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Abstract
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Background: Over the past years, the incidence of colorectal cancer has been increasing among young adults. A
large percentage of these patients live at least 5 years after diagnosis, but it is unknown whether their rate of
hospitalizations after this 5-year mark is comparable to the general population.

Methods: This is a population-based cohort consisting of 917 young adult survivors diagnosed with colorectal
cancer in Ontario from 1992-1999 and 4585 matched cancer-free controls. A multistate model is presented to
reflect and compare trends in the hospitalization process among survivors and their matched controls.

Results: Analyses under a multistate model indicate that the risk of a subsequent hospital admission increases as
the number of prior hospitalizations increases. Among patients who are yet to experience a hospitalization, the rate
of admission is 3.47 times higher for YAS than controls (95% Cl (2.79, 4.31)). However, among patients that have
experienced one and two hospitalizations, the relative rate of a subsequent admission decreases to 3.03 (95% Cl

Conclusions: Young adult survivors of colorectal cancer have an increased risk of experiencing hospitalizations
compared to cancer-free controls. However this relative risk decreases as the number of prior hospitalizations
increases. The multistate approach is able to use information on the timing of hospitalizations and answer
questions that standard Poisson and Negative Binomial models are unable to address.
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Background

The incidence of colorectal cancer (CRC) among young
adults has been increasing over the past three decades.
Data from the Surveillance, Epidemiology, and End
Results registry indicate that the incidence of colon can-
cer in persons aged 20 to 40 years increased 17% be-
tween 1973 and 1999. Moreover, the incidence of rectal
cancer in this age group increased 75% over this time
period [1,2]. Due to improvements in disease-specific
survival, a large percentage of these patients now survive
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5 years or more after diagnosis of CRC [1]. However,
these survivors remain at a higher risk for late effects
such as late mortality and second cancers. Using the
same population-based cohort discussed in this paper, a
recent study by Forbes et al. (2010) found young adult
survivors of CRC have a significantly higher risk of long-
term death than matched controls (HR=8.2, 95% CI (5.8,
11.6)) [1].

Despite the increasing number of young adult CRC
survivors long-term health effects of CRC — a disease
frequently requiring multi-modal therapy including sur-
gery, chemotherapy and irradiation — in a young popula-
tion have not been well studied [1,3]. In older adults,
long-term survivors of CRC are known to have an
increased risk of small bowel obstruction [4,5], and
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treatment may result in substantial genito-urinary dys-
function [6,7]. Other disorders, including pelvic fractures
[8] dementia, diabetes and osteoporosis [9], may also be
associated with CRC survival. Although late effects may
occur, this has not been well studied in CRC survivors,
particularly in comparison to other malignancies, per-
haps because of the advanced age of most patients with
CRC at diagnosis. Long-term effects of CRC diagnosis
and treatment may have a more substantial impact on
younger survivors — younger survivors have been found
to have worse quality of life and experience more role
restrictions than older CRC survivors [10], and certainly
young CRC survivors have a longer potential time span
to experience late-effects. .The impact of CRC on hos-
pital admissions, an indicator of significant illness,
among young adult survivors compared to the general
population is unknown. The risk of hospitalization over
time may be greater than in younger CRC patients, how-
ever, some late effects associated with hospitalization,
such as pelvic fracture after irradiation may be less com-
mon in young adults than older survivors who are at
higher baseline risk. By comparing rates of hospitalization
in long-term survivors and a control population we can
assess long-term morbidity due to significant medical ill-
ness attributable to CRC and treatment in a group of
young survivors. Additionally, higher rates of hospitaliza-
tions would imply that this population of CRC survivors
has an increasing impact on the Canadian health care sys-
tem and an increasing demand for hospital services [3].

Data on repeated hospitalizations over time are often
referred to in the statistical literature as recurrent event
data. Standard analyses are based on Poisson or negative
binomial models — these approaches estimate the rate of
hospitalizations by simply modeling each patient’s total
number of hospitalizations over their observation period.
However if one is interested in taking the timing of each
hospitalization into account, then various counting
process or gap time models can be adopted. In many
cases, a terminal event such as death occurs which pre-
cludes the occurrence of future recurrent events. In the
models mentioned above, the time of death is often trea-
ted as a censoring time, implying that patients are still at
risk of experiencing further recurrent events. To over-
come this issue a multistate analysis is recommended -
it models the terminal event as an absorbing state, since
no recurrent events can occur after this point.

Multistate models examine disease processes by de-
scribing changes in a patient’s health condition over time
[11]. These models classify a patient into one of a finite
number of distinct states at any given time during their
follow-up [12]. Events correspond to transitions from
one state to another, and the event times correspond to
the transition times [13,14]. Recently, multistate models
have been extended to examine recurrent event data in
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which a terminal event may occur [15,16]. Examples in-
clude organ transplant studies where transient graft re-
jection episodes are terminated by total graft rejection
or death [15], and studies of cancer patients with bone
metastases where the occurrence of new metastases is
terminated by death [16]. Although multistate methods
have been developed under such settings, the application
of these models is limited in the epidemiology and clin-
ical literature. This paper’s main objective is to study
trends in hospitalizations among a cohort of young adult
survivors of colorectal cancer and their matched cancer-
free controls using a flexible multistate model.

Methods

Study population

The study consists of young adult survivors of colorectal
cancer and matched cancer-free controls in Ontario,
Canada. This cohort was recently studied by Forbes
et al. [1] to compare long-term survival of young adult
survivors and controls. Young adults have been defined
by the Canadian Cancer Society of Canada as persons
aged 20 to 44 years [17]. All individuals diagnosed with
CRC in Ontario between January 1, 1992 and December
31, 1999, and aged 20 to 44 years at the time of diagno-
sis of CRC were eligible for inclusion. Diagnosis date
and type of cancer diagnosis are retrieved from the On-
tario Cancer Registry (OCR), a comprehensive
population-based cancer registry created to capture all
incident cases of cancer in the province. Patients were
considered survivors if they were alive 5 years after diag-
nosis. Individuals were excluded if they died within 5
years of diagnosis, or if they had a diagnosis of any other
cancer before their diagnosis of CRC.

Controls were identified using Ontario’s Registered
Persons Database (RPDB). Five controls were randomly
matched to each young adult survivor on calendar year
of birth, sex, and geographic location. The referent date
for a control was defined as the date of diagnosis for
their corresponding matched young adult CRC survivor.
Controls were only eligible for inclusion if they had no
prior diagnosis of cancer before their referent date and
survived a minimum of 5 years after the referent date.
After the 5-year mark, survivors and controls were fol-
lowed until their date of death, date of OHIP (Ontario
Health Insurance Plan) eligibility loss, or until date of
study end (December 31%, 2007).

Admissions to a hospital for acute illness are identified
using the Canadian Institute for Health Information Dis-
charge Abstract Database (CIHI-DAD). Over each indi-
vidual’s follow-up period, the number of admissions and
the date of each admission are recorded. Permission for
data access was obtained from the Institute of Clinical
Evaluative Sciences (ICES), Toronto, Ontario.
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Multistate models

Multistate models use distinct states to describe changes
in a patient’s condition over time. Events correspond to
transitions from one state to another, and the event
times correspond to the transition times [14]. The multi-
state model treats death as an absorbing event, as no
further admissions can occur after this point [16,18].
Note that the common survival model can be viewed as
a 2-state model, where the first state represents an
“alive” state and the second represents the “dead” state.
Survival analysis aims to characterize the distribution of
the transition time to the dead state, whereas a multi-
state analysis aims to describe the distribution of several
transitions (not only to the dead state).

The multistate model assumes the baseline rate func-
tion is dependent on the number of prior events. A pa-
tient cannot be at risk for their k™ admission without
experiencing admission k-1. Time ¢ is measured as time
in years starting from 5 years after the diagnosis date
(for survivors) or from 5 years after the referent date
(for controls). At any given time ¢, the multistate model
allows the patients who are at risk for their 10™ admis-
sion, for example, to have a different baseline rate func-
tion than patients who are at risk for their 1** admission.
Similarly, the model assumes the baseline rate function
for death varies depending on the number of admissions
experienced. The model also allows for separate regres-
sion parameters to be estimated for each transition. The
instantaneous transition rate [14,15,19] can be expressed
as a proportional rate regression model

Ns(®) = Nojs (O exp{xiB, . (2)

Function \;js(t) represents the instantaneous rate for a
transition from state j to state s at time ¢ for the i™ pa-
tient. The baseline instantaneous transition rate function
Ao, js(t) and parameter vector B is specific to each j—s
transition. The random effect v; accounts for the hetero-
geneity in the j—s transitions rates between patients
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[20]. Note that if we are interested in the estimate of a
common regression parameter, then parameter vector
Bjs in the model can simply be replaced by B. Figure 1
provides a multistate diagram for characterizing the oc-
currence of hospital admissions and death. Patients in
state 2, for example, are alive and have experienced two
admissions; patients are in state D if they have died.
From each non-absorbing state, patients can either make
a forward transition to the next non-absorbing state or
can make a transition to death. All models/graphs were
run and created using the statistical package R [21].

The multistate methodology is custom made for pro-
spective cohort data and it is important to be aware of
methods for handling matching under such models.
Cluster-specific random effects [19] can be incorporated
into the multi-state model to handle correlation that
may arise from matching (that is, each matched group
can be considered a cluster). Our model includes
patient-specific random effects, as it is important to ac-
count for variation in the transition rates between
patients. In theory, one can incorporate both patient-
specific and cluster-specific random effects.

Results

This cohort study consisted of 5775 patients, among
whom 917 patients were YAS of colorectal cancer and
the remaining 4585 were controls. Among survivors, the
mean age was 39.3 years, and the male to female ratio
was 50:50. These distributions were the same in con-
trols, as survivors and controls were matched on calen-
dar year of birth and sex. Colon cancer was diagnosed in
642 (70.0%) young adults with CRC, and the remainder
had rectal cancer. The numbers of hospital admissions
for acute illness among YAS and controls are given in
Table 1. Of the 917 YAS, 321 (35.0%) were admitted to a
hospital at least once during their follow-up period;
whereas among the 4585 controls, 889 (19.4%) were ad-
mitted at least once. The average time to the first
hospitalization (from the 5-year mark) for the entire

0 Loi(t) 1 Aa(t) 2 Aog(t) 3 Aaa(t) 4 Aas (1) 5
_— > —— e _—> _—
Aip(t) Aap(t) Aap(t) Aap(t)
Lop(t)
Asp(t)
D (Dead)
Figure 1 Multistate Diagram for Admissions and Death.
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Table 1 Number of Admissions to Hospital for Acute lllness Among YAS and Controls

Number of hospital admissions

0 1 2 3 4 >5
YAS (%) 596 (65.0) 157 (17.1) 68 (7.4) 34 (3.7) 18 (2.0) 44 (4.8)
Controls (%) 3696 (80.6) 573 (12.5) 175 (3.8) 67 (14) 32(0.7) 53 (1.0

cohort is 3.06 years, which is more than double the aver-
age time from the first to second hospitalization (1.42
years). On average, the time from the second to third
hospitalization is even shorter at 1.06 years. These crude
numbers imply that the rate at which a hospitalization
occurs increases as the number of previous hospitaliza-
tions increase.

Figure 2 provides the plots of the estimated cumulative
baseline rate functions for hospital admissions among
survivors and controls based on the multistate model.
For both groups, by examining the relative steepness of
the curves, the predominant message is that at any given
time t, a patient with k prior hospitalizations is at higher
risk of a subsequent hospitalization than a patient with
k-1 prior hospitalizations. For example, patients who
have experienced 1 hospital admission (dashed line) are
at higher risk of a subsequent admission than patients
who have experienced no hospital admissions (solid
line). Moreover, there is a slight further elevation in risk
of a subsequent admission following the second hospital
admission (dotted line). This justifies the use of a differ-
ent baseline rate function for each admission, as adopted
by multistate model. Note that the crossing of the curves
in the initial stages is not concerning, as it occurs

because most patients are not at risk of their 2°¢ or 3™
event, for example, for small values of t.

The plots of the estimated cumulative baseline rate
functions for death among survivors and controls are
illustrated in Figure 3. For survivors, the functions indi-
cate that a patient with k prior hospitalizations is at
higher risk of death than a patient with k-1 prior hospi-
talizations. For example, survivors who have experienced
2 hospital admissions (dotted line) are at a far higher
risk of death than patients who have experienced 1 hos-
pital admission (dashed line). A similar pattern can be
seen among controls, however the relative steepness of
the curves is not as prominent. Although no data were
dropped, the results for transitioning from 3 to 4 hospi-
talizations and so forth were not presented. This is be-
cause the numbers of patients experiencing these
transitions during their observation periods were very
small and resulted in large confidence intervals.

Table 2 presents the estimates of the relative rate of
admissions comparing YAS versus controls from regres-
sion analyses based on the multistate model. The model is
adjusted for income quintile, as YAS and controls are
already matched by calendar year of birth, sex, and geo-
graphic location. The model also includes patient-specific
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Figure 2 Estimates of the Cumulative Baseline Rates for Subsequent Hospital Admissions Following 0, 1, or 2, Hospital Admissions
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Figure 3 Estimates of the Cumulative Baseline Rates for Death Following 0, 1, or 2 Hospital Admissions Based on the Multistate Model.
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random effects to handle heterogeneity. The results indi-
cate that the rate of admissions for acute illness is much
higher among YAS than controls. Among patients who
are yet to experience a hospitalization, the rate of admis-
sion is 3.47 times higher for YAS than controls (95% CI
(2.79, 4.31)). For those who have experienced one
hospitalization, the relative rate of a subsequent admission
is 3.03 (95% CI (2.01, 4.56)). Moreover, among patients
that have experienced two hospitalizations, the relative
rate of a subsequent admission decreases to 1.90 (95% CI
(1.19, 3.03)). The notable differences in the relative rates
between transitions indicate that a common regression
parameter for all transitions is not appropriate. That is,
using Bjs in Equation [2] is more suitable than B. The as-
sumption for proportional rate functions between YAS
and controls is not rejected (p-value > 0.1).

Discussion

Over the past years, the incidence of CRC has been in-
creasing among young adults. A large percentage of
these patients live at least 5 years after diagnosis, but it
is of question whether their rate of hospital admissions
after this 5-year mark is comparable to the general
population. Additionally, identifying an increased risk of
hospitalization in these long-term survivors would indi-
cate the persistence of late-effects of diagnosis and

Table 2 Results From Regression Analyses Based on the
Multistate Model

RR for YAS vs. controls ~ 95% ClI
Transition
No admission — 1 admission 347 (2.79,4.31)
1 admission — 2 admissions 3.03 (2.01, 4.56)
2 admissions — 3 admissions 1.90 (1.19, 3.03)

The model is adjusted for income quintile (YAS and controls are matched by
calendar year of birth, sex, and geographic location).

treatment. To the authors’ knowledge, this is the first
population-based study comparing the rate of hospital
admissions specifically among young adult survivors of
CRC and matched cancer-free controls. We found that
even more than 5-years after diagnosis and treatment,
young CRC survivors have a persistently higher risk of
hospitalization over time. The difference between survi-
vors and controls is greatest for those who have not
experienced a hospitalization yet. And even in survivors
and controls experiencing multiple admissions, indicat-
ing the presence of significant medical illnesses in both
groups, CRC survivors are still more likely to have a
subsequent admission. This indicates that young CRC
survivors have an increased burden of illness even com-
pared to controls with significant medical illnesses.
Understanding hospitalization patterns in this cohort
can help determine the impact of this population on the
Canadian health care system. For example, awareness of
whether the relative rate of hospitalizations varies based
on the number of previous hospitalizations can assist in
establishing the need for hospital services and the
provision of timely hospital care. Due to high costs asso-
ciated with hospital services, this topic has received con-
siderable attention among health care professionals,
policy makers, health care system administrators, and of
course the general public [1].

Data on repeated hospitalizations in which death is a
terminal event are often simply viewed as count data,
where the endpoint for each patient is the number of
events experienced over their period of observation. The
Poisson model is commonly used to analyze count data,
however its distributional assumptions cannot handle
over-dispersion that is typically exhibited by hospital ad-
mission data. The negative binomial model [22,23],
which is derived as a Poisson-gamma mixture, can ac-
commodate over-dispersion but still views the event data
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on each patient as a count. To incorporate the time of
each event into the analysis, an extension of the Cox
proportional hazards model known as the Andersen-Gill
counting process model [24,25] can be implemented. Al-
though this model allows the event rate to change over
time, it assumes that the baseline rate function is not
dependent on the number of prior events. In addition,
death is treated in the same way that end-of-study or
loss to follow-up is treated - that is, patients are simply
right-censored at the time of death. The Andersen-Gill
model is appropriate to implement for our data as long
as it is supplemented by also modeling the hazard of
death.

The multistate model treats death as an absorbing
state and is able to estimate the rate of transition to
death from each non-absorbing state. The multistate
model allows the rate of admissions to change over time.
It provides an admission-specific estimate for the base-
line rate function, which is necessary as shown in
Figure 2. It also allows one to determine if the relative
rate of admissions changes based on the number of
prior hospitalizations. If the point estimate of the rela-
tive rate for each transition in the multistate model
were similar, and if the estimates of the baseline rate
functions for each transition were also similar, then this
may warrant use of simpler models.

Conclusion

In summary, among both young adult survivors of colo-
rectal cancer and controls, the risk of a subsequent hos-
pital admission increases as the number of prior
hospitalizations increases. While the relative difference in
the rate functions for hospital admissions between survi-
vors and controls decreases as the number of prior hospi-
talizations increases, CRC survivors still experience a
higher rate of subsequent admissions. In addition, the risk
of death among survivors and controls increases as the
number of prior hospitalizations increases. This increase
is substantial among survivors that have experienced more
than 1 hospitalization. These findings indicate even in
long-term survivors, young adults continue to experience
substantial morbidity from CRC diagnosis and treatment.
Ongoing survivorship care planning, beyond the usual
time period for cancer surveillance, may be useful in this
group to attempt to mitigate the impact of the disease on
long-term outcomes. This is exploratory research and fur-
ther studies examining risk factors for admissions in this
group are needed to find specific interventions to help re-
duce the long-term burden of disease.

Inclusion into the cohort requires all young adult sur-
vivors to be living 5 years from diagnosis. Patients that
experience recurrent disease within the 5-year window
but are still alive are not excluded from the study. Since
disease status can affect the patient risk of hospital

Page 6 of 7

admission and death [1], it is of interest to implement
the multi-state models for a recurrence-free cohort. Al-
though there is no approach to directly identify recur-
rent disease using available administrative or cancer
registry data, an algorithm has been developed by Tan
[26] and implemented by Forbes et al. [1] that distin-
guishes patients with recurrent disease from those who
were diseas-free 5 years after diagnosis. Applying the
multi-state models to a recurrence-free cohort requires
further investigation and is of current interest.
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