a lack of studies considering a multivariate approach and time-dependent analyses. For example, latent-group or latent-trajectory analyses and similar methods, sometimes coupled with other methods, seem particularly attractive for studying medication adherence. However, our review found none of these methods in the studies selected. The capacity of IT analysis in terms of both data storage and processing is immense, however a more effective approach for analyzing data related to medication adherence is needed in order to improve our understanding of indicators or proxies. In particular, techniques and methods to use and to profile adherence behavior over time and among population groups (identified, for instance, by clinical characteristics, socio-demographic data, therapy characteristics) are needed in order to identify potential population risks and behaviors and to establish appropriate methods to assess medication adherence. ### Step 2: the bibliometric analysis Using R with the package *bibliometrix* [33], and VOS-viewer [32], we analyzed 61 articles retrieved from **Table 4** Characteristics of included Scoping Review studies | Study design | N | Percentage | |--|----|------------| | Cross-sectional study | 24 | 38% | | Randomized Controlled Trial | 13 | 21% | | Retrospective Cohort study | 12 | 20% | | Prospective Cohort study | 5 | 8% | | Longitudinal Observational study | 4 | 7% | | Retrospective claims analysis | 2 | 3% | | Pre and post comparison group | 1 | 2% | | Diseases | N | Percentage | | Cardiovascular/Hypertension | 23 | 38% | | Diabetes (Type 1 or 2) | 15 | 25% | | Mental disorder | 6 | 10% | | Others | 4 | 7% | | Osteoarthritis and SLE | 3 | 5% | | (HIV/AIDS) | 2 | 3% | | Stroke | 2 | 3% | | Cancer | 2 | 3% | | Rheumatoid arthritis (RA) | 1 | 2% | | Chronic kidney disease | 1 | 2% | | Gout | 1 | 2% | | Asthma and COPD | 1 | 2% | | Methods types | N | Percentage | | Linear regression | 16 | 26% | | Multivariate logistic regression | 16 | 26% | | Analysis of variance (ANOVA) | 8 | 13% | | Statistical significance | 3 | 5% | | Kaplan–Meier survival analysis | 2 | 3% | | SEM (structural equation modelling) | 2 | 3% | | Fixed effects regression model and Sensitivity analysis | 2 | 3% | | Spearman's rho correlations and Hierarchical linear regression | 2 | 3% | | Cox proportional hazards models | 1 | 2% | | Poisson regression | 1 | 2% | | Intraclass correlation coefficient (ICC) | 1 | 2% | | Cluster segmentation model | 1 | 2% | | Random intercept models | 1 | 2% | | Multinomial regression analysis | 1 | 2% | | Maximum Variation Sampling | 1 | 2% | | Pearson chi-square tests and Sensitivity Analysis | 1 | 2% | | Pearson Correlation rho | 1 | 2% | | Principal component analysis | 1 | 2% | | Measurement types | N | Percentage | | Morisky Medication Adherence Scale (MMAS-8) | 22 | 36% | | Proportion of days covered (PCD) | 10 | 16% | | Medication possession ratio (MPR) | 8 | 13% | | Morisky Medication Adherence Scale (MMAS-4) | 6 | 10% | **Table 4** Characteristics of included Scoping Review studies (Continued) | Study design | N | Percentage | |--|---|------------| | Medication Adherence Rating Scale (MARS) | 4 | 7% | | medication adherence questionnaire scores (MSSS, MAQ, ARMS, BaMQ, and MASER-R) | 2 | 3% | | Medication pillbox | 1 | 2% | | Electronic caps (Medication Event Monitoring System [MEMS]) | 1 | 2% | | Self-Efficacy for Appropriate Medication Use Scale (SEAMS) | 1 | 2% | | Phone-based unannounced pill counts | 1 | 2% | | Medication Adherence Report Scale-5 (MARS-5) | 1 | 2% | | Self-Efficacy for Appropriate Medication Use Scale (SEAMS) | 1 | 2% | | Medication Adherence Self-Report Inventory (MASRI) | 1 | 2% | | Composite scores: Morisky Medication Adherence Scale (MMAS-8) and Medication Adherence Rating Scale (MARS) | 1 | 2% | | Self-designed questionnaire for adherence. China version. | 1 | 2% | Scopus. Data were analyzed in terms of document statistics, collaboration index, journal impact, country productivity, document citation analysis, and key words. The main goal was to cover the relationships, connections and clusters of scientific production in medication adherence and the use of Big Data. This kind of analysis can map and identify the hidden connections in a vast bibliography [50] and most importantly, helps to summarize the fragmented research topic of medication adherence. Below is a series of tables that summarize the descriptive analysis of these data. As reported in Table 5 there were a total of 360 authors, with 5.9 authors per document. Over a five-year period an collaboration index [51] of 5.9 represents a significant collaboration score that involve the topic of medication adherence. Table 6 summarize the main impact represented by the h index score [52], the journal impact factor [53], and the total citations for the top ten journals and authors. The results presented in this section refer to 2014 to 2018. Almost all of the journals publishing medication adherence-related papers fall into the specific areas of healthcare. No links are evident with the other main Table 5 Article results main information (2014–2018) | Main Information on the article data retrieved | | | | | |--|-----------|--|--|--| | Articles | 61 | | | | | Sources (Journals) | 51 | | | | | Period | 2014–2018 | | | | | Average citations per article | 6.7 | | | | | Authors | 360 | | | | | Authors per Document | 5.9 | | | | | Co-Authors per Article | 6.03 | | | | | Collaboration Index | 5.9 | | | | research areas covered by journals (e.g., social science, information technology, management, and economic research). ### Mapping visualization The 61 articles were visualized using VOSviewer to identify the most important and interesting research areas, aimed at automatically identifying the characteristics and dimensions of the country collaboration map, the document co-citation network, and the keyword trend analysis. Using clustering techniques [54, 55] the interactions between the selected items can be explored along with how they have shaped the literature, in order to map the scientific knowledge domain and reveal new emerging concepts. A total of 24 countries with more than two publications were identified in the 61 articles, see Fig. 3. The five countries with the largest total link strength (TLS) were the USA (TLS = 295.95 and 255 citations), Singapore (TLS = 103.88 and 9 citations), South Korea (TLS = 98.12, 34 citations), China (TLS = 76.00, 40 citations), and the UK (TLS = 116.39 and 22 citations). The issue of medication adherence is attracting attention globally due to its negative effects on health outcomes, and also due to its negative impact on NHS performance in terms of costs. Clearly, there are differences in socio-economic factors, healthcare systems and specific geographical areas which influence the
overall effects of the treatment regime implementation. Assumptions should not be made in terms of quality or by comparing different NHS performances in too much depth. Nevertheless, variables and factors connected to the socio-economic and the healthcare architecture certainly impact greatly on the level of medication adherence. Having a public or a private NHS system, or drug insurance or easy access to treatment, make an important difference in terms of medication adherence rate [56, Table 6 Top 10 journal impact | Source | h_index | Impact factor | Total Citations | |--|---------|---------------|-----------------| | Medical Care | 158 | 3.33 | 38 | | Patient Education and Counselling | 114 | 2.78 | 17 | | International Journal of Cardiology | 103 | 4.03 | 24 | | Current Medical Research and Opinion | 96 | 2.57 | 30 | | Epilepsy and Behavior | 88 | 2.60 | 20 | | Journal of Health Communication | 69 | 1.64 | 19 | | Journal of Managed Care Pharmacy | 55 | 2.46 | 55 | | Advances in Therapy | 51 | 3.08 | 16 | | European Journal of Cardiovascular Nursing | 42 | 2.65 | 19 | | Springerplus | 26 | 0.98 | 19 | 57]. For example, Seth A. Seabury et al. (2015) [58] investigated the association between plan-level measures of health outcomes and medication adherence to assess the viability of adherence as a measure of plan performance, finding that plan-level averages of medication adherence were associated with lower rates of disease-related complications. Another example is *Reethi N. Iyengar* et al. (2015), who investigated how the dispensing channel impacts on adherence to medications using pharmacy claim data from a large national pharmacy Medicare Part D insurance plan. An enormous database, different sources of information and the related variables-factors specifically associated with the country's NHS architecture play an important role in the overall dynamics of medication adherence. Table 7 shows the top 5 documents in terms of citations and link strength in the 61 papers between 2014 and 2018. Bibliographic coupling deploys a similarity measure, using citation analysis to establish a similarity Fig. 3 Bibliographic coupling of country collaboration map. The line between two points in the figure indicates that two countries had established a similarity relationship Table 7 Bibliographic coupling of the top five documents | | Document | Citations | Total link
strength | |---|--|-----------|------------------------| | 1 | Rajpura J. "Medication Adherence in a Sample of Elderly Suffering from Hypertension: Evaluating the Influence of Illness Perceptions, Treatment Beliefs, and Illness Burden"; (2014). | 42 | 7.00 | | 2 | Xie L. "A medication adherence and persistence comparison of hypertensive patients treated with single-, double- and triple-pill combination therapy"; (2014). | 30 | 8.00 | | 3 | Kang C.D. "Determinants of medication adherence and blood pressure control among hypertensive patients in Hong Kong: A cross-sectional study"; (2015). | 24 | 4.00 | | 4 | Shallcross A.J. "Psychosocial factors associated with medication adherence in ethnically and socioeconomically diverse patients with epilepsy"; (2015). | 20 | 5.00 | | 5 | Hong J.S. "Relationship Between Continuity of Ambulatory Care and Medication Adherence in Adult Patients With Type 2 Diabetes in Korea: A Longitudinal Analysis"; (2014). | 20 | 9.00 | relationship between documents. Bibliographic coupling occurs when two works refer to a common third work in their bibliographies. Bibliographic document coupling involved 36 studies with a minimum of three citations per document. As Fig. 4 shows, eight clusters were identified, with the most cited article being *Rajpura J.* et al [59] (42 citations and TLS = 7.00). The co-occurrence analysis was adopted to investigate the popular areas and directions of research and was key to monitoring developments in scientific areas and other disciplines. The keywords (used more than 6 times) used in titles and abstracts among the 61 publications were analyzed via VOS viewer to investigate how concepts and topics have evolved. Figure 5 reports the 71 keywords identified, grouped into approximately three clusters: "Perceptions" (yellow), interventions (green) and Preferences and needs (red cluster) (Fig. 5(a)). In the perceptions cluster, the frequently used keywords were distress, life, health-related quality of life (HRQoL), and religious coping. For interventions, the keywords were non-adherence, risk, medication possession ration (mpr), proportion of day covered (pdc). In Preferences and needs, which was the largest cluster, keywords were belief, health literacy, habit strength, illness perception, and relationship. Co-occurrence clustering of keywords was also analyzed by color view map, based on the mean times they appeared (from 2014 to 2018) in all included Pirri et al. BMC Health Services Research (2020) 20:688 Page 20 of 23 **Fig. 5** Co-occurrence analysis of the titles and abstracts among the medication adherence studies selected. **a** Mapping and clustering of keywords; three clusters: "Perceptions" (yellow), "interventions" (green and blue), Preferences and needs (red cluster). **b** Mapping and clustering of titles and abstract keywords according to the mean frequency of appearance between 2014 and 2018; keywords in blue appeared earlier (2014) than those in yellow which appeared later (2018) publications. Blue indicates that the keywords appeared earlier, and yellow later. As reported in Fig. 5 (b) some keywords such as *adherence* (or *non-adherence*), *medicine*, and *habit strength* underline how the use of these keywords has incorporated the shifting of concepts and definitions. For instance, *adherence* is sometimes used to define the drug regime therapy rather than using *compliance* or *persistence*. Two keywords - *habit strength* and *belief* - underline how important it is to take into consideration the personality and behaviours of the patients in properly managing their drug regime. The size of keywords is proportional to the occurrence rate, and in our case *beliefs*, *relationship* and *effect* were the highest, underlining the importance of a patient's personality in handling medication adherence. ### Limitations By design, the scoping review framework does not address specific research questions in a narrow area. In fact, scoping research is meant to address broader exploratory research questions aimed at mapping key concepts, types of evidence, and gaps in the related research domain, selecting and synthesizing existing knowledge, rather than systematically searching and assessing as would take place in a systematic review. By using just one database (Scopus) as a source of literature, part of the existing knowledge was not included. Although a rigorous and detailed selection process was adopted, the amount and heterogeneity of literature on the medical treatment regime (e.g. medication adherence, compliance, life-style recommendations) is vast, and identifying common selection criteria is complex. This means that some subjective judgments on the inclusion-exclusion criteria selection were made, thereby obtaining a more comprehensive and homogenous process. However, bibliometric analysis can contribute to better understanding and investigating a bottleneck in the literature research methodology, which is the difficulty of summarizing in a clear and accessible way the vast amount of literature with common key elements (e.g., subject category, topics, methodology applied) [60]. ### Discussion The results of this scoping review underline how heterogeneous and complex the issue of medication adherence is. A common and robust strategy to tackle this challenge entails devising a more evidence-based and shared approach to improve measurement consistency and appropriate cut-off points to facilitate comparisons among studies [61]. Our review highlighted the lack of a common definition of medication adherence, and the lack of standard method used to measure it. This lack of standardized methods and guidelines impedes on the sharing of good practices and thus the ability to improve the quality of healthcare services, with cost-effective care, and dealing with professional pharmacy services without losing the typical socio-economic organizational characteristics of healthcare entities [62]. Big data enable organizations to analyse massive data sets from a wide range of sources to support evidence-based decision making, through predictive models, and statistical algorithms powered by high-performance systems [63]. Such analyses would enable healthcare organizations to turn information into knowledge by using a combination of existing and new approaches powered by the huge amounts of data generated [64]. However, we found that no specific technology (Big Data) or data-driven solutions are currently in place that offer sufficient accuracy or methodological strength to assess medication adherence. One of the objectives of this study was to depart from the traditional way of analyzing the literature. We used network analysis techniques to visualize and detect trends and patterns produced in a robust and replicable way. The year-by-year evolution of intellectual and scientific knowledge [65] cannot easily be identified, especially when the number of sources is very high and the concepts so fragmented. We also believe that it is extremely useful to investigate and measure different indicators, such as cluster analyses, keyword trends and other bibliometric measures in order to gather information from unexplored metrics that can offer useful insights for the research topic under investigation. Our results highlighted that no Big Data (or
data mining methods) are currently deployed in medication adherence for chronic conditions, despite its acknowledged beneficial adoption in the healthcare sector. Our bibliometric analysis, and in particular the keyword analysis (Fig. 4), underlined the importance of patients' preferences, beliefs and habits. These important subjective patient aspects were also deeply investigated by Rajpura J. (2014) [59] and Shallcross AJ. (2015) [66], two of the most-cited documents retrieved. This thus underlines how the influence of illness perception, beliefs and psychosocial factors associated with medication adherence are a major area that can offer further insight supported by powerful Big Data tools. The literature on medication adherence is widespread and vast, comprising an interdisciplinary approach, and characterized by different research designs and methods for knowledge production. However, it is not easy to obtain a clear overall path of the trends and theoretical approaches in which Big Data analytics can produce rapid and worthwhile results. This is probably because the multifactorial and multivariable aspects that define, make up and influence medication adherence phenomena are still unknown. We believe that developing specific Big Data applications around the patient's beliefs/preferences would provide valuable insights, new solutions and better clinical feedback. ### **Conclusions** We have provided a literature scoping review on the methods, measurements and research design factors affecting medication adherence in chronic disease, exploiting Big Data analysis to improve the clinical decision-making process. We then used the studies selected to develop a literature-driven analysis using a bibliometric methodology to map and identify various future research directions and trends that could provide valuable insights. Our results show that methods are being implemented to approach medication adherence with Big Data analysis. Embracing a more persuasive policy plan and standardized taxonomy to tackle adherence is needed to make progress in this field, which remains at the forefront of the public health burden. In addition, the standardized adoption of data knowledge of patients' beliefs and preferences is needed in order to involve and engage patients in long-term treatment and to understand how their personality impacts on how long they adhere to medical treatment. Despite the study's limitations, to the best of our knowledge our scoping review and bibliometric analysis is the first study to combine these two types of methodologies. It thus provides a) a comprehensive understanding of the hotspots and research fronts of medication adherence measurements and methodology assessments; b) a taxonomy of study design, types of measurements, types of methods and variables adopted in the literature retrieved. These could be exploited as a starting point for more precise and tailored evidence-based assessment strategies regarding chronic diseases for medication adherence, which could lead to a more robust application of Big Data analytics. ### Abbreviations IT: Information Technology; MnA: Medication non-adherence; NHS: National health Service; PRISMA-ScR: PRISMA Extension for Scoping Reviews; RCT: Randomized Control Trial; WHO: World Health Organization ### Acknowledgements The authors would like to thank the Scuola Superiore Sant'Anna University's library Staff for facilitating the collection of the papers used in this study. ### Authors' contributions SP led the study design, the data collection and drafting the manuscript. SP and VL analysed the data and performed the data charting. GT contributed to the manuscript in the study design and in the research implications. All the authors approved the final version of the manuscript. ### **Funding** Not applicable. ### Availability of data and materials Data can be retrieved from Scopus academic database using the presented search query. ### Ethics approval and consent to participate No sensitive data were involved in this analysis. Therefore, no ethical approval was needed for Institutional review. ### Consent for publication Not applicable. ### Competing interests The author Valentina Lorenzoni is an Associate editor of the BMC Health Services Research. The rest of the authors have no competing interests. Received: 12 September 2019 Accepted: 14 July 2020 Published online: 24 July 2020 ### References - Sabte E. Adherence to long-TermTherapies: evidence for action: World Health Organization; 2003. https://doi.org/10.1016/S1474-5151(03)00091-4. https://apps.who.int/iris/handle/10665/42682. - Rasmussen JN, Chong A, Alter DA. Relationship between adherence to evidence-based pharmacotherapy and long-term mortality after acute myocardial infarction. JAMA. 2007;297:177. https://doi.org/10.1001/jama. 297.2.177. - Cramer JA, Roy A, Burrell A, Fairchild CJ, Fuldeore MJ, Ollendorf DA, et al. Medication compliance and persistence: terminology and definitions. Value Health. 2008;11:44–7. https://doi.org/10.1111/j.1524-4733.2007.00213.x. - Roebuck MC, Liberman JN, Gemmill-Toyama M, Brennan TA. Medication adherence leads to lower health care use and costs despite increased drug spending. Health Aff. 2011;30:91–9. https://doi.org/10.1377/hlthaff.2009.1087. - Cutler RL, Fernandez-Llimos F, Frommer M, Benrimoj C, Garcia-Cardenas V. Economic impact of medication non-adherence by disease groups: a systematic review. BMJ Open. 2018;8:e016982. https://doi.org/10.1136/ bmjopen-2017-016982. - Martin LR, Williams SL, Haskard KB, Dimatteo MR. The challenge of patient adherence. Ther Clin Risk Manag. 2005;1:189–99 http://www.ncbi.nlm.nih. gov/pubmed/18360559. Accessed 13 Sep 2018. - Nieuwlaat R, Wilczynski N, Navarro T, Hobson N, Jeffery R, Keepanasseril A, et al. Interventions for enhancing medication adherence. Cochrane Database Syst Rev. 2014:CD000011. https://doi.org/10.1002/14651858. CD000011.pub4. - Terminology Used in Medication Adherence Research Must Reflect Current Models of Health Care. Value Heal. 2009;12:630. https://doi.org/10.1111/j. 1524-4733.2008.00464.x. - Lehane E, McCarthy G. Medication non-adherence-exploring the conceptual mire. Int J Nurs Pract. 2009;15:25–31. https://doi.org/10.1111/j.1440-172X. 2008.01722.x. - Vrijens B, De Geest S, Hughes DA, Przemyslaw K, Demonceau J, Ruppar T, et al. A new taxonomy for describing and defining adherence to medications. Br J Clin Pharmacol. 2012;73:691–705. https://doi.org/10.1111/j. 1365-2125.2012.04167.x. - Dunbar J. Adherence measures and their utility. Control Clin Trials. 1984;5(4 Suppl):515–21 http://www.ncbi.nlm.nih.gov/pubmed/6518779. Accessed 13 Sep 2018. - Haynes R, Yao X, Degani A, Kripalani S, Garg A, McDonald H. Interventions for enhancing medication adherence. In: Haynes RB, editor. Cochrane Database of Systematic Reviews. Chichester: Wiley; 2005. p. CD000011. https://doi.org/10.1002/14651858.CD000011.pub2. - Horne R, Weinman J. Patients' beliefs about prescribed medicines and their role in adherence to treatment in chronic physical illness. J Psychosom Res. 1999;47:555–67 http://www.ncbi.nlm.nih.gov/pubmed/10661603. Accessed 13 Sep 2018. - National Collaborating Centre for Primary Care (UK). Medicines adherence: involving patients in decisions about prescribed medicines and supporting adherence | Guidance and guidelines | NICE. NICE, Clin Guidel [CG76]. 2009. https://www.nice.org.uk/guidance/cq76. - Lavsa SM, Holzworth A, Ansani NT. Selection of a validated scale for measuring medication adherence. J Am Pharm Assoc. 2011;51:90–4. https://doi.org/10.1331/JAPhA.2011.09154. - Lam WY, Fresco P. Medication adherence measures: an overview. Biomed Res Int. 2015;201:8–9. - Horne R, Chapman SCE, Parham R, Freemantle N, Forbes A, Cooper V. Understanding patients' adherence-related beliefs about medicines prescribed for long-term conditions: a meta-analytic review of the necessity-concerns framework. PLoS One. 2013;8:e80633. https://doi.org/10. 1371/journal.pone.0080633. - Wang Y, Hajli N. Exploring the path to big data analytics success in healthcare. J Bus Res. 2017;70:287–99. https://doi.org/10.1016/j.jbusres.2016.08.002. - Agarwal R, Gao G (Gordon), DesRoches C, Jha AK. Research Commentary The Digital Transformation of Healthcare: Current Status and the Road Ahead. Inf Syst Res 2010;21:796–809. doi:https://doi.org/10.1287/isre.1100.0327. - Ward MJ, Marsolo KA, Froehle CM. Applications of business analytics in healthcare. Bus Horiz. 2014;57:571–82. https://doi.org/10.1016/j.bushor.2014. 06.003. - Jiang P, Winkley J, Zhao C, Munnoch R, Min G, Yang LT. An intelligent information forwarder for healthcare big data systems with distributed wearable sensors. IEEE Syst J. 2016;10:1147–59. https://doi.org/10.1109/ JSYST.2014.2308324. - McAfee A, Brynjolfsson E. Big data: the management revolution. Harv Bus Rev. 2012;90:60–6 68, 128. http://www.ncbi.nlm.nih.gov/pubmed/23074865. Accessed 13 Sep 2018. - Zillner S, Neururer S. Technology roadmap development for big data healthcare applications. KI - Künstliche Intelligenz. 2015;29:131–41. https://doi.org/10.1007/s13218-014-0335-y. - Fosso Wamba S, Akter S, Edwards A, Chopin G, Gnanzou D. How 'big data' can make big impact: findings from a systematic review and a longitudinal case study. Int J Prod Econ. 2015;165:234–46. https://doi.org/10.1016/j.ijpe. 2014.12.031. - Alonso SG, de la Torre DI, Rodrigues JJPC, Hamrioui S, López-Coronado M. A systematic review of techniques and sources of big data in the healthcare sector. J Med Syst. 2017;41:183. https://doi.org/10.1007/s10916-017-0832-2. - Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169:467. https://doi.org/10.7326/M18-0850. - Arksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8:19–32. https://doi.org/10.1080/ 1364557032000119616. - Daudt HM, van Mossel C,
Scott SJ. Enhancing the scoping study methodology: a large, inter-professional team's experience with Arksey and O'Malley's framework. BMC Med Res Methodol. 2013;13:48. https://doi.org/ 10.1186/1471-2288-13-48. - Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69. https://doi.org/10.1186/1748-5908-5-69. - Ellegaard O, Wallin JA. The bibliometric analysis of scholarly production: how great is the impact? Scientometrics. 2015;105:1809–31. https://doi.org/ 10.1007/s11192-015-1645-z. - 31. Börner K, Chen C, Boyack KW. Visualizing knowledge domains. Annu Rev Inf Sci Technol. 2005;37:179–255. https://doi.org/10.1002/aris.1440370106. - 32. van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523–38. - Aria M, Cuccurullo C. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Inf Secur. 2017;11:959–75. https://doi.org/10.1016/j.joi. 2017.08.007. - Elsevier | An Information Analytics Business | Empowering Knowledge. https://www.elsevier.com/. Accessed 7 Sept 2018. - Falagas ME, Pitsouni El, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. FASEB J. 2007;22:338–42. https://doi.org/10.1096/fj.07-9492LSF. - Leydesdorff L, Milojević S. Scientometrics. 2012. http://arxiv.org/abs/12 08.4566. Accessed 13 Sep 2018. - De Geest S, Zullig LL, Dunbar-Jacob J, Helmy R, Hughes DA, Wilson IB, et al. ESPACOMP medication adherence reporting guideline (EMERGE). Ann Intern Med. 2018;169:30–5. https://doi.org/10.7326/M18-0543. - Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal. pmed.1000097. - Grimes DA, Schulz KF. An overview of clinical research: the lay of the land. Lancet. 2002;359:57–61. https://doi.org/10.1016/S0140-6736(02)07283-5. - Sanson-Fisher RW, Bonevski B, Green LW, D'Este C. Limitations of the randomized controlled trial in evaluating population-based health interventions. Am J Prev Med. 2007;33:155–61. https://doi.org/10.1016/j. amepre.2007.04.007. - Treasure T, Takkenberg JJM. Randomized trials and big data analysis: we need the best of both worlds. Eur J Cardio-Thoracic Surg. 2018;53:910–4. https://doi.org/10.1093/ejcts/ezy056. - Jawad S, Modi N, Prevost AT, Gale C. A systematic review identifying common data items in neonatal trials and assessing their completeness in routinely recorded United Kingdom national neonatal data. Trials. 2019;20: 731. https://doi.org/10.1186/s13063-019-3849-7. - Mc Cord KA, Al-Shahi Salman R, Treweek S, Gardner H, Strech D, Whiteley W, et al. Routinely collected data for randomized trials: promises, barriers, and implications. https://doi.org/10.1186/s13063-017-2394-5. - 44. Dixon P. A Failure to "Do No Harm" -- India's Aadhaar biometric ID program and its inability to protect privacy in relation to measures in Europe and the U.S. https://doi.org/10.1007/s12553-017-0202-6. - Funai EF, Rosenbush EJ, Lee M-J, Del Priore G. Distribution of study designs in four major US journals of obstetrics and gynecology. Gynecol Obstet Investig. 2001;51:8–11. https://doi.org/10.1159/000052882. - Yu AP, Yu YF, Nichol MB. Estimating the effect of medication adherence on health outcomes among patients with type 2 diabetes—an application of marginal structural models. Value Heal. 2010;13:1038–45. https://doi.org/10. 1111/j.1524-4733.2010.00787.x. - Saberi P, Johnson MO, McCulloch CE, Vittinghoff E, Neilands TB. Medication adherence: tailoring the analysis to the data. AIDS Behav. 2011;15:1447–53. https://doi.org/10.1007/s10461-011-9951-9. - Jeon J. The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models. 2015. https://www.semanticscholar.org/paper/ - The-Strengths-and-Limitations-of-the-Statistical-of-Jeon/50a9a4a1cf87575 bbb83b43419102d09fc89f942. Accessed 13 Sept 2018. - Pedhazur EJ. Multiple Regression in Behavioral Research: Explanation and Prediction (3rd edition). Fort Worth: Harcourt Brace College Publishers; 1997, 1,058 pages. Reviewed by Chockalingam Viswesvaran, Assistant Professor, Florida International University, Miami, FL". Here at this link: https://search. proquest.com/docview/220143461?pq-origsite=gscholar&fromopenview= true#. - Waltman L, van Eck NJ, Noyons ECM. A unified approach to mapping and clustering of bibliometric networks. J Inf Secur. 2010;4:629–35. https://doi. org/10.1016/j.joi.2010.07.002. - Elango B. A Bibliometric analysis of authorship and collaboration trend in nature nanotechnology. J Appl Informatics Technol. 2018;1:56–63 https:// www.tci-thaijo.org/index.php/jait/article/view/139648. Accessed 8 Apr 2019. - Hirsch JE. An index to quantify an individual's scientific research output. Proc Natl Acad Sci U S A. 2005;102:16569. https://doi.org/10.1073/PNAS. 0507655102. - 53. Garfield E. The history and meaning of the journal impact factor. JAMA. 2006;295:90. https://doi.org/10.1001/jama.295.1.90. - Van Eck NJ, Waltman L, Dekker R, Van Den Berg J. A comparison of two techniques for bibliometric mapping: multidimensional scaling and VOS. J Am Soc Inf Sci Technol. 2010;61:2405–16. https://doi.org/10.1002/asi.21421. - Waltman L, van Eck NJ, Noyons ECM. A unified approach to mapping and clustering of bibliometric networks. 2010. http://arxiv.org/abs/1006.1032. Accessed 13 Sep 2018. - Cyr M-C, Beauchense M-F, Lemiere C, Blais L. Comparison of the adherence and persistence to inhaled corticosteroids among adult patients with public and private drug insurance plans. J Popul Ther Clin Pharmacol. 2013;20:e26– 41 http://www.ncbi.nlm.nih.gov/pubmed/23392860. Accessed 13 Sep 2018. - Jones D, Cook R, Cecchini D, Sued O, Bofill L, Weiss S, et al. Examining adherence among challenging patients in public and private HIV Care in Argentina. AIDS Behav. 2015;19:1619–29. https://doi.org/10.1007/ s10461-015-1037-7. - Seabury SA, Lakdawalla DN, Dougherty JS, Sullivan J, Goldman DP. Medication adherence and measures of health plan quality. Am J Manag Care. 2015;21:e379–89. - Rajpura J, Nayak R. Medication Adherence in a Sample of Elderly Suffering from Hypertension: Evaluating the Influence of Illness Perceptions, Treatment Beliefs, and Illness Burden. J Manag Care Pharm. 2014;20:58–65. https://doi.org/10.18553/jmcp.2014.20.1.58. - Pautasso M. Ten simple rules for writing a literature review. PLoS Comput Biol. 2013;9:e1003149. https://doi.org/10.1371/journal.pcbi.1003149. - Krass I, Schieback P, Dhippayom T. Adherence to diabetes medication: a systematic review. Diabet Med. 2015;32:725–37. https://doi.org/10.1111/ dme.12651. - Garcia-Cardenas V, Perez-Escamilla B, Fernandez-Llimos F, Benrimoj SI. The complexity of implementation factors in professional pharmacy services. Res Soc Adm Pharm. 2018;14:498–500. https://doi.org/10.1016/J. SAPHARM.2017.05.016. - Price ND, Magis AT, Earls JC, Glusman G, Levy R, Lausted C, et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat Biotechnol. 2017;35:747–56. https://doi.org/10.1038/nbt.3870. - Saggi MK, Jain S. A survey towards an integration of big data analytics to big insights for value-creation. Inf Process Manag. 2018;54:758–90. https:// doi.org/10.1016/JJPM.2018.01.010. - Upham SP, Small H. Emerging research fronts in science and technology: patterns of new knowledge development. Scientometrics. 2010;83:15–38. https://doi.org/10.1007/s11192-009-0051-9. - Shallcross AJ, Becker DA, Singh A, Friedman D, Jurd R, French JA, et al. Psychosocial factors associated with medication adherence in ethnically and socioeconomically diverse patients with epilepsy. Epilepsy Behav. 2015;46:242–5. ### **Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.