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Abstract

Background: Administrative claims of United States Centers for Medicare and Medicaid Services (CMS) beneficiaries
have long been used in non-experimental research. While CMS performs in-house checks of these claims, little is
known of their quality for conducting pharmacoepidemiologic research. We performed exploratory analyses of the
quality of Medicaid and Medicare data obtained from CMS and its contractors.

Methods: Our study population consisted of Medicaid beneficiaries (with and without dual coverage by Medicare)
from California, Florida, New York, Ohio, and Pennsylvania. We obtained and compiled 1999–2011 data from these
state Medicaid programs (constituting about 38% of nationwide Medicaid enrollment), together with corresponding
national Medicare data for dually-enrolled beneficiaries. This descriptive study examined longitudinal patterns in:
dispensed prescriptions by state, by quarter; and inpatient hospitalizations by federal benefit, state, and age group.
We further examined discrepancies between demographic characteristics and disease states, in particular frequencies
of pregnancy complications among men and women beyond childbearing age, and prostate cancers among women.

Results: Dispensed prescriptions generally increased steadily and consistently over time, suggesting that these claims
may be complete. A commercially-available National Drug Code lookup database was able to identify the dispensed
drug for 95.2–99.4% of these claims. Because of co-coverage by Medicare, Medicaid data appeared to miss a
substantial number of hospitalizations among beneficiaries ≥ 45 years of age. Pregnancy complication diagnoses
were rare in males and in females ≥ 60 years of age, and prostate cancer diagnoses were rare in females.

Conclusions: CMS claims from five large states obtained directly from CMS and its contractors appeared to be of
high quality. Researchers using Medicaid data to study hospital outcomes should obtain supplemental Medicare
data on dual enrollees, even for non-elders.

Trial Registration: Not applicable.
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Background
United States (US) Medicaid data are widely used for ep-
idemiologic, health services, and policy research [1–3].
Given the potential public health importance of findings
arising from such studies, it is critical to understand the
quality of the underlying data. Medicaid data are avail-
able to researchers via multiple pathways, including
from the Centers for Medicare and Medicaid Services
(CMS―via its contractors), commercial data vendors,
and potentially direct from individual states. Academic,
governmental, and non-profit researchers most com-
monly acquire these data from CMS. In recent years,
CMS has made concerted efforts to improve the quality
of its raw and research-transformed enrollment and
claims files [4, 5]. Their initiatives [4] have led to quality
standards, external benchmarking, and publication of file
specifications and anomaly reports [6]. While re-
searchers can use these complex technical documents to
review validation measures, key summary statistics, and
unusual patterns in state data (if documented), there re-
mains a need for a higher-level, overarching examination
of data quality.
Researchers often recognize the importance of evaluating

the completeness and validity of particular measures of ex-
posure, outcome, and other explanatory factors that will be
relied upon in a particular study [7]. Yet, few first examine
overarching data quality. Given this, we examined broad
indicators of potential error in US Medicaid and Medicare
data acquired from CMS and its contractors.

Methods
Over 14 calendar years (2003–2016), supported by
grants from the US National Institutes of Health, we re-
quested and obtained Medicaid Analytic Extract (MAX)
files [8] from 1999–2011 (hereafter referred to as file
years) for California, Florida, New York, Ohio, and
Pennsylvania. We selected these states for study since
they are geographically diverse and have a combined
prevalent enrollment of nearly 26 million persons, or
about 38% of the nationwide Medicaid program [9]. For
Medicaid beneficiaries in these states with at least some
period of Medicare coverage (i.e., dual enrollees), we fur-
ther requested and obtained their Medicare claims from
the following research identifiable files (RIFs): Medicare
Provider Analysis and Review (MedPAR―including
short stay hospital, long stay hospital, and skilled nursing
facility), Prescription Drug Event (PDE―from Medicare
Part D’s 2006 implementation onward), Carrier, and
Outpatient [10]. Therefore, the population under study in-
cluded Medicaid beneficiaries of five large states with and
without dual coverage by Medicare. Data were obtained
directly from CMS and two different CMS research data
distribution contractors over the 14-calendar year
period (CMS [Baltimore, Maryland] from 2003–2005,
Acumen [Burlingame, California] from 2006–2008, and
Buccaneer/General Dynamics [Falls Church, Virginia]
from 2009–2016).
We were able to use identifiers provided in the data to

track unique beneficiaries longitudinally. Using the
MAX Personal Summary file, we first identified benefi-
ciaries without a gap in Medicaid enrollment in a given
file year―acknowledging that not all individuals had the
same beginning date of their initial enrollment. We then
determined the proportion of such beneficiaries without
a gap in Medicaid enrollment in each subsequent file
year. This served to quantify the persistence of Medicaid
enrollment in beneficiaries over long periods of time.
We then graphically summarized several important

parameters to assess data completeness and validity. Be-
cause our principal use of these data is for pharmacoepi-
demiologic research, we first looked for unexplained
variation in the number of dispensed prescriptions per
quarter in each state, which might suggest incomplete
prescription data for certain time periods [11]. Relatedly,
we also measured the proportion of MAX Prescription
and Medicare PDE claims for which the billed National
Drug Code (NDC) corresponded to a record in a
commercially-available NDC database (Lexicon Plus
v.02.01.2016, Cerner Multum: Denver, Colorado). For
billed NDCs without a matching record in Lexicon Plus,
we used the following alternate sources to identify such
products: RxNorm (US National Library of Medicine:
Bethesda, Maryland); then state Medicaid drug lists;
and then the NDC Directory (US Food and Drug
Administration: Silver Spring, Maryland).
We also plotted the ratio of hospitalizations to bene-

ficiary population size in each state, stratified by age
group. We did this first using MAX Inpatient data
alone, then adding hospitalizations identified by supple-
menting with Medicare data (MedPAR short stay hos-
pital RIF) to determine the importance of obtaining
Medicare data on dual enrollees. To avoid double-
counting hospitalizations recorded in both Medicaid
and Medicare, we included only one hospitalization per
beneficiary per day.
We also examined the frequency of obvious diagnostic

miscoding by comparing quarterly counts of claims with
a diagnosis of Complications of Pregnancy, Childbirth,
and Puerperium (International Classification of Diseases,
9th revision, clinical modification [ICD-9-CM] codes
630–677 and subcodes) among females age < 60, females
age ≥ 60, and males. Finally, we compared quarterly
counts of claims with a diagnosis of prostate cancer
(ICD-9-CM: 185, 233.4, 222.2, 236.5, and subcodes)
between males and females.
Medicaid and Medicare data access was governed by a

data use agreement executed between The Trustees of
the University of Pennsylvania and CMS. The University
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of Pennsylvania’s institutional review board approved the
activities described herein.

Results
Among 15,627,762 beneficiaries identified in file year
1999, 12,649,367 (80.9%) had no enrollment gaps
through the year’s end. About 14% of these beneficiaries
remained continuously enrolled through the end of
2011―a period of 13 years. Table 1 presents proportions
for interim time points and also for beneficiaries newly-
identified as having a full year of continuous enrollment
post-1999. Raw counts of beneficiaries are presented in
Additional file 1: Table S1.
Figure 1 depicts quarterly prescriptions dispensed per

state. Dispensed prescriptions generally increased consist-
ently over time, except for Ohio in which they decreased
then plateaued during 2006–2010 (see Discussion). The
proportion of dispensed prescriptions in which a claim
NDC matched a record in Lexicon Plus was 95.2 − 98.4%
in MAX Prescription and 99.2 − 99.4% in Medicare PDE
data, depending on file year. See Additional file 1: Figure
S1 for state-specific trends. Claim NDCs not identified by
Lexicon Plus were most commonly for condoms and dia-
betes care supplies (Additional file 1: Table S2).
Figure 2 depicts the annual rate of hospitalization in

each state, stratified by age group and federal benefit,
considering Medicaid as primary and Medicare as sup-
plemental. As expected, many hospitalizations in older
adults would have been missed if one relied exclusively
on Medicaid data. Surprisingly, many hospitalizations in
the 45–65 year age group would have been missed if one
relied exclusively on Medicaid data. There was a nearly
monotonic increase in the rate of hospitalization by age,
beginning with the 6–14 year age group.
Table 1 Proportion of beneficiaries without a gap in Medicaid enro
devoid of a gap, using 1999–2011 Medicaid Analytic Extract Persona

1999 2000 2001 2002 2003 2004

1999 100 58 47 41 35 30

2000 100 56 42 31 14

2001 100 50 33 21

2002 100 48 28

2003 100 41

2004 100

2005

2006

2007

2008

2009

2010

2011
Additional file 1: Figures S2 and S3 depict quarterly
counts of claims with a diagnosis of Complications of Preg-
nancy, Childbirth, and Puerperium and with a diagnosis of
prostate cancer, respectively. Encouragingly, there were
few pregnancy-related claims in females age ≥ 60 (130,987
[0.2% of pregnancy-related claims]) and in males (197,337
[0.3% of pregnancy-related claims]), and few prostate
cancer claims in females (24,839 [0.9% of prostate cancer-
related claims]). Instances of apparent miscoding were less
common in inpatient than outpatient claims (0.3 vs. 0.4%
overall, respectively).

Discussion
Medicaid and Medicare data provided by CMS and its
contractors are widely utilized in epidemiologic, policy,
and health services research. However, errors in data can
lead to incorrect scientific inferences and evaluations of
public policy. Encouragingly, the CMS dataset under
study appeared to be of high quality.
This dataset provides one an ability to follow a sur-

prisingly large number of beneficiaries without gaps in
Medicaid enrollment over long periods of time, despite
a large proportion of beneficiaries under study having
at least some period of disenrollment. This is important
to researchers wishing to study long-term effects of
medical products or policy decisions, for example.
Further, dispensed prescriptions generally increased

steadily and consistently over time, suggesting that these
claims from the Medicaid programs and file years under
study may be complete. An exception may be repre-
sented by a dip in Ohio’s prescription claims from
2006–2010, a trend likely driven by managed care ex-
pansion [12, 13]. During this time, pharmacy benefits in
Ohio were carved-in to managed care and the state was
llment in each subsequent file year following their initial file year
l Summary files from CA, FL, NY, OH, and PA

2005 2006 2007 2008 2009 2010 2011

27 23 21 19 17 15 14

12 10 8 7 6 5 5

17 13 11 9 8 7 6

21 17 13 11 10 9 8

27 20 15 13 11 9 8

52 34 26 12 10 9 7

100 44 28 18 15 13 11

100 44 25 20 17 14

100 39 28 22 18

100 56 42 34

100 50 34

100 48

100



Fig. 1 Prescriptions dispensed per quarter per state, from Medicaid Analytic Extract Prescription (1999–2011) and Medicare Part D Prescription
Drug Event files (2006–2011)
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undergoing their Medicaid Management Information Sys-
tem replacement project [14]. Therefore, such claims were
not reported to CMS. This explainable “missingness” is in
contrast to our prior finding of unexplained variation in
prescription claims over time in CMS data obtained from
a commercial vendor [11]. We were also encouraged that
95–99% of the prescription claims billed for an NDC
CA FL N
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The pattern of hospitalization rates by age group
within Medicaid claims alone is similar to prior findings
[11, 15], in which the apparent rate increases up to age
64, then declines at age 65. This implausible pattern is
probably an artifact of benefit structures, in which hos-
pitalizations of Medicaid beneficiaries age ≥ 65 who are
enrolled in Medicare are covered by Medicare (the pri-
mary payer for dual enrollees). Notably, reliance on
Medicaid claims alone would have also missed a sub-
stantive number of hospitalizations in non-elders, espe-
cially among persons age 45–64. This may be due to the
fact that non-elders account for ~40% of all dual enrol-
lees and have poorer health than older adults enrolled in
Medicare alone [16]. These findings reinforce the im-
portance of obtaining corresponding Medicare claims of
dual enrollees in studies using Medicaid data, even if
limited to a non-elder adult population [11, 15]. High
rates of hospitalization in beneficiaries age <1 year ap-
pear to be driven by diagnostic coding of liveborn infant
status in newborns.
We examined two crude markers of apparent diagnos-

tic miscoding (i.e., pregnancy complications in males
and older females, prostate cancer in females) and found
that gross inconsistencies were uncommon. While re-
assuring, this finding does not eliminate the need to for-
mally evaluate the validity and performance metrics of
specific health outcomes of interest. Fortunately, it is
now possible, for research purposes, to access primary
medical records to validate diagnoses from inpatient and
outpatient Medicaid and Medicare claims―with re-
trieval rates ranging from 29–89% for inpatient charts
and 27–66% for outpatient charts [17–27].
We are unaware of a single standard approach to

examine the general validity of a health services data-
base. Therefore, we selected metrics that were broadly
applicable, intuitively appealing, easy to measure, and
easy to interpret. This is consistent with our prior work
in this area [15] and in alignment with fit-for-use quality
assessment components described by Kahn et al. [28]
and Brown et al. [29] The findings herein build upon
our prior work by: a) including an additional 11 file
years of data, thereby allowing us to examine long-term
trends in data quality and quantify the persistence of the
Medicaid population; b) including Medicare PDE data,
since its implementation in 2006; and c) assessing the
consistency in quality across multiple data contractors.
While other researchers have examined some broad
measures of CMS data quality [30, 31], their datasets
under study were from the 1980s and predated the
current model by which CMS prepares data for and pro-
vides data to researchers.
Big data is a large part of the future of healthcare [32].

However, the use and analysis of big data must be based
on accurate and high-quality information―a necessary
condition for generating value from big data [33].
Medicaid data available from CMS have tremendous po-
tential utility for research that will ultimately improve
the health of the public. Performing exploratory data
analyses, such as that conducted herein, is an important
first step in using administrative databases. Of course,
failure to identify problems in the course of such ana-
lyses is no guarantee that the data are valid and comple-
te—especially when selected quality metrics represent a
tiny fraction of metrics that could be examined (e.g.,
trends in claims for ambulatory care encounters, trends
in claims for laboratory orders [29]). Given the potential
for error in administrative data due to variation in indi-
vidual states’ program structures and data processing
practices, such as diagnostic miscoding, the analyses pre-
sented herein can provide a baseline level of under-
standing of such data.

Conclusion
In conclusion, we broadly examined the quality of thirteen
file years of Medicaid and Medicare data from five large
states obtained via CMS and its contractors. The findings
are reassuring to researchers―millions of beneficiaries are
able to be studied over time without gaps in enrollment,
prescription claims appear to be complete and their NDCs
identifiable, and obvious diagnostic miscoding is rare. Re-
searchers using Medicaid data to study hospital outcomes
should obtain supplementary Medicare data on dual
enrollees for studies of persons age 45 years and above.

Additional file

Additional file 1: Supplemental data consisting of three additional
figures and two additional tables. (DOCX 97.2 kb)
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