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Abstract

Background: The need to improve patient safety has been identified as a major priority for health reform in
developed countries, including Australia. We investigated the implementation and appropriateness of Variable Life
Adjusted Displays as a quality control procedure to monitor “in-control” versus “out-of-control” processes in
Victorian public hospitals.

Methods: Victorian Admitted Episode Data from Department of Human Services, Victoria for 2004–7 were used.
The VLAD is a plot of a cumulative sum of the difference in expected outcome (range 0–1) and observed outcome
(0 or 1) for sequential separations. Three outcomes were assessed: in-hospital mortality for acute myocardial
infarction, stroke and heart failure. Logistic regression was used to obtain a realistic measure of expected mortality
over the period 2004–5, adjusting for covariates and comorbidities, to estimate expected mortality risk for the
separations between 2005–7. VLAD were plotted for the years 2005–7, by the 11 hospitals with the highest
frequency of separations. Signalling limits for 30%, 50% and 75% risk decrease and risk increase were determined
and plotted for each VLAD utilizing risk-adjusted cumulative sum techniques. This is a likelihood-ratio test statistic
for signalling. If the VLAD signalled by intersecting with a limit, the limit was reset.

Results: The three logit models displayed reasonable fit to the observed data. There were n = 2999 separations in
the AMI model, n = 3598 in the HF model and n = 1922 in the stroke model. The number of separations plotted
by VLAD ranged from n= 126 to n = 648. No signals were observed in 64%, 55% and 18% of VLAD for AMI, HF and
stroke respectively. For AMI and HF 9% of hospitals signalled at least once for each of 30%, 50% and 75% risk
increase, whereas this was 45% for stroke. Hospitals signalling at least once for risk decrease ranged from
18% to 36% across the levels of risk and outcomes. No VLAD signalled for both risk decrease and increase.

Conclusions: VLAD intersecting with limits to signal “out-of-control” states, may be an appropriate technique to
help hospitals assess quality control. Preliminary work displays some between hospital differences. Relevant signals
can be used to investigate why a system is potentially performing better than or worse than expected. Types and
levels of investigation could depend on the type of signalling. Validation work, for example attempting to correlate
signals with clinical notes, prior to VLAD distribution needs to be undertaken.
Background
The need to improve patient safety has been identified
as a major priority for health reform in developed coun-
tries, including Australia [1]. There are various types of
indicators that can be developed and used in the setting
of measuring quality and improving outcome [2],
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however some studies suggest little evidence of reduc-
tions in adverse events, despite extensive efforts to im-
prove patient safety [3].
Retrospective application of clinical indicators has

highlighted the potential to identify harm in a timely
manner, as exemplified by well documented cases of
Harold Shipman [4], Bristol [5], and Bundaberg [6]. Such
high profile cases alert clinicians and administrators that
differences in outcome may emerge and not be noticed.
The pyramid model of investigation to find credible
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cause for high mortality of patients [7] was adopted by
Mohammed et al. in their retrospective analysis of rou-
tine data to investigate general practitioners associated
with high patient mortality flagged through the Shipman
enquiry [8].
Variation between organisations can be identified and

displayed using a number of different methods. These
include Shewart charts, moving average plots and cumu-
lative sum (CUSUM) charts [9], funnel plots [10], reset-
ting sequential probability ratio tests (RSPRT) [11],
cumulative risk adjusted mortality (CRAM) charts [12]
and VLAD [13]. A crucial element for any analysis of
variation is appropriate risk-adjustment for case mix
with a view to estimate a realistic probability of outcome
[14-16]. Ideally any statistical charting technique would
alert to significant variation early.
In-hospital mortality is often reported as a measure of

quality of care [17]. It has been widely used internation-
ally because it is relatively easy to measure using existing
data and has good face validity i.e. hospitals with higher
rates of risk adjusted mortality would be expected to
demonstrate poorer quality of care.
We investigated the application and appropriateness

of Variable Life Adjusted Displays (VLAD) as a quality
control procedure to monitor “in-control” versus “out-
of-control” states in Victorian public hospitals. An “out-
of-control” state could be suggested by use of statistical
process-control methods by identification of excess
numbers of infrequent events [18].
A VLAD is a plot of cumulative sum of difference in

expected and observed outcome, which also includes
upper and lower limits to suggest better than or worse
than expected performance, when signalling occurs by
intersection of the line and the respective limits. Specif-
ically for this project the scope was to assess whether
VLAD for 3 mortality indicators that had been applied
to the Queensland Health Admitted Patient Data Collec-
tion could be applied to the Victorian Admitted Episode
Dataset (VAED).
Our aim for each indicator a priori was to, on 2004–7

VAED data, as outlined by the Queensland Health Qual-
ity and Health Program [19], (i) use identical inclusion
and exclusion criteria to define denominators and nu-
merator events, (ii) use identical covariates and comor-
bidities to risk adjust using logistic regression, (iii)
determine probability of expected outcome on VAED
2005–7 data, based on 2004–5 logistic regression results
and (iv) plot VLAD for sequential separations by hos-
pital on VAED 2005–7 data.

Methods
The VAED is an administrative dataset maintained by
Department of Human Services, Victoria (DHS) and is
based upon hospital data compiled by individual public
and private hospitals in Victoria, Australia. The dataset
contains demographic and clinical information on each
discharge, with diagnostic and procedure codes coded in
ICD-10-AM [20]. VAED data for all public hospital
(n = 45) episodes (separations) were obtained from DHS
for the time period July 1st 2004 to June 30th 2007.
For data analysis, identical inclusion and exclusion cri-

teria and risk adjustment for covariates and comorbid-
ities to those used by the Queensland Health Quality
and Health Program [19] were used to assess 3 out-
comes: in-hospital mortality (as captured by the dis-
charge status field) for (i) acute myocardial infarction
(AMI), (ii) stroke and (iii) heart failure (HF). Specific ex-
clusion criteria for each outcome are shown in Table 1.
ICD-10-AM principle diagnosis codes used for each

outcome were: (i) I21 and I22 for AMI, (ii) I61, I62, I63
and I64 for stroke and (iii) I50 for heart failure.
Covariate and co-morbidity(ICD codes) used for risk

adjustment for each outcome were: (i) age group, gender,
dementia(F00-F03; G30-G311), hypotension and shock
(I95; R57), renal failure(N17; N18.3; N18.4; N18.5;
N18.9; N19; R34), heart failure(I50), dysrhythmias(I46-
I49), malignancy(C00-C97), cerebrovascular disease(I60-
I69), hypertension(I10-I15) and diabetes(E10-E14) for
AMI, (ii) age group, septicaemia(A40-A41), malignancy
(C00-C97), heart failure(I50), acute lower respiratory
tract infection and influenza(J9-J22) and renal failure
(N17; N18.3; N18.4; N18.5; N18.9; N19; R34) for stroke
and (iii) age group, septicaemia(A40-A41), malignancy
(C00-C97), dementia(F00-F03; G30-G311), hypertension
(I10-I15), ischaemic heart disease(I20-I25), dysrhythmias
(I46-I49), ), acute lower respiratory tract infection and
influenza(J9-J22), ulcer of lower limb or decubitus ulcer
(L89; L97), renal failure(N17; N18.3; N18.4; N18.5;
N18.9; N19; R34), hypotension and shock(I95; R57) and
cerebrovascular disease(I60-I69) for HF. All were used
as binary variables, except age group which had multiple
categories (most of 5 year range).
We used logistic regression for risk adjustment and we

assessed model performance for each indicator using the
area under the Receiver Operating Characteristic curve
(ROC) and the Hosmer-Lemeshow (H-L) χ2 statistic
with 8 degrees of freedom for all three years 2004–7 and
each year separately. We subsequently calculated
expected mortality for 2005–7 VAED separations for
each indicator by using the intercept and covariate coef-
ficients for each respective 2004–5 VAED logistic model.
For each of the 11 hospitals with the highest frequency

of separations, VLAD were plotted from 2005–7. Cumu-
lative sum of the difference in expected outcome (range
0–1) and observed outcome (0 or 1) was plotted for se-
quential separations [21]. Signalling limits for 30%, 50%
and 75% risk decrease and risk increase were determined
and plotted for each VLAD utilizing risk-adjusted



Table 1 Frequencies of separations and relevant
exclusions by indicator

AMI:
2004-7

Number of
separations

%

Total 32,550 100

LOS <4 days and discharged alive 14,814 46

LOS >30 days 418 1

Not admitted through hospital
emergency department

8,830 27

Transfers out 10,616 33

Age <30 years 67 0

Age ≥85 years 4,661 14

Eligible 8,924 27

Stroke: 2004-7

Total 22,706 100

LOS <4 days and discharged alive 6,239 28

LOS >30 days 1,432 6

Not admitted through hospital
emergency department

4,641 20

Transfers out 8,071 36

Age <30 years 311 1

Age ≥85 years 4,768 18

Carotid endarterectomies 102 1

Eligible 5,857 26

Heart Failure: 2004-7

Total 27,389 100

No overnight stay 3,786 14

LOS >30 days 649 2

Not admitted through hospital
emergency department

6,293 23

Transfers out 4,510 17

Age <30 years 141 1

Age ≥85 years 7,876 29

Eligible 11,124 41

Table 2 Average run length (ARL) to false alarm and
value of h for varying values of ρ*

Improved performance Worse performance

ρ 0.70 0.50 0.25 1.30 1.50 1.75

h 2.6 3.6 4.9 2.8 3.7 5

ARL 229 682 2447 264 834 3118

*adapted from Coory et al. [22].

Table 3 Observed mortality by indicator and year

Frequency of
separations

% of
separations

Mortality % of
deaths

Mortality
Risk

Risk
Ratio

AMI

2004/5 2999 33.6 338 31.9 11.3% 1.00

2005/6 2977 33.4 371 35.0 12.5% 1.11

2006/7 2948 33.0 350 33.1 11.9% 1.05

Total 8924 100 1059 100 11.9% -

Stroke

2004/5 1922 32.8 540 30.9 28.1% 1.00

2005/6 1966 33.6 609 34.8 31.0% 1.10

2006/7 1969 33.6 599 34.3 30.4% 1.08
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CUSUM techniques [22]. This is a log likelihood-ratio
test statistic for signalling [23]. If the VLAD signalled by
intersecting with a limit, the limit was reset. Appendix 1
outlines the methodology used to plot a VLAD with sig-
nalling including the definitions and values used for the
variables ρ and h and associated average run lengths to
false alarms (Table 2). We used Stata v10.1 [24] for all
analyses and plots.
Total 5857 100 1748 100 29.8% -

HF

2004/5 3598 32.3 213 34.6 5.9% 1.00

2005/6 3683 33.1 194 31.5 5.3% 0.89

2006/7 3843 34.6 209 33.9 5.4% 0.92

Total 11124 100 616 100 5.5% -
Results
Of N= 32550 (AMI), N = 22706 (stroke) and N= 27389
(HF) total separations, N = 8924(27.4%), N= 5857(25.8%)
and N= 11124(40.6%) respectively were eligible for ana-
lysis following relevant exclusions (Table 1).
Overall observed mortality for eligible separations was
11.9%, 29.8% and 5.5% for AMI, stroke and HF respect-
ively, with similar mortality rates observed in each year
(Table 3).
Most covariates in the multivariate logistic models

were independent predictors (p < 0.05) of outcome.
Females had higher risk of in-hospital mortality following
AMI compared to males OR=1.21(95%CI = 1.04 – 1.40).
Age group categories less than the reference category
(60–64 years for AMI and 65–69 years for HF and
stroke) had lower odds of outcome, while age group cat-
egories higher than the reference category had increased
odds of outcome. All co-morbidities displayed increased
odds of outcome except presence of diabetes for in-
hospital AMI, OR= 0.98(95%CI = 0.83 – 1.16) and pres-
ence of hypertension for in-hospital AMI and HF,
OR=0.49(95%CI = 0.42 – 0.57) and OR= 0.62(95%CI =
0.51 – 0.74) respectively. There is evidence of year of
separation trending towards a significant predictor for
in-hospital stroke OR= 1.15(95%CI = 1.00 – 1.33) and
OR=1.13(95%CI = 0.98 – 1.31) for 2005–6 and 2006–7
compared to 2004–5 respectively.
In the 2004–5 models used to calculate subsequent

expected risk, there were n = 2999 separations in the
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AMI model, n = 1922 in the stroke model and n = 3598
in the HF model. Risk adjustment for HF appears to be
most appropriate with similarly high ROC 0.83 for
2004–5 and 0.81 for 2004–7 and similarly low non-
significant H-L χ2 = 8.9, p = 0.35 for 2004–5 and 9.2,
p = 0.32 for 2004–7. The risk models for stroke had a
low area under ROC (0.68 and 0.67) and whilst the
models for AMI had high area under ROC, their H-L
statistic was also high (χ2 = 13.77, p = 0.09 for 2004–5
and χ2 = 45.03, p < 0.0001 for 2004–7).
The numbers of separations plotted for the 33 VLAD

ranged from n= 126 to n = 648. Table 4 shows, for each
outcome, the total number of signals seen, as well as the
percentage of hospitals signalling, in the hospital VLAD,
suggesting better than expected performance, at levels of
30%, 50% or 75% risk decrease, and suggesting worse
than expected performance at levels of 30%, 50% or 75%
and risk increase. No signal was observed in 64%, 55%
and 18% of VLAD for AMI, HF and stroke respectively.
For AMI and HF 9% of hospitals signalled at least once
for each of 30%, 5% and 75% risk increase, whereas this
was 45% for stroke. Hospitals signalling at least once for
risk decrease ranged from 18% to 36% across the levels
of risk and outcomes. No VLAD signalled for both risk
decrease and increase.
Figures 1 (dashed lines for limits) and Figure 2 (shapes

for signals) show examples of two methods of displaying
limits and signalling for VLAD display. The example
VLAD signals, suggesting statistically significantly better
than expected performance, first at 75% risk decrease
and then at 50% risk decrease when compared to the
VAED data as a whole, at around July 2006. At the time
of the second signal, the hospital had approximately 6
cases of mortality less than expected. The period of the
continuous increase in slope eventually resulting in sig-
nalling (suggesting the investigation range) was from ap-
proximately August 2005 – July 2006.
Table 4 Number of VLAD signals by condition and
percent of N=11 hospitals signalling at least once for
each %risk change for 2005/7 separations

Risk Decrease Risk Increase

30% 50% 75% 30% 50% 75%

AMI Total number of signals 4 5 3 1 1 1

Hospitals signalling at
least once

27% 27% 18% 9% 9% 9%

Stroke Total number of signals 5 5 4 11 11 11

Hospitals signalling at
least once

36% 36% 36% 45% 45% 45%

HF Total number of signals 3 5 5 1 1 1

Hospitals signalling at
least once

18% 36% 36% 9% 9% 9%
Discussion
We have shown that the VAED can be applied in devel-
oping an indicator to potentially assess quality control.
Intersections between the VLAD curve and the limits to
signal “out-of-control” states could be an appropriate
technique to help hospitals assess individual variation
from an overall average. Relevant signals can be used to
investigate why a system is potentially performing better
than or worse than expected. Types and levels of investi-
gation could depend on the type of signalling.
We recognise that only the technical aspects of VLAD

production have been demonstrated within the scope of
this proof of concept. We have shown that we can pro-
duce technically correct VLAD charts, and we have
identified the levers, parameters and other controls
which must be decided and set for implementation.
Many questions remain unanswered, before control

chart technology can be implemented across the Victor-
ian public health system. There are the obvious resource
questions – how much effort and technology infrastruc-
tures (hardware/software) are needed, both for produc-
tion and distribution of VLAD charts, and for their
management within a ‘signalling’ hospital? But there also
remain important questions of interpretation and utility.
We recognise that VLAD is likely to be a clinically

appealing and potentially useful tool to monitor possible
out-of-control conditions in Victorian hospitals. VLAD
is a control chart that can be implemented as a measure
of quality control in an attempt to differentiate special
cause variation from common cause variation in a sys-
tem [25]. Special cause variation refers to variation as a
result of incorrect implementation of an otherwise nor-
mal system, whereas common cause variation is
expected as part of normal day-to-day variability.
The purpose of implementing VLAD not only includes

monitoring for out-of-control states, but also includes
reassurance that existing systems are in control. VLAD
will be used as a monitoring tool that may initiate an ap-
propriate investigative response. In implementation, it is
just as important to investigate why a certain hospital is
performing better than expected, so that successful pro-
cedures can be implemented elsewhere, than just investi-
gating why another hospital appears to be performing
worse than expected.
While VLAD technology has the potential to open up

new opportunities for monitoring quality of hospital care
in Victoria, we need to be sure that the methods pro-
duce results which are interpretable and which do not
overwhelm our hospitals with false positive signals. It is
essential, therefore that appropriate processes for inter-
pretation, review and feedback are implemented before a
potentially damaging “production line” is generated. All
results must be reviewed intensively for their quality, ac-
curacy and interpretability before distribution.



Figure 1 VLAD with upper and lower risk-adjusted CUSUM limits for hospital code= xxxx for HF in-hospital mortality for 2005/7.
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Measurement of both observed and expected outcome
can be biased. Coding errors can occur in variables that
are used to measure both; however case mix adjustment
is widely done because adjusted comparisons are gener-
ally considered to be less biased than unadjusted com-
parisons [26]. Observed outcome can be further biased if
mortality occurs soon after hospital discharge.
Critical to the validity of VLAD is an appropriate esti-

mation of expected outcome. Overestimating expected
outcome may lead to increased frequency of signalling
for better than expected performance, while increased
frequency of signalling for worse than expected perform-
ance may be observed if expected outcome is
underestimated.
Figure 2 VLAD with upper and lower risk-adjusted CUSUM limit signa
This study has focused on developing risk models as
used in Queensland based on 2004/5 data and applying
to VLAD on 2005/7 data. This may not be a suitable long
term method of expected risk calculation for data from
the VAED. Bootstrapping techniques [27] to discover the
best risk model for each indicator may be employed
based on the data available, however appropriate clin-
ician input for valid risk adjustment is also important.
Should the VAED not contain certain variables that are
considered necessary for appropriate risk adjustment,
then appropriate merging with or use of other data
sources e.g. clinical registries [28] may be considered.
Expected risk may change over time. It may be ap-

propriate to implement a rolling logistic regression
ls for hospital code= xxxx for HF in-hospital mortality for 2005/7.
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risk model. This may simply involve using the previ-
ous 12, 24 or 36 months (whole units of year needed
to account for seasonal variation) of data for the pur-
pose of determining expected risk with the same ad-
justment variables, or it may involve revisiting model
development and adjusting variables in the model as
necessary.
For each indicator, fine tuning of ρ and h is needed to

minimize false positives and attempt to avoid false nega-
tives. Assumptions that a system is in control at a start
of a VLAD may need to be made. More rigorous limits
e.g. h/2 could be set initially to observe signalling. Re-
view of subsequent VLAD could occur in two ways. (i)
as a cumulative addition to the previous VLAD and (ii)
as a new VLAD starting from zero in its own right, may
help to address methodological questions about per-
formance of the curves and resetting. Assessment of the
relative strengths and weaknesses of these after several
cycles would be helpful.
Three sets of signals each for risk increase and risk de-

crease have been implemented, with the view to imple-
menting a tiered response to signals. Recommended
initial responses to signals at each level need to be estab-
lished and validated. Queensland Health’s current flag
levels for various indicator groupings and responses to
flag level signalling are outlined in their VLAD imple-
mentation standard [29]. Their use recently led to refine-
ment of the laparoscopic cholecystectomy complications
of surgery indicator definition [30].
Early signalling to suggest significant variation is a de-

sirable goal for VLAD, however simulation studies sug-
gest ability to signal early may be mild and may be
strictly correlated with the institution volume of activity
[31]. Hence the authors conclude it may be preferable to
use an integration of VLAD and another tool e.g.
CUSUM charts. Furthermore, Scott et al. conclude that
appropriate patient selection may be more important
than choice of dataset or risk-prediction model when
statistical process-control methods are used to flag un-
favourable mortality trends suggestive of sub-optimal
hospital care [18].
This study is further limited in that we have assessed

VLAD using only one dataset and within that only hos-
pitals with the highest volume of admissions. There has
also been no attempt to check whether the signals actu-
ally represent significant variation in practice; however
the methodology does display feasibility and a way
forward.

Future directions
Assessment of the implications of differences in risk
adjustment (both in variables included and temporal
changes) on VLAD and their signals. Possibility of use of
linked datasets for risk adjustment. Clinical validation and
utility of VLAD distribution needs to be undertaken and
ultimately an assessment of whether responses actually
lead to a change in practice and better quality of care.

Conclusions
VLAD intersecting with limits to signal “out-of-control”
states, may be an appropriate technique to help hospitals
assess quality control. They are a relatively straightforward
visual representation which may enhance the likelihood
of engaging clinicians and administrators. Preliminary
work displays some between hospital differences. Rele-
vant signals can be used to investigate why a system is
potentially performing better than or worse than
expected. Types and levels of investigation could depend
on the type of signalling. Validation work attempting to
correlate signals with clinical notes, as well as further risk
adjustment work, prior to VLAD distribution needs to be
undertaken.

Appendix 1: VLAD Methodology
Using the logistic regression to predict a risk coefficient
(p) for a patient for a set of n covariates:

logit pð Þ ¼ β0 þ
Xn

i¼1

βixi ð1Þ

Expected outcome (E) can be calculated as:

E ¼ ep

1þ ep
ð2Þ

And Observed outcome (O) is O = 0 if the patient sur-
vives, O = 1 if the patient dies.
A VLAD is a curve that plots cumulative (E) – (O)

events:

Vn ¼
Xn

i¼1

Ei �
Xn

i¼1

Oi ð3Þ

VLAD limits can be calculated from:
For the lower limit the CUSUM of the nth observation

(Cn) with the corresponding weight Wn is given by:
C0 = 0 and

Cn ¼ max Cn�1 þWn; 0f g ð4Þ
Where

Wn ¼ On logρ� log 1þ ρ� 1ð ÞEnð Þ ð5Þ
where ρ is the ratio of risk under the alternative and null
hypotheses.
The lower VLAD limit (Ln) can then be calculated by

the expression:

Ln ¼ Vn þ Cn � hð Þ= log ρ ð6Þ
where h is a control limit signifying when the CUSUM
signals.
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Should Vn intersect with Ln, the limit is reset to Zn by:

Zn ¼ Ln þ h= logρ ð7Þ
For the upper limit, the CUSUM is modified to be:

Cn ¼ min Cn�1 �Wn; 0f g ð8Þ
and the limit is modified to be:

Ln ¼ Vn � Cn þ hð Þ= log ρ ð9Þ
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