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Abstract 

Background  Public health emergencies are characterized by uncertainty, rapid transmission, a large number 
of cases, a high rate of critical illness, and a high case fatality rate. The intensive care unit (ICU) is the “last line 
of defense” for saving lives. And ICU resources play a critical role in the treatment of critical illness and combating 
public health emergencies.

Objective  This study estimates the demand for ICU healthcare resources based on an accurate prediction 
of the surge in the number of critically ill patients in the short term. The aim is to provide hospitals with a basis 
for scientific decision-making, to improve rescue efficiency, and to avoid excessive costs due to overly large resource 
reserves.

Methods  A demand forecasting method for ICU healthcare resources is proposed based on the number of cur-
rent confirmed cases. The number of current confirmed cases is estimated using a bilateral long-short-term memory 
and genetic algorithm support vector regression (BILSTM-GASVR) combined prediction model. Based on this, this 
paper constructs demand forecasting models for ICU healthcare workers and healthcare material resources to more 
accurately understand the patterns of changes in the demand for ICU healthcare resources and more precisely meet 
the treatment needs of critically ill patients.

Results  Data on the number of COVID-19-infected cases in Shanghai between January 20, 2020, and September 
24, 2022, is used to perform a numerical example analysis. Compared to individual prediction models (GASVR, LSTM, 
BILSTM and Informer), the combined prediction model BILSTM-GASVR produced results that are closer to the real 
values. The demand forecasting results for ICU healthcare resources showed that the first (ICU human resources) 
and third (medical equipment resources) categories did not require replenishment during the early stages but experi-
enced a lag in replenishment when shortages occurred during the peak period. The second category (drug resources) 
is consumed rapidly in the early stages and required earlier replenishment, but replenishment is timelier compared 
to the first and third categories. However, replenishment is needed throughout the course of the epidemic.

Conclusion  The first category of resources (human resources) requires long-term planning and the deployment 
of emergency expansion measures. The second category of resources (drugs) is suitable for the combination 
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of dynamic physical reserves in healthcare institutions with the production capacity reserves of corporations. The third 
category of resources (medical equipment) is more dependent on the physical reserves in healthcare institutions, 
but care must be taken to strike a balance between normalcy and emergencies.

Keywords  Public health emergency, ICU healthcare resource demand, Machine learning, Combined prediction

Introduction
The outbreak of severe acute respiratory syndrome 
(SARS) in 2003 was the first global public health emer-
gency of the 21st century. From SARS to the coronavi-
rus disease (COVID-19) pandemic at the end of 2019, 
followed shortly by the monkeypox epidemic of 2022, 
the global community has witnessed eight major public 
health events within the span of only 20 years [1]. These 
events are all characterized by high infection and fatal-
ity rates. For example, the number of confirmed COVID-
19 cases worldwide is over 700 million, and the number 
of deaths has exceeded 7 million [2]. Every major public 
health emergency typically consists of four stages: incu-
bation, outbreak, peak, and decline. During the outbreak 
and transmission, surges in the number of infected indi-
viduals and the number of critically ill patients led to a 
corresponding increase in the urgent demand for inten-
sive care unit (ICU) medical resources. ICU healthcare 
resources provide material security for rescue work dur-
ing major public health events as they allow critically ill 
patients to be treated, which decreases the case fatality 
rate and facilitates the prevention and control of epi-
demics. Nevertheless, in actual cases of prevention and 
control, the surge in patients has often led to shortages 
of ICU healthcare resources and a short-term mismatch 
of supply and demand, which are problems that have 
occurred several times in different regions. These issues 
can drastically impact anti-epidemic frontline health-
care workers and the treatment outcomes of infected 
patients. According to COVID-19 data from recent years, 
many infected individuals take about two weeks to pro-
gress from mild to severe disease. As the peak of severe 
cases tends to lag behind that of infected cases, predict-
ing the changes in the number of new infections can 
serve as a valuable reference for healthcare institutions 
in forecasting the demand for ICU healthcare resources. 
The accurate forecasting of the demand for ICU health-
care resources can facilitate the rational resource allo-
cation of hospitals under changes in demand patterns, 
which is crucial for improving the provision of critical 
care and rescue efficiency. Therefore, in this study, we 
combined a support vector regression (SVR) prediction 
model optimized by a genetic algorithm (GA) with bidi-
rectional long-short-term memory (BILSTM), with the 
aim of enhancing the dynamic and accurate prediction 
of the number of current confirmed cases. Based on this, 

we forecasted the demand for ICU healthcare resources, 
which in turn may enable more efficient resource deploy-
ment during severe epidemic outbreaks and improve the 
precise supply of ICU healthcare resources.

Research on the demand forecasting of emergency 
materials generally employs quantitative methods, and 
traditional approaches mainly include linear regres-
sion and GM (1,1). Linear regression involves the use of 
regression equations to make predictions based on data. 
Sui et al. proposed a method based on multiple regression 
that aimed to predict the demand for emergency sup-
plies in the power grid system following natural disasters 
[3]. Historical data was used to obtain the impact coef-
ficient of each factor on emergency resource forecasting, 
enabling the quick calculation of the demand for each 
emergency resource during a given type of disaster. How-
ever, to ensure prediction accuracy, regression analysis 
needs to be supported by data from a large sample size. 
Other researchers have carried out demand forecast-
ing for emergency supplies from the perspective of grey 
prediction models. Li et  al. calculated the development 
coefficient and grey action of the grey GM (1,1) model 
using the particle swarm optimization algorithm to mini-
mize the relative errors between the real and predicted 
values [4]. Although these studies have improved the 
prediction accuracy of grey models, they mainly involve 
pre-processing the initial data series without consider-
ing the issue of the excessively fast increase in predicted 
values by traditional grey GM (1,1) models. In emergency 
situations, the excessively fast increase in predicted val-
ues compared to real values will result in the consump-
tion of a large number of unnecessary resources, thereby 
decreasing efficiency and increasing costs. As traditional 
demand forecasting models for emergency supplies have 
relatively poor perfect order rates in demand analysis, 
which result in low prediction accuracy, they are not 
mainstream.

At present, dynamic models of infectious diseases and 
demand forecasting models based on machine learn-
ing are at the cutting edge of research. With regard to 
the dynamic models of infectious diseases, susceptible 
infected recovered model (SIR) is a classic mathematical 
model employed by researchers [5–7]. After many years 
of development, the SIR model has been expanded into 
various forms within the field of disease transmission, 
including susceptible exposed infected recovered model 
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(SEIR) and susceptible exposed infected recovered dead 
model (SEIRD) [8, 9]. Nevertheless, with the outbreak of 
COVID-19, dynamic models of infectious diseases have 
once again come under the spotlight, with researchers 
combining individual and group variables and account-
ing for different factors to improve the initial models and 
reflect the state of COVID-19 [10–13]. Based on the first 
round of epidemic data from Wuhan, Li et al. predicted 
the time-delay distributions, epidemic doubling time, 
and basic reproductive number [14]. Upon discovering 
the presence of asymptomatic COVID-19 infections, 
researchers began constructing different SEIR models 
that considered the infectivity of various viral incuba-
tion periods, yielding their respective predictions of the 
inflection point. Based on this, Anggriani et  al. further 
considered the impact of the status of infected individu-
als and established a transmission model with seven com-
partments [15]. Efimov et al. set the model parameters for 
separating the recovered and the dead as uncertain and 
applied the improved SEIR model to analyze the trans-
mission trend of the pandemic [16]. In addition to analyz-
ing the transmission characteristics of normal COVID-19 
infection to predict the status of the epidemic, many 
researchers have also used infectious disease models to 
evaluate the effects of various epidemic preventive meas-
ures. Lin et  al. applied an SEIR model that considered 
individual behavioral responses, government restrictions 
on public gatherings, pet-related transmission, and short-
term population movements [17]. Cao et  al. considered 
the containment effect of isolation measures on the 
pandemic and solved the model using Euler’s numerical 
method [18]. Reiner et  al. employed an improved SEIR 
model to study the impact of non-pharmaceutical inter-
ventions implemented by the government (e.g., restrict-
ing population movement, enhancing disease testing, 
and increasing mask use) on disease transmission and 
evaluated the effectiveness of social distancing and the 
closure of public spaces [19]. These studies have mainly 
focused on modeling the COVID-19 pandemic to per-
form dynamic forecasting and analyze the effectiveness 
of control measures during the epidemic. Infectious dis-
ease dynamics offer good predictions for the early trans-
mission trends of epidemics. However, this approach is 
unable to accurately estimate the spread of the virus in 
open-flow environments. Furthermore, it is also impossi-
ble to set hypothetical parameters, such as disease trans-
missibility and the recovery probability constant, that are 
consistent with the conditions in reality. Hence, with the 
increase in COVID-19 data, this approach has become 
inadequate for the accurate long-term analysis of epi-
demic trends.

Machine learning has shown significant advantages in 
this regard [20, 21]. Some researchers have adopted the 

classic case-based reasoning approach in machine learn-
ing to make predictions. However, it is not feasible to find 
historical cases that fully match the current emergency 
event, so this approach has limited operability. Other 
researchers have also employed neural network train-
ing in machine learning to make predictions. For exam-
ple, Hamou et  al. predicted the number of injuries and 
deaths, which in turn were used to forecast the demand 
for emergency supplies [22]. However, this approach 
requires a large initial dataset and a high number of 
training epochs, while uncertainty due to large changes 
in intelligence information can lead to significant errors 
in data prediction [23–25]. To address these problems, 
researchers have conducted investigations that account 
(to varying degrees) for data characterized by time-series 
and non-linearity and have employed time-series models 
with good non-linear fitting [26–28]. The use of LSTM 
to explore relationships within the data can improve the 
accuracy of predicting COVID-19 to some extent. How-
ever, there are two problems with this approach. First, 
LSTM neural networks require extremely large data-
sets, and each wave of the epidemic development cycle 
would be insufficient to support a dataset suitable for 
LSTM. Second, neural networks involve a large number 
of parameters and highly complex models and, hence, 
are susceptible to overfitting, which can prevent them 
from achieving their true and expected advantages in 
prediction.

Overall, Our study differs from other papers in the fol-
lowing three ways. First, the research object of this paper 
focuses on the specific point of ICU healthcare resource 
demand prediction, aiming to improve the rate of criti-
cal care patient treatment. However, past research on 
public health emergencies has focused more on resource 
prediction , such as N95 masks, vaccines, and generalized 
medical supplies during the epidemic , to mitigate the 
impact of rapid transmission and high morbidity rates. 
This has led to less attention being paid to the reality of 
the surge in critically ill patients due to their high rates of 
severe illness and mortality.

Second, the idea of this paper is to further forecast 
resource needs based on the projected number of peo-
ple with confirmed diagnoses, which is more applicable 
to healthcare organizations than most other papers that 
only predict the number of people involved. However, in 
terms of the methodology for projecting the number of 
people, this paper adopts a combined prediction method 
that combines regression algorithms and recurrent neu-
ral networks to propose a BILSTM-GASVR prediction 
model for the number of confirmed diagnoses. It capital-
izes on both the suitability of SVR for small samples and 
non-linear prediction as well as the learning and mem-
ory abilities of BILSTM in processing time-series data. 
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On the basis of the prediction model for the number of 
infected cases, by considering the characteristics of ICU 
healthcare resources, we constructed a demand forecast-
ing model of emergency healthcare supplies. Past public 
health emergencies are more likely to use infectious dis-
ease models or a single prediction model in deep learn-
ing. some of the articles, although using a combination 
of prediction, but also more for the same method domain 
combination, such as CNN-LSTM, GRU-LSTM, etc., 
which are all recurrent neural networks.

Third, in terms of specific categorization of resources 
to be forecasted, considering the specificity of ICU medi-
cal resources, we introduce human resource prediction 
on the basis of previous studies focusing on material 
security, and classified ICU medical resources into three 
categories: ICU human resources, drugs and medical 
equipment. The purpose of this classification is to match 
the real-life prediction scenarios of public health emer-
gencies and improve the demand forecasting perfor-
mance for local ICU healthcare resources. Thus, it is easy 
for healthcare institutions to grasp the overall develop-
ment of events, optimizing decision-making, and reduc-
ing the risk of healthcare systems collapsing during the 
outbreak stage.

Methods
In this section, we accomplish the following two tasks. 
Firstly, we introduce the idea of predicting the number 
of infected cases and show the principle of the relevant 
models. Secondly, based on the number of infected cases, 
ICU healthcare resources are divided into two categories 
(healthcare workers and healthcare supplies), and their 
respective demand forecasting models are constructed.

Prediction model for the number of infected cases
GASVR model
Support vector machine (SVM) is a machine-learning 
language for classification developed by Vapnik [29]. Sup-
pose there are two categories of samples: H1 and H2. If 
hyperplane H is able to correctly classify the samples into 
these two categories and maximize the margin between 
the two categories, it is known as the optimal separating 

hyperplane (OSH). The sample vectors closest to the 
OSH in H1 and H2 are known as the support vectors. To 
apply SVM to prediction, it is essential to perform regres-
sion fitting. By introducing the ε-insensitive loss function, 
SVM can be converted to a support vector regression 
machine, where the role of the OSH is to minimize the 
error of all samples from this plane. SVR has a theoreti-
cal basis in statistical learning and relatively high learning 
performance, making it suitable for performing predic-
tions in small-sample, non-linear, and multi-dimensional 
fields [30, 31].

Assume the training sample set containing l train-
ing samples is given by {(xi, yi), i = 1, 2, ..., l} , where 
xi = [x1i , x

2
i , ..., x

d
i ]

T and yi ∈ R are the corresponding 
output values.

Let the regression function be f (x) = w�(x)+ b , 
where φ(x) is the non-linear mapping function. The lin-
ear ε-insensitive loss function is defined as shown in for-
mula (1).

Among the rest, f (x) is the predicted value returned by 
the regression function, and y is the corresponding real 
value. If the error between f (x) and y is ≤ ε , the loss is 0; 
otherwise, the loss is y− f (x) − ε.

The slack variables ξi and ξ∗i  are introduced, and w , b 
are solved using the following equation as shown in for-
mula (2).

Among the rest, C is the penalty factor, with larger val-
ues indicating a greater penalty for errors > ε ; ε is defined 
as the error requirement, with smaller values indicating a 
smaller error of the regression function.

The Lagrange function is introduced to solve the above 
function and transformed into the dual form to give the 
formula (3).

(1)L(f (x), y, ε) =
{
0,
∣∣y− f (x)

∣∣ ≤ ε∣∣y− f (x)
∣∣− ε,

∣∣y− f (x)
∣∣ > ε

(2)

min 1
2
�ω�2 + C

l�
i=1

(ξi + ξ∗i )

s.t.





yi − ωφ(x)− b ≤ ε + ξi
−yi + ωφ(x)+ b ≤ ε + ξ∗i
ξi ≥ 0, ξ∗i ≥ 0, i = 1, 2, ...l

(3)
max[− 1

2

l�
i=1

l�
j=1

(ai − a∗i )(aj − a∗j )K (xi, xj)−
l�

i=1

(ai + a∗i )ε +
l�

i=1

(ai − a∗i )]

s.t.





l�
i=1

(ai − a∗i ) = 0

0 ≤ ai ≤ C
0 ≤ a∗i ≤ C



Page 5 of 18Zhang and Li ﻿BMC Health Services Research          (2024) 24:477 	

Among the rest, K (xi, xj) = �(xi)�(xj) is the kernel 
function. The kernel function determines the structure 
of high-dimensional feature space and the complexity of 
the final solution. The Gaussian kernel is selected for this 
study with the function K (xi, xj) = exp(−�xi−xj�

2σ 2 ).
Let the optimal solution be a = [a1, a2, ..., al] and 

a∗ = [a∗1, a∗2, ..., al] to give the formula (4) and formula (5).

Among the rest, Nnsv is the number of support 
vectors.

In sum, the regression function is as shown in formula 
(6).

when some of the parameters are not 0, the correspond-
ing samples are the support vectors in the problem. This 
is the principle of SVR. The values of the three unknown 
parameters (penalty factor C, ε -insensitive loss function, 
and kernel function coefficient σ) , can directly impact 
the model effect. The penalty factor C affects the degree 
of function fitting through the selection of outliers in 
the sample by the function. Thus, excessively large val-
ues lead to better fit but poorer generalization, and vice 
versa. The ε value in the ε-insensitive loss function deter-
mines the accuracy of the model by affecting the width 
of support vector selection. Thus, excessively large values 
lead to lower accuracy that does not meet the require-
ments and excessively small values are overly complex 
and increase the difficulty. The kernel function coefficient 
σ determines the distribution and range of the training 
sample by controlling the size of inner product scaling in 
high-dimensional space, which can affect overfitting.

Therefore, we introduce other algorithms for opti-
mization of the three parameters in SVR. Currently 
the commonly used algorithms are 32and some heuris-
tic algorithms. Although the grid search method is able 
to find the highest classification accuracy, which is the 
global optimal solution. However, sometimes it can be 
time-consuming to find the optimal parameters for larger 
scales. If a heuristic algorithm is used, we could find the 
global optimal solution without having to trace over all 
the parameter points in the grid. And GA is one of the 
most commonly used heuristic algorithms, compared to 

(4)f (x) = ω∗�(x)+ b∗ =
l∑

i=1

(ai − a∗i )�(xi)�(x)+ b∗ =
l∑

i=1

(ai − a∗i )K (xi, xj)+ b

(5)b∗ =
1

Nnsv





l�

i=1

�
yi −

�

xi∈sv

�
ai − a∗i

�
K
�
xi, xj

�
− ε

�
+

l�

0<ai<c

�
yi −

�

xi∈sv

�
ai − a∗i

�
K
�
xi, xj

�
+ ε

�


(6)f (x) = ω∗�(x)+ b∗ =
l∑

i=1

(ai − a∗i )�(xi)�(x)+ b∗ =
l∑

i=1

(ai − a∗i )K (xi, xj)+ b

other heuristic algorithms, it has the advantages of strong 
global search, generalizability, and broader blending with 
other algorithms.

Given these factors, we employ a GA to encode and 
optimize the relevant parameters of the model. The 
inputs are the experimental training dataset, the Gauss-
ian kernel function expression, the maximum number of 

generations taken by the GA, the accuracy range of the 
optimized parameters, the GA population size, the fitness 
function, the probability of crossover, and the probability 
of mutation. The outputs are the optimal penalty factor 

C, ε-insensitive loss function parameter ε, and optimal 
Gaussian kernel parameter σ of SVR, thus achieving the 
optimization of SVR. The basic steps involved in GA 
optimization are described in detail below, and the model 
prediction process is shown in Fig. 1.

(1)	Population initialization

The three parameters are encoded using binary arrays 
composed of 0–1 bit-strings. Each parameter consisted 
of six bits, and the initial population is randomly gener-
ated. The population size is set at 60, and the number of 
iterations is 200.

Fig. 1  Prediction process of the GASVR model
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(2)	Fitness calculation

In the same dataset, the K-fold cross-validation tech-
nique is used to test each individual in the population, 
with K = 5. K-fold cross validation effectively avoids the 
occurrence of model over-learning and under-learning. 
For the judgment of the individual, this paper evaluates 
it in terms of fitness calculations. Therefore, combining 
the two enables the effective optimization of the mod-
el’s selected parameters and improves the accuracy of 
regression prediction.

Fitness is calculated using the mean error method, 
with smaller mean errors indicating better fitness. The 
fitness function is shown in formula (7) [32].

The individual’s genotype is decoded and mapped to 
the corresponding parameter value, which is substi-
tuted into the SVR model for training. The parameter 
optimization range is 0.01 ≤ C ≤ 100, 0.1 ≤ σ ≤ 20, and 
0.001 ≤ ε ≤ 1.

(3)	 Selection: The selection operator is performed 
using the roulette wheel method.

(4)	 Crossover: The multi-point crossover operator, in 
which two chromosomes are selected and multiple 
crossover points are randomly chosen for swap-
ping, is employed. The crossover probability is set at 
0.9.

(5)	 Mutation: The inversion mutation operator, in 
which two points are randomly selected and the 
gene values between them are reinserted to the 
original position in reverse order, is employed. The 
mutation probability is set at 0.09.

(6)	 Decoding: The bit strings are converted to param-
eter sets.

The parameter settings of the GASVR model built in 
this paper are shown in Table 1.

BILSTM model
The LSTM model is a special recurrent neural network 
algorithm that can remember the long-term depend-
encies of data series and has an excellent capacity for 
self-learning and non-linear fitting. LSTM automati-
cally connects hidden layers across time points, such 
that the output of one time point can arbitrarily enter 
the output terminal or the hidden layer of the next time 
point. Therefore, it is suitable for the sample prediction 

(7)f =
1

n

n∑

i=1

∣∣∣∣∣∣
Yi−

∧
Yi

Yi

∣∣∣∣∣∣
)

of time-series data and can predict future data based on 
stored data. Details of the model are shown in Fig. 2.

LSTM consists of a forget gate, an input gate, and an 
output gate.

The forget gate combines the previous and current time 
steps to give the output of the sigmoid activation func-
tion. Its role is to screen the information from the pre-
vious state and identify useful information that truly 
impacts the subsequent time step. The equation for the 
forget gate is shown in formula (8).

Among the number, Wf  is the weight of the forget gate, 
bf  is the bias, σ is the sigmoid activation function, ft is 
the output of the sigmoid activation function, t − 1 is the 
previous time step, t is the current time step, and xt is the 
input time-series data at time step t.

The input gate is composed of the output of the sig-
moid and tanh activation functions, and its role is to 
control the ratio of input information entering the infor-
mation of a given time step. The equation for the input 
gate is shown in formula (9).

(8)ft = σ(bf +Wf [ht−1, xt ])

(9)it = σ(bi +Wi[ht−1, xt ])

Table 1  The GASVR model related parameters

Parameters Values

NP 60

maxgen 200

Pc 0.9

Pm 0.09

C [0.01,100]

σ [0.1,20]

ε [0.001,1]

Fig. 2  Schematic diagram of the LSTM model
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Among the number, Wi is the output weight of the 
input gate, it is the output of the sigmoid activation func-
tion, bi and bC are the biases of the input gate, and WC is 
the output of the tanh activation function.

The role of the output gate is to control the amount of 
information output at the current state, and its equation 
is shown in formula (10).

Among the number, Wo is the weight of ot , and bo is the 
bias of the output gate.

The values of the above activation functions σ and tanh 
are generally shown in formulas (11) and (12).

Ct is the data state of the current time step, and its 
value is determined by the input information of the cur-
rent state and the information of the previous state. It is 
shown in formula (13).

Among the number, C̃t = tanh(Wc[ht−1, xt ] + bc).
ht is the state information of the hidden layer at the 

current time step, ht = ot × tanh(ct).Each time step Tn 
has a corresponding state Ct . By undergoing the train-
ing process, the model can learn how to modify state Ct 
through the forget, output, and input gates. Therefore, 
this state is consistently passed on, implying that impor-
tant distant information will neither be forgotten nor sig-
nificantly affected by unimportant information.

The above describes the principle of LSTM, which 
involves forward processing when applied. BILSTM con-
sists of two LSTM networks, one of which processes the 
input sequence in the forward direction (i.e., the origi-
nal order), while the other inputs the time series in the 

(10)ot = σ(bo +Wo[ht−1, xt ])

(11)σ(x) =
1

1+ e−x

(12)tanh(x) =
ex − e−x

ex + e−x

(13)Ct = C̃t × it + Ct−1 × ft

backward direction into the LSTM model. After process-
ing both LSTM networks, the outputs are combined, 
which eventually gives the output results of the BILSTM 
model. Details of the model are presented in Fig. 3.

Compared to LSTM, BILSTM can achieve bidirectional 
information extraction of the time-series and connect the 
two LSTM layers onto the same output layer. Therefore, 
in theory, its predictive performance should be superior 
to that of LSTM. In BILSTM, the equations of the for-
ward hidden layer(

−→
ht  ) , backward hidden layer(

←−
ht  ) , and 

output layer(ot ) are shown in formulas (14) , (15) and 
(16).

The parameter settings of the BILSTM model built in 
this paper are shown in Table 2.

Informer model
The Informer model follows the compiler-interpreter 
architecture in the Transformer model, and based on 
this, structural optimizations have been made to reduce 
the computational time complexity of the algorithm and 
to optimize the output form of the interpreter. The two 
optimization methods are described in detail next.

With large amounts of input data, neural network 
models can have difficulty capturing long-term inter-
dependencies in sequences, which can produce gra-
dient explosions or gradient vanishing and affect the 
model’s prediction accuracy. Informer model solves 
the existential gradient problem by using a ProbSparse 
Self-attention mechanism to make more efficient than 
conventional self-attention.

The value of Transformer self-attention is shown in 
formula (17).

(14)−→
ht = σ(

−−→
Wxhxt +

−−→
Whh

−−→
ht−1 +

−→
bh )

(15)←−
ht = σ(

←−−
Wxhxt +

←−−
Whh

←−−
ht−1 +

←−
bh )

(16)ot =
−−→
Wxh

−→
h +←−−

Why

←−
h + by

Fig. 3  Schematic diagram of the BILSTM model

Table 2  The BILSTM model related parameters

Parameters Values

epoch 30

batch size 57

layers 2

hidden size 128

time step 10

dropout 0.1

learning rate 0.006

optimizer Adam
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Among them, Q ∈ RLQ×d is the query matrix, 
K ∈ RLK×d is the key matrix, and V ∈ RLV×d is the value 
matrix, which are obtained by multiplying the input 
matrix X with the corresponding weight matrices WQ

,WK ,WV  respectively, and d is the dimensionality of Q, 
K, and V. Let qi,ki,vi represent the ith row in the Q, K, V 
matrices respectively, then the ith attention coefficient 
is shown in formula (18) as follows.

Therein, p(kj|qi) denotes the traditional Transform-
er’s probability distribution formula, and k(qi,Kl) 
denotes the asymmetric exponential sum function. 
Firstly, q=1 is assumed, which implies that the value of 
each moment is equally important; secondly, the differ-
ence between the observed distribution and the 
assumed one is evaluated by the KL scatter, if the value 
of KL is bigger, the bigger the difference with the 
assumed distribution, which represents the more 
important this moment is. Then through inequality 
lnLk ≤ M(qi,K ) ≤ maxj

{
qik

T
j√
d

}
− 1

Lk

∑Lk
j=1

{
qik

T
j√
d

}
+ lnLk

,M(qi,K ) is transformed into M(qi,K ) . According to 
the above steps, the ith sparsity evaluation formula is 
obtained as shown in formula (19) [33].

One of them, M(qi,K ) denotes the ith sparsity meas-
ure; M(qi,K ) denotes the ith approximate sparsity meas-
ure; Lk is the length of query vector. TOP − u quantities 
of M are selected to form Q , Q is the first u sparse matri-
ces, and the final sparse self-attention is shown in For-
mula (20). At this point, the time complexity is still O(n2) , 
and to solve this problem, only l moments of M2 are 
computed to reduce the time complexity to O(L · ln(L)).

Informer uses a generative decoder to obtain long 
sequence outputs.Informer uses the standard decoder 
architecture shown in Fig. 4, in long time prediction, the 
input given to the decoder is shown in formula (21).

(17)Attention(Q, K, V) = SoftMax(
QKT

√
d

)V

(18)

Attention(qi, K, V) =
∑

j

k(qi,Kj)∑
lk(qi,Kl)

vi = Ep(kj |qi)[vj]

(19)





M(qi,K ) = ln
Lk�
j=1

e

qik
T
j√
d − 1

Lk

Lk�
j=1

qik
T
j√
d

M(qi,K ) = maxj

�
qik

T
j√
d

�
− 1

Lk

Lk�
j=1

�
qik

T
j√
d

�

(20)Attention(Q, K, V) = SoftMax(
QKT

√
d

)V

Therein, Xt
de denotes the input to the decoder; 

Xt
token ∈ R(Ltoken+Ly)×dmodel is the dimension of the encoder 

output, which is the starting token without using all the 
output dimensions; Xt

0 ∈ R(Ltoken+Ly)×dmodel is the dimen-
sion of the target sequence, which is uniformly set to 0; 
and finally the splicing input is performed to the encoder 
for prediction.

The parameter settings of Informer model created in 
this paper are shown in Table 3.

BILSTM‑GASVR combined prediction model
SVR has demonstrated good performance in solving 
problems like finite samples and non-linearity. Compared 
to deep learning methods, it offers faster predictions and 

(21)Xt
de = Concat(Xt

token,X
t
0) ∈ R(Ltoken+Ly)×dmodel

Fig. 4  Informer uses a generative decoder to obtain long sequence 
outputs

Table 3  The Informer model related parameters

Parameters Values

d_model 512

n_heads 16

s_layers 2

batch_size 57

d_ff 2048

train_epochs 6

dropout 0.1

learning rate 0.0001

patience 6

optimizer Adam

embed Time
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smaller empirical risks. BILSTM has the capacity for 
long-term memory, can effectively identify data periodic-
ity and trends, and is suitable for the processing of time-
series data. Hence, it can be used to identify the effect of 
time-series on the number of confirmed cases. Given the 
advantages of these two methods in different scenarios, 
we combined them to perform predictions using GASVR, 
followed by error repair using BILSTM. The basic steps 
for prediction based on the BILSTM-GASVR model are 
as follows:

(1)	 Normalization is performed on the initial data.
(2)	 The GASVR model is applied to perform training 

and parameter optimization of the data to obtain 
the predicted value ŷi.

(3)	 After outputting the predicted value of GASVR, 
the residual sequence between the predicted value 
and real data is extracted to obtain the error γi (i.e., 
γi = yi − ŷi).

(4)	 The BILSTM model is applied to perform training 
of the error to improve prediction accuracy. The 
BILSTM model in this paper is a multiple input sin-
gle output model. Its inputs are the true and pre-
dicted error values γi and its output is the new error 
value γ̂i predicted by BILSTM.

(5)	 The final predicted value is the sum of the GASVR 
predicted value and the BILSTM residual predicted 
value (i.e., Yi = ŷi + γ̂i).

The parameter settings of the BILSTM-GASVR model 
built in this paper are shown in Table 4.

Model testing criteria
To test the effect of the model, the prediction results of 
the BILSTM-GASVR model are compared to those of 
GASVR, LSTM, BILSTM and Informer. The prediction 
error is mainly quantified using three indicators: mean 
squared error (MSE), root mean squared error (RMSE), 
and correlation coefficient ( R2 ). Their respective equa-
tions are shown in formulas (22), (23) and (24).

Demand forecasting model of ICU healthcare resources
ICU healthcare resources can be divided into human and 
material resources. Human resources refer specifically to 
the professional healthcare workers in the ICU. Material 
resources, which are combined with the actual consump-
tion of medical supplies, can be divided into consumables 
and non-consumables. Consumables refer to the com-
monly used drugs in the ICU, which include drugs for 
treating cardiac insufficiency, vasodilators, anti-shock 
vasoactive drugs, analgesics, sedatives, muscle relaxants, 
anti-asthmatic drugs, and anticholinergics. Given that 
public health emergencies have a relatively high probabil-
ity of affecting the respiratory system, we compiled a list 
of commonly used drugs for respiratory diseases in the 
ICU (Table 5).

Non-consumables refer to therapeutic medical equip-
ment, including electrocardiogram machines, blood gas 
analyzers, electrolyte analyzers, bedside diagnostic ultra-
sound machines, central infusion workstations, non-
invasive ventilators, invasive ventilators, airway clearance 
devices, defibrillators, monitoring devices, cardiopulmo-
nary resuscitation devices, and bedside hemofiltration 
devices.

The demand forecasting model of ICU healthcare 
resources constructed in this study, as well as its relevant 
parameters and definitions, are described below. Rn

ij is 
the forecasted demand for the i th category of resources 
on the n th day in region j . Y n

j  is the predicted number of 
current confirmed cases on the n th day in region j . Mn

j  is 
the number of ICU healthcare workers on the n th day in 
region j , which is given by the following formula: number 
of healthcare workers the previous day + number of new 

(22)MES =
1

n

n∑

i=1

(Yi − Ŷi)
2

(23)RMES =

√√√√1

n

n∑

i=1

(Yi − Ŷi)
2

(24)R2 =
(
∑N

i=1(Yi − Ŷi)(Ŷi − Ŷi))
2

∑N
i=1(Yi − Ŷi)

2
∑N

i=1(Ŷi − Ŷi)
2

Table 4  The BILSTM-GASVR model related parameters

Parameters Values

NP 60

maxgen 200

Pc 0.9

Pm 0.09

C [0.01,100]

σ [0.1,20]

ε [0.001,1]

epoch 30

batch size 57

layers 1

hidden size 64

time step 6

dropout 0.1

learning rate 0.001

optimizer Adam
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recruits − reduction in number the previous day, where 
the reduction in number refers to the number of health-
care workers who are unable to work due to infection or 
overwork. In general, the number of ICU healthcare work-
ers should not exceed 5% of the number of current con-
firmed cases (i.e., it takes the value range [0, Y n

j ×5%]). Ui is 
the maximum working hours or duration of action of the 
i th resource category within one day. Aj is the number of 
resources in the i th category allocated to patients (i.e., how 
many units of resources in the i th category is needed for 
a patient who need the i th unit of the given resource). ϕi 
is the demand conversion coefficient (i.e., the proportion of 
the current number of confirmed cases who need to use the 
i th resource category). Cn

ij is the available quantity of mate-
rial resources of the i th category on the n th day in region j . 
At the start, this quantity is the initial reserve, and once the 
initial reserve is exhausted, it is the surplus from the previ-
ous day. The formula for this parameter is given as follows: 
available quantity from the previous day + replenishment 
on the previous day − quantity consumed on the previ-
ous day, where if Cn

ij is a negative number, it indicates the 
amount of shortage for the given category of resources on 
the previous day.

In summary, the demand forecast for emergency medical 
supplies constructed in this study is shown in formula (25).

(25)Rn
ij =





(Y n
j ϕi−

Mn
j

Aj
)

Aj
× 24

Ui
, i = 1

Y n
j ϕi

24
Ui

− Cn
ij , i = 2

(Y n
j ϕi−

Cnij
Aj

)

Aj
, i = 3

The number of confirmed cases based on data-driven 
prediction is introduced into the demand forecasting 
model for ICU resources to forecast the demand for the 
various categories of resources. In addition to the number 
of current confirmed cases, the main variables of the first 
demand forecasting model for human resources are the 
available quantity and maximum working hours. The main 
variable of the second demand forecasting model for con-
sumable resources is the number of units consumed by the 
available quantity. The main variable of the third model for 
non-consumable resources is the allocated quantity. These 
three resource types can be predicted using the demand 
forecasting model constructed in this study.

Results
Prediction of the number of current infected cases
The COVID-19 situation in Shanghai is selected for our 
experiment. A total of 978 entries of epidemic-related 

Table 5  Partial list of common ICU drugs for respiratory diseases

Effect Drug type Name of typical drugs

Antibiotics β-lactams Penicillins, cephalosporins

Quinolones Levofloxacin, moxifloxacin

Macrolides Erythromycin, clarithromycin

Aminoglycosides Streptomycin, gentamicin

Anti-asthmatic drugs β2 adrenergic receptor agonists Albuterol, formoterol

Theophyllines Aminophylline, diprophylline

Hormones Beclomethasone dipropionate, prednisolone, 
dexamethasone

Anticholinergics Atropine, tiotropium bromide

Antitussives and expectorants Mucolytics Ambroxol hydrochloride, erdosteine

Nausea-stimulating expectorants Guaifenesin

Other expectorants Myrtol

Central antitussives Dextromethorphan, pentoxyverine, cloperastine

Peripheral antitussives Benzonatate, noscapine, lidocaine

Antipyretics Compound antitussives Aspirin

Salicylates Acetaminophen

Acetanilides Ibuprofen

Table 6  Statistical description of the results of the indicators

Indicator Value

mean 693.8

median 76

mode 59 and 67

standard deviation 3022.9

kurtosis 41.1

skewness 6.3

minimum 1

maximum 24609
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data in Shanghai between January 20, 2020, and Septem-
ber 24, 2022, are collected from the epidemic reporting 
platform. This dataset is distributed over a large range 
and belongs to a right-skewed leptokurtic distribution. 
The specific statistical description of data is shown in 
Table 6. Part of the data is shown in Table 7.

And we divided the data training set and test set in 
an approximate 8:2 ratio, namely, 798 days for training 
(January 20, 2020 to March 27, 2022) and 180 days for 
prediction (March 28, 2022 to September 24, 2022).

Due to the large difference in order of magnitude 
between the various input features, directly implementing 
training and model construction would lead to suboptimal 
model performance. Such effects are usually eliminated 
through normalization. In terms of interval selection, 
[0, 1] reflects the probability distribution of the sample, 
whereas [-1, 1] mostly reflects the state distribution or 
coordinate distribution of the sample. Therefore, [-1, 1] is 
selected for the normalization interval in this study, and 
the processing method is shown in formula (26).

Among the rest, X is the input sample, Xmin and Xmax 
are the minimum and maximum values of the input sam-
ple, and Xnew is the input feature after normalization.

In addition, we divide the data normalization into two 
parts, considering that the amount of data in the training 
set is much more than the test set in the real operating 
environment. In the first step, we normalize the train-
ing set data directly according to the above formula; in 
the second step, we normalize the test data set using the 
maximum and minimum values of the training data set.

The values of the preprocessed data are inserted into 
the GASVR, LSTM, Informer, BILSTM models and the 
BILSTM-GASVR model is constructed. Figures  5, 6, 7, 
8 and 9 show the prediction results. From Figs. 5, 6, and 
7, it can be seen that in terms of data accuracy, GASVR 
more closely matches the real number of infected people 

(26)Xnew = 2×
X − Xmin

Xminmax − 1

Fig. 5  The prediction result of the GASVR model

Fig. 6  The prediction result of the LSTM model

Fig. 7  The prediction result of the BILSTM model

Fig. 8  The prediction result of the Informer model
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relative to BILSTM and LSTM. Especially in the most 
serious period of the epidemic in Shanghai (April 17, 
2022 to April 30, 2022), the advantage of the accuracy 
of the predicted data of GASVR is even more obvious, 
which is due to the characteristics of GASVR for small 
samples and nonlinear prediction. However, in the over-
all trend of the epidemic, BILSTM and LSTM, which 
have the ability to learn and memorize to process time 
series data, are superior. It is clearly seen that in April 1, 
2022-April 7, 2022 and May 10, 2022-May 15, 2022, there 
is a sudden and substantial increase in GASVR in these 
two time phases, and a sudden and substantial decrease 
in April 10, 2022-April 14, 2022. These errors also 
emphasize the stability of BILSTM and LSTM, which are 
more closely matched to the real epidemic development 
situation in the whole process of prediction, and the dif-
ference between BILSTM and LSTM prediction is that 
the former predicts data more accurately than the latter, 
which is focused on the early stage of prediction as well 
as the peak period of the epidemic. Informer is currently 

an advanced time series forecasting method. From Fig. 8, 
it can be seen that the prediction data accuracy and the 
overall trend of the epidemic are better than the sin-
gle prediction models of GASVR, LSTM and BILSTM. 
However, Informer is more suitable for long time series 
and more complex and large prediction problems, so the 
total sample size of less than one thousand cases is not 
in the comfort zone of Informer model. Figure  9 shows 
that the BILSTM-GASVR model constructed in this 
paper is more suitable for this smaller scale prediction 
problem, with the best prediction results, closest to the 
actual parameter (number of current confirmed cases), 
demonstrating small sample and time series advantages. 
In Short, the prediction effect of models is ranked as fol-
lows: BILSTM-GASVR> Informer> GASVR> BILSTM> 
LSTM.

The values of the three indicators (MSE, RMSE, and 
correlation coefficient R2 ) for the five models are shown 
in Table 8. MSE squares the error so that the larger the 
model error, the larger the value, which help capture 
the model’s prediction error more sensitively. RMSE 
is MSE with a root sign added to it, which allows for 
a more intuitive representation of the order of mag-
nitude difference from the true value. R2 is a statisti-
cal indicator used to assess the overall goodness of fit 
of the model, which reflects the overall consistency of 
the predicted trend and does not specifically reflect the 
degree of data. The results in the Table 8 are consistent 
with the prediction results in the figure above, while 
the ranking of MSE, RMSE, and R2 are also the same 
(i.e., BILSTM-GASVR> Informer> GASVR> BILSTM> 
LSTM).

Fig. 9  The prediction result of the BILSTM-GASVR model

Table 8  Comparison of the predictive performance of different 
models

Model MSE RMSE R2

BILSTM-GASVR 17238 131.294 0.9996

Informer 44022 209.821 0.9994

BILSTM 569878 754.903 0.9858

LSTM 1837130 1355.408 0.9544

GASVR 289712 538.249 0.9928
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In addition, we analyze the five model prediction 
data using significance tests as a way of demonstrating 
whether the model used is truly superior to the other 
baseline models. The test dataset with kurtosis higher 
than 4 does not belong to the approximate normal dis-
tribution, so parametric tests are not used in this paper. 
Given that the datasets predicted by each of the five 
models are continuous and independent datasets, this 
paper uses the Kruskal-Wallis test, which is a nonpara-
metric test. The test steps are as follows.

(1)	 Determine hypotheses (H0, H1) and significance 
level ( α).

(2)	 For each data set, all its sample data are combined 
and ranked from smallest to largest. Then find the 
number of data items ( ni ), rank sum ( Ri ) and mean 
rank of each group of data respectively.

(3)	 Based on the rank sum, the test statistic (H) is cal-
culated for each data set in the Kruskal-Wallis test. 
The specific calculation is shown in formula (27).

(4)	According to the test statistic and degrees of free-
dom, find the corresponding p-value in the Kruskal-
Wallis distribution table. Based on the P-value, deter-
mine whether the original hypothesis is valid.

In the significance test, we set the significance set-
ting original hypothesis (H0) as there is no significant 
difference between the five data sets obtained from the 
five predictive models. We set the alternative hypoth-
esis (H1) as there is a significant difference between the 
five data sets obtained from the five predictive models. 
At the same time, we choose the most commonly used 
significance level taken in the significance test, namely 
0.05. In this paper, multiple comparisons and two-by-
two comparisons of the five data sets obtained from the 
five predictive models are performed through the SPSS 
software. The results of the test show that in the multi-
ple comparison session, P=0.001<0.05, so H0 is rejected, 
which means that the difference between the five groups 
of data is significant. In the two-by-two comparison ses-
sion, BILSTM-GASVR is less than 0.05 from the other 
four prediction models. The specific order of differences 
is Informer < GASVR < BILSTM < LSTM, which means 
that the BILSTM-GASVR prediction model does get a 
statistically significant difference between the dataset and 
the other models.

(27)H =
12

N (N + 1)

m∑

i=1

R2
i

ni
− 3(N + 1)

In summary, combined prediction using the BILSTM-
GASVR model is superior to the other four single models 
in various aspects in the case study analysis of Shanghai 
epidemic with a sample size of 978.

Demand forecasting of ICU healthcare resources
Combined with the predicted number of current infected 
cases, representatives are selected from the three catego-
ries of resources for forecasting. The demand for nurses 
is selected as the representative for the first category of 
resources.

In view of the fact that there are currently no specific 
medications that are especially effective for this pub-
lic health emergency, many ICU treatment measures 
involved helping patients survive as their own immune 
systems eliminated the virus. This involved, for exam-
ple, administering antibiotics when patients developed 
a secondary bacterial infection. glucocorticoids are used 
to temporarily suppress the immune system when their 
immune system attacked and damaged lung tissues caus-
ing patients to have difficulty breathing. extracorporeal 
membrane oxygenation (ECMO) is used for performing 
cardiopulmonary resuscitation when patients are suffer-
ing from cardiac arrest. In this study, we take dexameth-
asone injection (5 mg), a typical glucocorticoid drug, as 
the second category of ICU resources (i.e., drugs); and 
invasive ventilators as the third category of ICU resources 
(i.e., medical equipment).

During the actual epidemic in Shanghai, the municipal 
government organized nine critical care teams, which are 
stationed in eight municipally designated hospitals and 
are dedicated to the treatment of critically ill patients. 
In this study, the ICU nurses, dexamethasone injections, 
and invasive ventilators in Shanghai are selected as the 
prediction targets and introduced into their respective 
demand forecasting models. Forecasting of ICU health-
care resources is then performed for the period from 
March 28, 2022, to April 28, 2022, as an example. Part of 
the parameter settings for the three types of resources are 
shown in Tables 9, 10, and 11, respectively.

Table  12 shows the forecasting results of the demand 
for ICU nurses, dexamethasone injections, and inva-
sive ventilators during the epidemic wave in Shanghai 
between March 28, 2022, and April 28, 2022.

For the first category (i.e., ICU nurses), human resource 
support is only needed near the peak period, but the sup-
ply could not be replenished immediately. In the early 
stages, Shanghai could only rely on the nurses’ perse-
verance, alleviating the shortage of human resources by 
reducing the number of shifts and increasing working 
hours. This situation persisted until about April 10 and 
is only resolved when nurses from other provinces and 
regions successively arrived in Shanghai.
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The second category of ICU resources is drugs, which are 
rapidly consumed. The pre-event reserve of 30,000 dexa-
methasone injections could only be maintained for a short 
period and is fully consumed during the outbreak. Further-
more, daily replenishment is still needed, even when the 
epidemic has passed its peak and begun its decline.

The third category is invasive ventilators, which are 
non-consumables. Thus, the reserve lasted for a relatively 
long period of time in the early stages and did not require 
replenishment after its maximum usage during the peak 
period.

Discussion
Demand forecasting models are constructed based on the 
classification of healthcare resources according to their 
respective features. We choose ICU nurses, dexametha-
sone injections, and invasive ventilators as examples, and 
then forecast demand for the epidemic wave in Shanghai 
between March 28, 2022, and April 28, 2022. The main 
conclusions are as follows:

(1)	 A long period of time is needed to train ICU health-
care workers who can independently be on duty, 
taking at least one year from graduation to entering 
the hospital, in addition to their requiring continu-
ous learning, regular theoretical training, and the 

accumulation of clinical experience during this pro-
cess. Therefore, for the first category of ICU health-
care resources, in the long term, healthcare institu-
tions should place a greater emphasis on their talent 
reserves. Using China as an example, according 
to the third ICU census, the ratio of the number 
of ICU physicians to the number of beds is 0.62:1 
and the ratio of the number of nurses to the num-
ber of beds is 1.96:1, which are far lower than those 
stipulated by China itself and those of developed 
countries. Therefore, a fundamental solution is to 
undertake proactive and systematic planning and 
construction to ensure the more effective deploy-

Table 9  Parameter setting of ICU nurses

Parameter Value

Ui 12

ϕi 0.13

Mn
j 1000

Aj 0.5

Table 10  Parameter setting of dexamethasone injections

Parameter Value

Ui 36

ϕi 0.22

Cn
ij 30000

Table 11  Parameter setting of invasive ventilators

Parameter Value

Aj 1

ϕ 0.11

Cn
ij 1300

Table 12  Demand forecasting of the three categories of ICU 
healthcare resources

Date Demand for ICU 
nurses (person)

Demand for 
dexamethasone 
injections (Piece)

Demand 
for invasive 
ventilators (Piece)

2022/3/28 0 0 0

2022/3/29 0 0 0

2022/3/30 0 0 0

2022/3/31 0 1870 0

2022/4/1 0 2320 0

2022/4/2 0 2490 0

2022/4/3 110 3050 0

2022/4/4 200 3340 0

2022/4/5 490 4440 0

2022/4/6 820 4800 0

2022/4/7 1090 5490 0

2022/4/8 1310 5010 110

2022/4/9 1530 4960 230

2022/4/10 970 4750 230

2022/4/11 1140 4520 250

2022/4/12 1480 5520 310

2022/4/13 2250 6090 390

2022/4/14 2320 6840 580

2022/4/15 2490 7930 600

2022/4/16 3360 10120 750

2022/4/17 3120 11330 1000

2022/4/18 2270 13550 1110

2022/4/19 2150 14980 580

2022/4/20 2060 14870 770

2022/4/21 2430 14300 240

2022/4/22 2520 14000 240

2022/4/23 2490 13360 0

2022/4/24 1740 12040 0

2022/4/25 830 10500 0

2022/4/26 0 10400 0

2022/4/27 0 11030 0

2022/4/28 0 11020 0
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ment of human resources in the event of a severe 
outbreak. In the short term, healthcare institutions 
should focus on the emergency expansion capacity 
of their human resources. In case there are health-
care worker shortages during emergencies, the 
situation can be alleviated by summoning retired 
workers back to work and asking senior medical 
students from various universities to help in the 
hospitals to prevent the passive scenario of severely 
compressing the rest time of existing staff or wait-
ing for external aid. However, it is worth noting 
that to ensure the effectiveness of such a strategy 
of using retired healthcare workers or senior stu-
dents of university medical faculties, it is necessary 
for healthcare organizations to provide them with 
regular training in the norm, such as organizing 2-3 
drills a year, to ensure the professionalism and pro-
ficiency of healthcare workers who are temporarily 
and suddenly put on the job. At the same time, it is 
also necessary to fully mobilize the will of individu-
als. Medical institutions can provide certain subsi-
dies to retired health-care workers and award them 
with honorable titles. For senior university medical 
students, volunteer certificates are issued and pri-
ority is given to their internships, so that health-
care workers can be motivated to self-realization 
through spiritual and material rewards.

(2)	 Regarding the second category of ICU resources 
(i.e., drugs), healthcare institutions perform the 
subdivision of drug types and carry out dynamic 
physical preparations based on 15–20% of the 
service recipient population for clinically essen-
tial drugs. This will enable a combination of good 
preparedness during normal times and emergency 
situations. In addition, in-depth collaboration with 
corporations is needed to fully capitalize on their 
production capacity reserves. This helps medical 
institutions to be able to scientifically and rationally 
optimize the structure and quantity of their drug 
stockpiles to prevent themselves from being over-
stressed. Yet the lower demand for medicines at the 
end of the epidemic led to the problem of excess 
inventory of enterprises at a certain point in time 
must be taken into account. So, the medical institu-
tions should sign a strategic agreement on stockpil-
ing with enterprises, take the initiative to bear the 
guaranteed acquisition measures, and consider the 
production costs of the cooperative enterprises. 
These measures are used to truly safeguard the 
enthusiasm of the cooperative enterprises to invest 
in the production capacity.

(3)	 Regarding the third category of ICU resources (i.e., 
medical equipment), large-scale medical equip-

ment cannot be rapidly mass-produced due to 
limitations in the capacity for emergency produc-
tion and conversion of materials. In addition, the 
bulk procurement of high-end medical equipment 
is also relatively difficult in the short term. There-
fore, it is more feasible for healthcare institutions to 
have physical reserves of medical equipment, such 
as invasive ventilators. However, the investment 
costs of medical equipment are relatively high. Ven-
tilators, for example, cost up to USD $50,000, and 
subsequent maintenance costs are also relatively 
high. After all, according to the depreciable life of 
specialized hospital equipment, the ventilator, as a 
surgical emergency equipment, is depreciated over 
five years. And its depreciation rate is calculated at 
20% annually for the first five years, which means a 
monthly depreciation of $835. Thus, the excessively 
low utilization rate of such equipment will also 
impact the hospital. Healthcare institutions should, 
therefore, conduct further investigations on the 
number of beds and the reserves of ancillary large-
scale medical equipment to find a balance between 
capital investment and patient needs.

The limitations of this paper are reflected in the follow-
ing three points. Firstly, in the prediction of the number 
of infections, the specific research object in this paper is 
COVID-19, and other public health events such as SARS, 
H1N1, and Ebola are not comparatively analyzed. The 
main reason for this is the issue of data accessibility, and 
it is easier for us to analyze events that have occurred in 
recent years. In addition, using the Shanghai epidemic 
as a specific case may be more representative of the 
epidemic situation in an international metropolis with 
high population density and mobility. Hence, it has cer-
tain regional limitations, and subsequent studies should 
expand the scope of the case study to reflect the char-
acteristics of epidemic transmission in different types of 
urban areas and enhance the generalizability.

Secondly, the main emphasis of this study is on fore-
casting the demand for ICU healthcare resources across 
the entire region of the epidemic, with a greater focus on 
patient demand during public emergencies. Our aims are 
to help all local healthcare institutions more accurately 
identify changes in ICU healthcare resource demand 
during this local epidemic wave, gain a more accurate 
understanding of the treatment demands of critically 
ill patients, and carry out comprehensive, scientifically 
based decision-making. Therefore, future studies can 
examine individual healthcare institutions instead and 
incorporate the actual conditions of individual units to 
construct multi-objective models. In this way, medical 
institutions can further grasp the relationship between 
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different resource inputs and the recovery rate of criti-
cally ill patients, and achieve the balance between eco-
nomic and social benefits.

Finally, for the BILSTM-GASVR prediction method, in 
addition to the number of confirmed diagnoses predicted 
for an outbreak in a given region, other potential appli-
cations beyond this type of medium-sized dataset still 
require further experimentation. For example, whether 
the method is suitable for procurement planning of a 
certain supply in production management, forecasting of 
goods sales volume in marketing management, and other 
long-period, large-scale and other situations.

Conclusion
Within the context of major public health events, the 
fluctuations and uncertainties in the demand for ICU 
resources can lead to large errors between the health-
care supply and actual demand. Therefore, this study 
focuses on the question of forecasting the demand for 
ICU healthcare resources. Based on the number of 
current confirmed cases, we construct the BILSTM-
GASVR model for predicting the number of patients. 
By comparing the three indicators (MSE, MAPE, and 
correlation coefficient R2 ) and the results of the BIL-
STM, LSTM, and GASVR models, we demonstrate 
that our model have a higher accuracy. Our findings 
can improve the timeliness and accuracy of predict-
ing ICU healthcare resources and enhance the dynam-
ics of demand forecasting. Hence, this study may serve 
as a reference for the scientific deployment of ICU 
resources in healthcare institutions during major public 
events.

Given the difficulty in data acquisition, only the Shang-
hai epidemic dataset is selected in this paper, which is 
one of the limitations mentioned in Part 4. Although the 
current experimental cases of papers in the same field do 
not fully conform to this paper, the results of the study 
cannot be directly compared. However, after studying the 
relevant reviews and the results of the latest papers, we 
realize that there is consistency in the prediction ideas 
and prediction methods [34, 35]. Therefore, we summa-
rize the similarities and differences between the results of 
the study and other research papers in epidemic forecast-
ing as shown below.

Similarities: on the one hand, we all characterize trends 
in the spread of the epidemic and predict the number of 
infections over 14 days. On the other hand, we all select 
the current mainstream predictive models as the basis 
and combine or improve them. Moreover, we all use the 
same evaluation method (comparison of metrics such as 
MSE and realistic values) to evaluate the improvements 
against other popular predictive models.

Differences: on the one hand, other papers focus more 
on predictions at the point of the number of patients, 
such as hospitalization rate, number of infections, etc. 
This paper extends the prediction from the number of 
patients to the specific healthcare resources. This paper 
extends the prediction from the number of patients 
to specific healthcare resources. We have divided the 
medical resources and summarized the demand regu-
larities of the three types of information in the epi-
demic, which provides the basis for decision-making 
on epidemic prevention to the government or medical 
institutions. On the other hand, in addition to the two 
assessment methods mentioned in the same point, this 
paper assesses the performance of the prediction meth-
ods with the help of significance tests, which is a statis-
tical approach to data. This can make the practicality of 
the forecasting methodology more convincing.
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