| | |
Crude
| | |
Adjusted#
| |
---|
Variables
| |
OR
|
95 % CI
|
p-value
|
OR
|
95 % CI
|
p-value
|
---|
Site
|
Colon
|
1.00
| | |
1.00
| | |
|
Rectum
|
0.82
|
0.73-0.91
|
<0.001
|
0.81
|
0.72-0.91
|
<0.001
|
Age group
|
50-59 yrs
|
1.00
| | |
1.00
| | |
|
60-69 yrs
|
0.82
|
0.70-0.95
|
<0.008
|
0.76
|
0.66-0.89
|
<0.001
|
|
70-79 yrs
|
0.88
|
0.77-1.02
|
0.087
|
0.77
|
0.67-0.89
|
0.001
|
Sex
|
Females
|
1.00
| | |
1.00
| | |
|
Males
|
0.97
|
0.87-1.08
|
0.562
|
0.96
|
0.86-1.07
|
0.436
|
SES
|
Lowest (quintile)
|
1.00
| | |
1.00
| | |
|
Low
|
0.89
|
0.75-1.06
|
0.208
|
0.90
|
0.75-1.08
|
0.248
|
|
Mid
|
0.99
|
0.83-1.18
|
0.909
|
0.96
|
0.79-1.15
|
0.636
|
|
Low-high
|
0.93
|
0.78-1.10
|
0.395
|
0.90
|
0.75-1.08
|
0.268
|
|
Highest
|
1.08
|
0.91-1.26
|
0.438
|
1.03
|
0.86-1.23
|
0.756
|
Residence
|
Inner urban
|
1.00
| | |
1.00
| | |
|
Outer urban
|
0.85
|
0.70-1.05
|
0.080
|
0.89
|
0.74-1.07
|
0.248
|
|
Rural
|
1.02
|
0.88-1.20
|
0.717
|
0.99
|
0.83-1.16
|
0.812
|
|
Remote
|
0.92
|
0.73-1.16
|
0.473
|
0.99
|
0.77-1.26
|
0.912
|
Private Insurance
|
No
|
1.00
| | |
1.00
| | |
|
Yes
|
0.88
|
0.76-0.94
|
0.002
|
0.84
|
0.75-0.95
|
0.003
|
Co-morbidities
|
None
|
1.00
| | |
1.00
| | |
|
One (not severe)
|
1.25
|
1.09-1.44
|
0.002
|
1.25
|
1.09-1.44
|
0.002
|
|
Multiple or severe
|
1.48
|
1.25-1.76
|
<0.001
|
1.50
|
1.26-1.79
|
<0.001
|
Diagnosis year
|
2003-2008 (cont)
|
0.97
|
0.94-1.00
|
0.024
|
0.97
|
0.94-1.00
|
0.027
|
- #Ordinal logistic regression model adjusted for all factors simultaneously – excludes missing stage (n = 328)
- Ordinal logistic regression is an extension of logistic regression that incorporates the ordinal nature of the dependent variable (in this case stage at diagnosis). It can be used for modelling a dependant variable that has more than two ordered categories. The method is analogous to a series of binary models predicting the following combinations of binary stage groupings (e.g. stage A v stage B + C + D, A + B v C + D and A + B + C v D)