Model type (name) & equation | Variables and parameters | Reference | |
---|---|---|---|
Pharmacokinetic model
(two compartment model) | |||
$C=D\cdot \left[\begin{array}{l}A\cdot {e}^{-\alpha (t-lag\phantom{\rule{0.25em}{0ex}}time)}+\hfill \\ B\cdot {e}^{-\beta (t-lag\phantom{\rule{0.25em}{0ex}}time)-}\hfill \\ (A+B)\cdot {e}^{-{k}_{a}\cdot (t-lag\phantom{\rule{0.25em}{0ex}}time)}\hfill \end{array}\right]$ |
for D = 5 mg: A = 3.502 ng/mL B = 1.209 ng/mL α = 0.445 h^{-1} β = 0.014 h k_{a} = 1.319 h^{-1} lag time = 0.96 h |
for D = 10 mg: A = 4.536 ng/mL B = 1.234 ng/mL α = 0.542 h^{-1} β = 0.015 h^{-1} k_{a} = 1.696 h^{-1} lag time = 0.68 h | [32] |
Pharmacodynamic model
(E_{max} model) |
E_{max} = 100.8% EC_{50} = 15.6 ng/mL | [34] | |
$E=\frac{{E}_{\mathrm{max}}\cdot C}{E{C}_{50}+C}$ |